JPS62214304A - Absolute accuracy measuring method for robot - Google Patents
Absolute accuracy measuring method for robotInfo
- Publication number
- JPS62214304A JPS62214304A JP5867086A JP5867086A JPS62214304A JP S62214304 A JPS62214304 A JP S62214304A JP 5867086 A JP5867086 A JP 5867086A JP 5867086 A JP5867086 A JP 5867086A JP S62214304 A JPS62214304 A JP S62214304A
- Authority
- JP
- Japan
- Prior art keywords
- robot
- absolute accuracy
- measuring method
- measuring
- accuracy measuring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Manipulator (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、産業用ロボットの絶対精度測定法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for measuring absolute accuracy of industrial robots.
を用いて、ロボットのアーム先端に鏡を取付け、側面に
レーザ測定器を固定し前記アームを等間隔に動かし測定
後、更に方向を90度替えて同様の方法で測定を行なっ
ていた。Using a robot, a mirror was attached to the tip of the robot's arm, a laser measuring device was fixed to the side, and the arm was moved at equal intervals to take measurements, then the direction was changed 90 degrees and measurements were taken in the same manner.
従来のレーザ測定器では、前記レーザ測定器が高価に過
ぎたり、測定機器の光軸合せに時間がかかる。また、ス
ピード変化による追従性に限度があυ直線動作のものし
か測定出来ないという問題があった。With conventional laser measuring instruments, the laser measuring instrument is too expensive and it takes time to align the optical axis of the measuring instrument. Additionally, there is a problem in that there is a limit to followability due to speed changes, and only linear motion can be measured.
そこで本発明は、安価な機器を利用して、簡便に絶対精
度を測定する方法を提供するものである。Therefore, the present invention provides a method for easily measuring absolute accuracy using inexpensive equipment.
本発明のロボツ下゛の絶対精度測定法は、位置測定手段
としてロボットアーム上に観察用機器を固定し、所要測
定精度に応じて形成したガラスマスク上のスケールの交
差点を被測定点として、ロボットの移動した位置座標と
の差を観察用機器によシ測定することを特徴とする。In the absolute precision measurement method for robots according to the present invention, an observation device is fixed on the robot arm as a position measuring means, and the robot It is characterized by measuring the difference between the moved position coordinates and the moved position coordinates using observation equipment.
以下に本発明の実施例を観察用機器の1つである心出し
顕微鏡を一例にあげ図面に基づいて説明する。第1図は
測定法を示す側面図である。アーム1及び2を移動させ
、アーム2に固定した心出し顕微鏡3によシ、支持台5
上に置かれたガラスマスク4に目盛られ九スケールを読
み取る。第2図は本発明による測定法の平面図を示す。Embodiments of the present invention will be described below with reference to the drawings, taking a centering microscope, which is one type of observation equipment, as an example. FIG. 1 is a side view showing the measurement method. The arms 1 and 2 are moved, and the centering microscope 3 fixed to the arm 2 is placed on the support stand 5.
The nine scales are read on the glass mask 4 placed above. FIG. 2 shows a plan view of the measuring method according to the invention.
絶対精度を測定したい作業領域の最外周の2点の6及び
7にロボットアームを移動させ、前記心出し顕微鏡を見
ながらその中心とガラスマスクのスケールを合致させ、
点6と点7を結ぶ直線を基線とする。Move the robot arm to the two outermost points 6 and 7 of the work area where you want to measure the absolute accuracy, and match the center with the scale of the glass mask while looking at the centering microscope.
The straight line connecting points 6 and 7 is the base line.
この時、点7を原点とする。ロボットに移動すべき点の
座標値を指令し、実際にロボットが移動した点の位置座
標を、前記心出し顕微鏡3によりガラスマスク4上のス
ケールを読み取ることで得る。At this time, point 7 is set as the origin. The coordinate values of the point to be moved to the robot are instructed, and the positional coordinates of the point actually moved by the robot are obtained by reading the scale on the glass mask 4 using the centering microscope 3.
指令した座標値とロボットが実際に移動した位置の座標
値の差が絶対精度として容易に得られる。The difference between the commanded coordinate values and the coordinate values of the position actually moved by the robot can be easily obtained as absolute accuracy.
尚、前記心出し顕微鏡3を実施例にあげて説明してきた
が、本発明の構成をテレビカメラ・ファイバースコープ
等を用いてコンピュータ及びモニタテレビに接続したシ
ステムを取ればよシ効来が得られる。Although the above-mentioned centering microscope 3 has been described as an example, even better effects can be obtained by using a system in which the configuration of the present invention is connected to a computer and a monitor television using a television camera, fiberscope, etc. .
〔発明の効果〕
本発明は、以上説明したように、顕微鏡あるいはテレビ
カメラまたはファイバースコープ、ガラスマスクという
安価な機器を用いて簡便に絶対精度を測定できる。テレ
ビカメラまたはファイバースコープを用いれば、測定毎
に顕微鏡を覗く必要がなく、モニタテレビ画面を見て測
定できるので更に簡便であり、測定時間を短縮出来る。[Effects of the Invention] As explained above, the present invention allows absolute accuracy to be easily measured using inexpensive equipment such as a microscope, a television camera, a fiber scope, and a glass mask. If a television camera or fiberscope is used, there is no need to look through a microscope each time a measurement is made, and measurements can be made by looking at a monitor television screen, making it even simpler and reducing measurement time.
また、安全度が増加するなど大きな効果がある。It also has great effects such as increased safety.
第1図は本発明の絶対精度測定法を示す側面図。 第2図はその平面図である。 1・・・・・・・lアーム 2・・・・・・・・・アーム 5・・・・・・・・・心出し顕微鏡 4・・・・・・・・・カラスマスク 5・・・・・・・・・支持台 6・・・・・・・・・点 7・・・・・・・・・点 以 上 箱1図 第2図 FIG. 1 is a side view showing the absolute accuracy measurement method of the present invention. FIG. 2 is a plan view thereof. 1...L arm 2・・・・・・・・・Arm 5・・・・・・Centering microscope 4・・・・・・・・・Crow mask 5......Support stand 6...... points 7...... points that's all Box 1 diagram Figure 2
Claims (1)
前記ロボットのアーム上に観察用機器を固定し、所要測
定精度に応じて形成したガラスマスク上のスケールの交
差点を被測定点として、前記ロボットの移動した位置座
標との差を前記観察用機器により測定することを特徴と
するロボットの絶対精度測定法。In measuring the absolute accuracy of a robot, an observation device is fixed on the arm of the robot as a position measuring means, and the intersection of the scale on the glass mask formed according to the required measurement accuracy is used as the measurement point, and the observation device is A method for measuring the absolute accuracy of a robot, characterized in that the difference between the position coordinate and the robot is measured using the observation device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5867086A JPS62214304A (en) | 1986-03-17 | 1986-03-17 | Absolute accuracy measuring method for robot |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5867086A JPS62214304A (en) | 1986-03-17 | 1986-03-17 | Absolute accuracy measuring method for robot |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62214304A true JPS62214304A (en) | 1987-09-21 |
Family
ID=13091016
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5867086A Pending JPS62214304A (en) | 1986-03-17 | 1986-03-17 | Absolute accuracy measuring method for robot |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62214304A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100956788B1 (en) * | 2008-02-21 | 2010-05-07 | (주)레이나 | Automatic measurement system of engine cylinder oil groove of automobile and measuring method using it |
WO2015129473A1 (en) * | 2014-02-28 | 2015-09-03 | ソニー株式会社 | Robot arm apparatus, calibration method, and program |
-
1986
- 1986-03-17 JP JP5867086A patent/JPS62214304A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100956788B1 (en) * | 2008-02-21 | 2010-05-07 | (주)레이나 | Automatic measurement system of engine cylinder oil groove of automobile and measuring method using it |
WO2015129473A1 (en) * | 2014-02-28 | 2015-09-03 | ソニー株式会社 | Robot arm apparatus, calibration method, and program |
JPWO2015129473A1 (en) * | 2014-02-28 | 2017-03-30 | ソニー株式会社 | Robot arm device, calibration method and program |
US10556345B2 (en) | 2014-02-28 | 2020-02-11 | Sony Corporation | Robot arm apparatus and calibration method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4663852A (en) | Active error compensation in a coordinated measuring machine | |
JP2909829B2 (en) | Compound scanning tunneling microscope with alignment function | |
US20030070311A1 (en) | Six degrees of freedom precision measuring system | |
JPH0310042B2 (en) | ||
US4782598A (en) | Active error compensation in a coordinate measuring machine | |
JPS6321843B2 (en) | ||
JPS6279306A (en) | Inspection machine with free probe | |
Mooring et al. | Determination and specification of robot repeatability | |
CN113134848A (en) | Measurement mode based on six-axis robot repeated positioning precision | |
Mooring et al. | Aspects of robot repeatability | |
Stedman | Mapping the performance of surface-measuring instruments | |
JPS62214304A (en) | Absolute accuracy measuring method for robot | |
US6351313B1 (en) | Device for detecting the position of two bodies | |
JPH1089957A (en) | Three-dimensional measuring method for structure member | |
JPS6150795A (en) | Industrial robot | |
JPH0522814Y2 (en) | ||
KR910008377A (en) | 3D Cartesian Coordinate Type High Speed Precision Measuring Machine | |
JP2931381B2 (en) | Processing inspection method | |
RU2009881C1 (en) | Method for determining position of robot measuring head tip and device for effecting the same | |
JP2591522B2 (en) | Industrial robot equipment | |
JP2603940B2 (en) | Calibration device for horizontal articulated robot | |
EP0309094A1 (en) | Precision slides and position encoders therefor | |
Elshennawy | Performance evaluation of coordinate measuring machines | |
JP2553352Y2 (en) | Automatic dimension measuring device | |
SU1642232A1 (en) | Method for checking axial perpendicularity of two shafts |