[go: up one dir, main page]

JPS62213843A - Additive for catalytic cracking - Google Patents

Additive for catalytic cracking

Info

Publication number
JPS62213843A
JPS62213843A JP61057068A JP5706886A JPS62213843A JP S62213843 A JPS62213843 A JP S62213843A JP 61057068 A JP61057068 A JP 61057068A JP 5706886 A JP5706886 A JP 5706886A JP S62213843 A JPS62213843 A JP S62213843A
Authority
JP
Japan
Prior art keywords
catalyst
additive
magnesium
catalytic cracking
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61057068A
Other languages
Japanese (ja)
Inventor
Nobuo Shibahara
柴原 伸郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP61057068A priority Critical patent/JPS62213843A/en
Publication of JPS62213843A publication Critical patent/JPS62213843A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To promote catalytic cracking while preventing the deterioration of a catalyst, by preparing an additive, which is used jointly with a catalyst for catalytically cracking metal-containing crude oil, from a magnesium compound containing 0.1-35wt% of a silicon compound as silicon oxide. CONSTITUTION:A magnesium compound containing 0.1-35wt%, pref., 1-30wt% of a silicon compound as silicon oxide is molded into a granular form to obtain an additive. As concrete examples of the aforementioned silicon-containing magnesium compound, there are magnesium oxide, magnesium hydroxide and magnesium chloride etc. The additive obtained is added to a catalyst for catalytic cracking before use but the use amount thereof is usually about 1-80wt% of the catalyst. As the catalytic cracking catalyst, there are silica and alumina, etc., and, as crude oil intended for catalytic cracking, there is oil containing a metal such as nickel.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は接触分解用添加剤に関し、詳しくは金属分を含
有する重質油等の原料油を接触分解する際に、触媒とと
もに用いて触媒の劣化を抑制する添加剤に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an additive for catalytic cracking, and more specifically, it is used together with a catalyst when catalytically cracking feedstock oil such as heavy oil containing metal components. This invention relates to an additive that suppresses deterioration of.

〔従来の技術および発明が解決しようとする問題点〕一
般に、重金成分や硫黄分を含有する重質油を接触分解す
るにあたっては、触媒の劣化防止等の目的で接触分解触
媒とともに各種の添加剤を用いることが知られている。
[Prior art and problems to be solved by the invention] Generally, when catalytically cracking heavy oil containing heavy metal components and sulfur, various additives are used together with the catalytic cracking catalyst for the purpose of preventing deterioration of the catalyst. is known to be used.

例えば、接触分解の際に生ずる排ガス中の硫黄酸化物(
SOX)を減少させるために、接触分解触媒にIIA族
金属を含浸させること(特公昭51−29882号公報
)が知られている。また、原料油中のバナジウム分を不
動化するために、接触分解触媒にマグネシウムを添加す
ること(特公昭59−49275号公報)、さらにはバ
ナジウム、ニッケル等の金属分による触媒の劣化を防止
するために、熱的に安定な金属化合物と組み合せた酸化
マグネシウムの粒子を添加すること(米国特許第446
5779号明細書)などが知られている。
For example, sulfur oxides (
In order to reduce SOX), it is known to impregnate a catalytic cracking catalyst with a group IIA metal (Japanese Patent Publication No. 51-29882). In addition, magnesium is added to the catalytic cracking catalyst in order to immobilize the vanadium content in the feed oil (Japanese Patent Publication No. 59-49275), and furthermore, to prevent deterioration of the catalyst due to metal content such as vanadium and nickel. For this purpose, the addition of particles of magnesium oxide in combination with a thermally stable metal compound (U.S. Pat. No. 446
No. 5779) and the like are known.

しかし、これらの従来技術はいずれも所期の目的を充分
に果たし得ないものであった。特に米国特許第4465
779号明細日に示される技術では、添加する酸化マグ
ネシウム粒子が摩耗するため性能低下が著しいという問
題があった。
However, none of these conventional techniques could sufficiently achieve the intended purpose. Specifically, U.S. Patent No. 4465
The technique disclosed in the specification of No. 779 had a problem in that the magnesium oxide particles added were worn out, resulting in a significant drop in performance.

そこで、本発明者は上記従来技術の問題点を解消して、
接触分解用触媒の劣化を防止するとともに機械的強度に
すぐれ、性能を長期間にわたって持続できる添加剤を開
発すべく鋭意研究を重ねた。
Therefore, the present inventor solved the problems of the above-mentioned conventional technology, and
We conducted intensive research to develop an additive that can prevent the deterioration of catalytic cracking catalysts, have excellent mechanical strength, and maintain performance over a long period of time.

〔問題点を解決するための手段〕[Means for solving problems]

その結果、珪素化合物を一定割合で含有するマグネシウ
ム化合物が目的とする性能を備えた添加剤となりうろこ
とを見出し、本発明を完成するに至った。
As a result, they discovered that a magnesium compound containing a certain proportion of a silicon compound can be an additive with the desired performance, and have completed the present invention.

すなわち本発明は、金属含有原料油を接触分解する際に
触媒とともに用いる添加剤であって、珪素化合物を酸化
珪素として0.1〜35重量%含有するマグネシウム化
合物からなる接触分解用添加剤を提供するものである。
That is, the present invention provides an additive for catalytic cracking that is used together with a catalyst when catalytically cracking a metal-containing feedstock oil, and is made of a magnesium compound containing 0.1 to 35% by weight of a silicon compound as silicon oxide. It is something to do.

本発明の添加剤は、上述の如く珪素化合物を0.1〜3
5重量%(酸化珪素S i O!換算)、好ましくは1
〜30重量%含有するマグネシウム化合物である。ここ
で、珪素化合物は様々な形態でマグネシウム化合物に含
有されており、特にその種類に制限はない。具体的には
酸化珪素(コロイダルシリカあるいは無水シリカ)をは
じめ、水酸化珪素、珪酸塩(珪酸ナトリウム、珪酸カリ
ウムなど)。
The additive of the present invention contains a silicon compound of 0.1 to 3 as described above.
5% by weight (calculated as silicon oxide S i O!), preferably 1
It is a magnesium compound containing ~30% by weight. Here, the silicon compound is contained in the magnesium compound in various forms, and there is no particular restriction on the type. Specifically, silicon oxide (colloidal silica or anhydrous silica), silicon hydroxide, and silicates (sodium silicate, potassium silicate, etc.).

四塩化珪素、珪酸エステル等があげられる。しかし、本
発明の添加剤は、通常は焼成工程を経て生成されるため
、大部分が酸化物の形態となっている場合が多い。
Examples include silicon tetrachloride and silicate ester. However, since the additives of the present invention are usually produced through a firing process, most of them are often in the form of oxides.

一方、添加剤の主要成分であるマグネシウム化合物の種
類についても、酸化マグネシウムをはしめ、水酸化マグ
ネシウム、塩化マグネシウム、炭酸マグネシウム、硝酸
マグネシウム、硫酸マグネシウムなど様々な形態のもの
がある。しかし、通常は珪素化合物と同様に焼成されて
酸化マグネシウムになっている場合が多い。
On the other hand, there are various types of magnesium compounds, which are the main components of additives, such as magnesium oxide, magnesium hydroxide, magnesium chloride, magnesium carbonate, magnesium nitrate, and magnesium sulfate. However, it is usually fired into magnesium oxide in the same way as silicon compounds.

本発明の添加剤は、上述のマグネシウム化合物に珪素化
合物が含有されているものであるが、その含有量は添加
剤全体に対して珪素化合物を001〜35重量%、好ま
しくは1〜30重量%の範囲である。珪素化合物の含有
量が0.1重量%未満では、得られる添加剤を粒状に成
形して使用した場合に、耐摩耗性が充分なものとならな
い。また、35重量%を超えると添加剤の添加による触
媒劣化の抑制効果がみられなくなるという不都合が生じ
る。
The additive of the present invention contains a silicon compound in the above-mentioned magnesium compound, and the content of the silicon compound is 0.01 to 35% by weight, preferably 1 to 30% by weight based on the entire additive. is within the range of If the content of the silicon compound is less than 0.1% by weight, the wear resistance will not be sufficient when the resulting additive is used in the form of particles. Moreover, if the amount exceeds 35% by weight, there will be a disadvantage that the effect of suppressing catalyst deterioration due to the addition of the additive will not be observed.

なお、この添加剤は珪素化合物とマグネシウム化合物と
の混合物として構成されていてもよく、また再化合物の
複塩、珪酸マグネシウム等として構成されていてもよい
。さらに、一部が複塩等となり、残部が混合物となって
いるものでもよい。
Note that this additive may be configured as a mixture of a silicon compound and a magnesium compound, or may be configured as a double salt of a recompound, magnesium silicate, or the like. Furthermore, a portion may be a double salt or the like, and the remainder may be a mixture.

本発明の添加剤は、接触分解の際に接触分解用触媒に添
加することにより使用される。通常はそれぞれへ゛紗し
た添加剤粒子と触媒粒子を混合して組成物を調製し、こ
の組成物の形態で用いられるが、添加剤粒子と触媒粒子
を別々に接触分解の反応系に加えて使用することもでき
る。ここで添加剤の使用量は、その種類、触媒の種類、
接触分解すべき原料油の性状等により異なるが、通常は
触媒に対して1〜80重量%、好ましくは3〜60重量
%範囲で使用する。
The additive of the present invention is used by being added to a catalyst for catalytic cracking during catalytic cracking. Usually, a composition is prepared by mixing additive particles and catalyst particles, each of which has been grated, and is used in the form of this composition, but it is also used by adding the additive particles and catalyst particles separately to the reaction system of catalytic cracking. You can also. Here, the amount of additive used depends on its type, catalyst type,
Although it varies depending on the properties of the raw material oil to be catalytically cracked, it is usually used in an amount of 1 to 80% by weight, preferably 3 to 60% by weight based on the catalyst.

なお、この接触分解に際して用いられる触媒は、従来か
ら広く接触分解用触媒として知られている様々なものが
あげられる。具体的にはシリカ、アルミナ、シリカ−ア
ルミナ、アルミナ−マグネシア、シリカ−チタニア、ア
ルミナ−チタニア、各種クレイ、各種の結晶性アルミノ
シリケートあるいはこれらの混合物などがあげられる。
The catalyst used in this catalytic cracking includes various catalysts that have been widely known as catalysts for catalytic cracking. Specific examples include silica, alumina, silica-alumina, alumina-magnesia, silica-titania, alumina-titania, various clays, various crystalline aluminosilicates, or mixtures thereof.

また、接触分解の対象となる原料油としては、ニッケル
、バナジウム、w4.鉄等の金属分を含有し する油であり、接触分解の際にこの金属分より触媒を劣
化しやすい原料油が選ばれる。具体的には原油をはじめ
として、常圧蒸留残渣油、減圧蒸留残渣油、シェールオ
イル、タールサンドオイル。
In addition, raw oils to be subjected to catalytic cracking include nickel, vanadium, w4. This is an oil that contains metals such as iron, and a feedstock oil is selected that more easily deteriorates the catalyst than the metals during catalytic cracking. Specifically, crude oil, atmospheric distillation residue oil, vacuum distillation residue oil, shale oil, and tar sands oil.

石炭液化油、溶剤脱瀝油、溶剤脱瀝アスファルトまたは
これらを水素を用いて二次処理した留出油または残渣油
、またはこれらを水素を用いずに二次処理した留出油ま
たは残渣油、あるいはこれらの油を常圧蒸留、減産蒸留
したものからの通常200℃以上の留出油、例えば軽質
ガスオイル(LGO)(沸点範囲200〜300℃)1
重質ガスオイル(HGO)(沸点範囲300〜500℃
)および/またはバキュームガスオイル(VGO)(沸
点範囲300〜750℃)の混合油を例示できる。該混
合油における200℃以上の留出瘤の濃度は98%以下
である。
Coal liquefied oil, solvent-deasphalted oil, solvent-deasphalted asphalt, distillate oil or residual oil obtained by secondary treatment of these using hydrogen, or distillate oil or residual oil obtained by secondary treatment of these without using hydrogen, Alternatively, distillate oil usually at 200°C or higher obtained from atmospheric distillation or reduced production distillation of these oils, such as light gas oil (LGO) (boiling point range 200-300°C)1
Heavy gas oil (HGO) (boiling point range 300-500℃
) and/or vacuum gas oil (VGO) (boiling point range 300 to 750°C). The concentration of distillate nodules at 200° C. or higher in the mixed oil is 98% or less.

さらに、本発明の添加剤ならびに上記触媒を用いて金属
含有原料油を接触分解するにあたっては、様々な方式お
よび条件にて行なうことができる。
Furthermore, catalytic cracking of metal-containing feedstock oil using the additive of the present invention and the above catalyst can be carried out in various ways and under various conditions.

例えば流動床式、移動床式などの方式があり、再生塔は
一段再生塔または多段再生塔であってもよい。また条件
としては反応温度450〜800℃。
For example, there are systems such as a fluidized bed type and a moving bed type, and the regeneration tower may be a single-stage regeneration tower or a multi-stage regeneration tower. Further, the conditions include a reaction temperature of 450 to 800°C.

圧力0.5〜5 ktr/cm”cr、触媒再生温度5
50〜950℃、触媒/油化2〜20%1t/稠t、接
触時間0.2〜5秒などの範囲で選定すればよい。
Pressure 0.5-5 ktr/cm”cr, catalyst regeneration temperature 5
The temperature may be selected within the range of 50 to 950°C, catalyst/oil conversion ratio of 2 to 20% 1 t/t, and contact time of 0.2 to 5 seconds.

〔発明の効果〕〔Effect of the invention〕

畝上の如き本発明の添加剤を用いて、金属含有原料油を
接触分解すれば、原料油中の金属分が触媒表面に付着せ
ずに、その大部分が添加剤に付着。
When a metal-containing feedstock oil is catalytically cracked using the additive of the present invention such as ridges, most of the metal content in the feedstock oil will adhere to the additive without adhering to the catalyst surface.

吸収されるため、触媒の劣化が抑制され、長期間にわた
って高い触媒活性が維持されて効率のよい接触分解反応
が進行する。
Because it is absorbed, catalyst deterioration is suppressed, high catalytic activity is maintained over a long period of time, and efficient catalytic cracking reaction proceeds.

また、本発明の添加剤を粒子状に成形して、触媒粒子と
共に流動床式反応塔で用いる場合、従来の酸化マグネシ
ウム添加剤に比べて耐摩耗性が非常に高いため、長期間
にわたる使用に充分耐えることができ、その作用も持続
的に発現することができる。
In addition, when the additive of the present invention is formed into particles and used together with catalyst particles in a fluidized bed reaction tower, it has extremely high wear resistance compared to conventional magnesium oxide additives, so it can be used for a long period of time. It can be sufficiently tolerated and its effects can be sustained.

従って、本発明の添加剤は、石油精製工業の分野におい
て広くかつ有効に利用される。
Therefore, the additive of the present invention can be widely and effectively utilized in the field of petroleum refining industry.

〔実施例〕〔Example〕

次に、本発明を実施例によりさらに詳しく説明する。 Next, the present invention will be explained in more detail with reference to Examples.

実施例1 シリカとして52.5gを含む珪酸ナトリウム水溶液1
213gに、酸化マグネシウムとして17.5gを含む
塩化マグネシウム水溶液305gを激しく攪拌しながら
加え、水酸化ナトリウム水溶液を用いて、最終的にpH
を9.5に調節した。得られたスラリーを90℃で2時
間熟成した後に濾過し、生じたケーキを120℃で12
時間乾燥させた。さらに、85℃の水で洗浄を行ない、
再び120℃で12時間乾燥し、590℃で6時間マツ
フル炉で焼成した。得られた焼成物を65〜150メツ
シユに造粒して、シリカ−マグネシア添加剤粒子を得た
Example 1 Sodium silicate aqueous solution 1 containing 52.5 g as silica
To 213 g, 305 g of an aqueous magnesium chloride solution containing 17.5 g of magnesium oxide was added with vigorous stirring, and the pH was finally adjusted using an aqueous sodium hydroxide solution.
was adjusted to 9.5. The resulting slurry was aged at 90°C for 2 hours and then filtered, and the resulting cake was aged at 120°C for 12 hours.
Let dry for an hour. Furthermore, wash with 85℃ water,
It was dried again at 120°C for 12 hours and fired in a Matsufuru furnace at 590°C for 6 hours. The obtained fired product was granulated to a size of 65 to 150 mesh to obtain silica-magnesia additive particles.

次に、得られたシリカ−マグネシア添加剤粒子に、ナフ
テン酸ニッケル、ナフテン酸バナジウムを、Mitch
ellの方法(Ind、 Hng、 Chem、、Pr
od、 Res。
Next, nickel naphthenate and vanadium naphthenate were added to the obtained silica-magnesia additive particles by Mitch.
ell method (Ind, Hng, Chem, Pr
od, Res.

Dev、、19.209  (1980))に準じてバ
ナジウム1)300ppm+、ニッケル3700pp−
の割合で担持した。
Vanadium 1) 300 ppm+, nickel 3700 ppm- according to Dev., 19.209 (1980))
It was carried at a ratio of .

一方、市販の耐メタル性流動接触分解(FCC)用触媒
粒子に、ナフテン酸ニッケル、ナフテン酸バナジウムを
、上記Mitchellの方法に準じてバナジウム1)
300ppo+、ニッケル3700pp霞の割合で担持
した。
On the other hand, nickel naphthenate and vanadium naphthenate were added to commercially available metal-resistant fluid catalytic cracking (FCC) catalyst particles according to the method of Mitchell (vanadium 1).
It was supported at a ratio of 300 ppo + nickel and 3700 pp haze.

続いて、この二種の粒子(バナジウム、ニッケルを担持
したシリカ−マグネシア添加剤粒子と触媒粒子)を、゛
添加剤粒子10−t%、触媒粒子90−t%の割合で混
合して、触媒組成物とし、これを850℃で4時間空気
焼成し、710℃で4時間。
Next, these two types of particles (silica-magnesia additive particles supporting vanadium and nickel and catalyst particles) are mixed in a ratio of 10-t% additive particles and 90-t% catalyst particles to form a catalyst. A composition was air-sintered at 850°C for 4 hours, and then at 710°C for 4 hours.

100%水蒸気処理による擬似平衡化を行なった。Pseudo-equilibrium was performed by 100% steam treatment.

この擬似平衡化後の触媒組成物中のバナジウム含量を螢
光X線分析により調べた。結果を第1表に示す。
The vanadium content in the catalyst composition after this pseudo-equilibration was examined by fluorescent X-ray analysis. The results are shown in Table 1.

続いて、この触媒組成物を用いるとともに、原料油とし
て減圧軽油(ASTM  MAT用基準原料油)を用い
、反応温度482℃、圧力X常圧。
Subsequently, this catalyst composition was used, and vacuum gas oil (ASTM MAT standard stock oil) was used as the raw material oil, and the reaction temperature was 482° C. and the pressure was x normal pressure.

重量空間速度(WH3V)16hr−’、触媒組成物/
油比39通油時間75秒の条件で接触分解反応を進行さ
せるところのASTM D−3907のMAT (マイ
クロアクティビティ−テスト)法によって、触媒組成物
の分解活性評価を行なった。
Weight hourly space velocity (WH3V) 16hr-', catalyst composition/
The cracking activity of the catalyst composition was evaluated by the ASTM D-3907 MAT (micro activity test) method in which the catalytic cracking reaction was allowed to proceed under conditions of an oil ratio of 39 and an oil passage time of 75 seconds.

分解活性評価には触媒組成物を4.0g用いた。4.0 g of the catalyst composition was used for the decomposition activity evaluation.

また、添加剤粒子の耐摩耗性評価にはJISK1467
の粒子強度測定法を用いた。これらの結果を第1表に示
す。
In addition, JISK1467 is used to evaluate the wear resistance of additive particles.
The particle intensity measurement method was used. These results are shown in Table 1.

実施例2 実施例1において、ケイ酸ナトリウム水溶液と塩化マグ
ネシウム水溶液の混合割合を変えて、MgO/ (Si
Oz+Mg0)−25w’t%のシリカ−マグネシアケ
ーキを得た。このケーキをシリカ−マグネシア乾燥重量
25gに相当する量採って、これと乾燥重量50g相当
の永和酸化マグネシウムと混練した。その後、濾過、乾
燥、洗浄、乾燥。
Example 2 In Example 1, by changing the mixing ratio of the sodium silicate aqueous solution and the magnesium chloride aqueous solution, MgO/(Si
A silica-magnesia cake of Oz+Mg0)-25 w't% was obtained. An amount of this cake corresponding to a dry weight of 25 g of silica-magnesia was taken and kneaded with Eiwa magnesium oxide corresponding to a dry weight of 50 g. Then filter, dry, wash, and dry.

焼成を実施例1と同様に行ない、65〜150メツシユ
に造粒して、シリカ−マグネシア添加剤粒子(MgO/
 (SiOz+MgO)−75wt%)を得た。この添
加剤粒子を用いたこと以外は、実施例1と同様にして各
種のテストを行なった。結果を第1表に示す。
Firing was carried out in the same manner as in Example 1, and granules were granulated to 65 to 150 mesh to form silica-magnesia additive particles (MgO/
(SiOz+MgO)-75wt%) was obtained. Various tests were conducted in the same manner as in Example 1 except that these additive particles were used. The results are shown in Table 1.

比較例1 実施例1において、添加剤粒子を用いなかったこと以外
は、実施例1と同様にして各種のテストを行なった。結
果を第1表に示す。
Comparative Example 1 Various tests were conducted in the same manner as in Example 1, except that no additive particles were used. The results are shown in Table 1.

比較例2.3 実施例1において、添加剤粒子の組成を変えたこと以外
は、実施例1と同様にして各種のテストを行なった。結
果を第1表に示す。
Comparative Example 2.3 Various tests were conducted in the same manner as in Example 1, except that the composition of the additive particles was changed. The results are shown in Table 1.

比較例4 実施例1において、添加剤粒子として、マグネシウムを
含む天然鉱物であるセピオライトを用いたこと以外は、
実施例1と同様にして各種のテストを行なった。結果を
第1表に示す。
Comparative Example 4 Except for using sepiolite, a natural mineral containing magnesium, as the additive particles in Example 1,
Various tests were conducted in the same manner as in Example 1. The results are shown in Table 1.

比較例5 実施例1において、添加剤粒子として、マグネシウムを
含む天然鉱物であるクリソタイルを用いまたこと以外は
、実施例1と同様にして各種のテストを行なった。結果
を第1表に示す。
Comparative Example 5 Various tests were conducted in the same manner as in Example 1, except that chrysotile, which is a natural mineral containing magnesium, was used as the additive particles. The results are shown in Table 1.

比較例6 実施例1において、添加剤粒子の組成を変えたこと以外
は、実施例1と同様にして各種のテストを行なった。結
果を第1表に示す。
Comparative Example 6 Various tests were conducted in the same manner as in Example 1 except that the composition of the additive particles was changed. The results are shown in Table 1.

実施例3 788℃で4時間水蒸気処理したFCC用触媒粒子90
重呈部と実施例1のシリカ−マグネシア添加剤粒子10
重量部のぞれぞれに、実施例1と同様の方法でバナジウ
ム2600ppm、ニッケル850ppn+の割合で担
持した。その後、混合して触媒組成物とし、これに78
8℃にて2時間擬似平衡化を行なった。
Example 3 FCC catalyst particles 90 treated with steam at 788°C for 4 hours
Overlapping part and silica-magnesia additive particles 10 of Example 1
In the same manner as in Example 1, 2600 ppm of vanadium and 850 ppn+ of nickel were supported on each part by weight. Thereafter, it is mixed to form a catalyst composition, and 78
Pseudo-equilibration was performed at 8°C for 2 hours.

次に、この触媒組成物を用いてニッケル分4 ppmバ
ナジウム分6 ppmを含む水素化脱硫した残渣油50
−1%と脱硫減圧軽油50−t%からなる原料油を、循
環流動式ベンチ装置に供給し、反応温度503〜506
℃、再生温度630〜670℃。
Next, using this catalyst composition, 50% of residual oil containing 4 ppm of nickel and 6 ppm of vanadium was hydrodesulfurized.
-1% and 50-t% of desulfurized vacuum gas oil is supplied to a circulating flow bench equipment, and the reaction temperature is 503-506%.
°C, regeneration temperature 630-670 °C.

圧力2〜3 kg / cul Q 、触媒組成物/油
化7.原料油供給速度1000mj2/hrの条件で反
応を行なった。結果を第2表に示す。
Pressure 2-3 kg/cul Q, catalyst composition/oilification7. The reaction was carried out under conditions of a raw oil supply rate of 1000 mj2/hr. The results are shown in Table 2.

比較例7 実施例3において、シリカ−マグネシア添加剤粒子を用
いなかったこと以外は実施例3と同様の掻作を行なった
。結果を第2表に示す。
Comparative Example 7 In Example 3, the same scraping as in Example 3 was performed except that the silica-magnesia additive particles were not used. The results are shown in Table 2.

第2表Table 2

Claims (2)

【特許請求の範囲】[Claims] (1)金属含有原料油を接触分解する際に触媒とともに
用いる添加剤であって、珪素化合物を酸化珪素として0
.1〜35重量%含有するマグネシウム化合物からなる
接触分解用添加剤。
(1) An additive used together with a catalyst when catalytically cracking metal-containing feedstock oil, which contains silicon compounds as silicon oxide.
.. An additive for catalytic cracking consisting of a magnesium compound containing 1 to 35% by weight.
(2)マグネシウム化合物が、酸化珪素を0.1〜35
重量%含有する酸化マグネシウムである特許請求の範囲
第1項記載の添加剤。
(2) Magnesium compound absorbs silicon oxide by 0.1 to 35
The additive according to claim 1, which is magnesium oxide containing % by weight.
JP61057068A 1986-03-17 1986-03-17 Additive for catalytic cracking Pending JPS62213843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61057068A JPS62213843A (en) 1986-03-17 1986-03-17 Additive for catalytic cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61057068A JPS62213843A (en) 1986-03-17 1986-03-17 Additive for catalytic cracking

Publications (1)

Publication Number Publication Date
JPS62213843A true JPS62213843A (en) 1987-09-19

Family

ID=13045126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61057068A Pending JPS62213843A (en) 1986-03-17 1986-03-17 Additive for catalytic cracking

Country Status (1)

Country Link
JP (1) JPS62213843A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01258742A (en) * 1987-12-28 1989-10-16 Mobil Oil Corp Catalyst and method for catalytic cracking

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01258742A (en) * 1987-12-28 1989-10-16 Mobil Oil Corp Catalyst and method for catalytic cracking

Similar Documents

Publication Publication Date Title
US8372269B2 (en) Heavy metals trapping co-catalyst for FCC processes
JP2554706B2 (en) Method for catalytic cracking of feedstock containing high levels of nitrogen
KR101382014B1 (en) Compositions and processes for reducing nox emissions during fluid catalytic cracking
US4208302A (en) Passivating metals on cracking catalysts
JP2011174090A (en) Desulfurization and new adsorbent for desulfurization
KR20020052181A (en) Gasoline sulfur reduction in fluid catalytic cracking
JPS6071041A (en) Hydrocarbon catalytic decomposition method and catalyst composition
US3894940A (en) Hydrocarbon cracking catalysts with promoter mixtures
AU2014239739A1 (en) Method for manufacturing catalytic cracking catalyst for hydrocarbon oil
JP4044629B2 (en) Composition, catalyst and FCC method for promoting combustion by reducing NOx amount by FCC method
JP4131342B2 (en) Method for cracking hydrocarbon feedstock with catalyst comprising optionally dealuminated zeolite IM-5
US4929338A (en) Catalytic cracking catalyst and process
US4344926A (en) Fluid catalytic cracking
US4390416A (en) Catalytic cracking of hydrocarbons
CA1226269A (en) Catalytic cracking catalyst and process
JP4115843B2 (en) Zeolite-based catalyst with extremely high dynamic conversion activity
JP3560610B2 (en) Catalytic cracking method and method for producing ZSM-5 catalyst used therein
JPS62213843A (en) Additive for catalytic cracking
US4415440A (en) Cracking catalyst improvement with gallium compounds
JP2015528744A (en) Magnesium stabilized ultra-low soda decomposition catalyst
JP2006305490A (en) Catalyst for catalytic decomposition of hydrocarbon oil and catalytic decomposition method
EP0208868A1 (en) Catalytic cracking catalyst and process
JPS61204042A (en) Vanadium resistant zeolite fluidized cracking catalyst
CA1096357A (en) Passivating metals on cracking catalysts
JPH0415275B2 (en)