[go: up one dir, main page]

JPS62213441A - Cross polarization interference compensation method - Google Patents

Cross polarization interference compensation method

Info

Publication number
JPS62213441A
JPS62213441A JP5496886A JP5496886A JPS62213441A JP S62213441 A JPS62213441 A JP S62213441A JP 5496886 A JP5496886 A JP 5496886A JP 5496886 A JP5496886 A JP 5496886A JP S62213441 A JPS62213441 A JP S62213441A
Authority
JP
Japan
Prior art keywords
signal
signals
interference compensation
pilot
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5496886A
Other languages
Japanese (ja)
Inventor
Yoshitami Aono
青野 芳民
Sadao Takenaka
竹中 貞夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5496886A priority Critical patent/JPS62213441A/en
Publication of JPS62213441A publication Critical patent/JPS62213441A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate the compensation of mutual interference in a compensation circuit by inserting a pilot signal respectively at the sending side to two signal sent by the cross polarized wave transmission system. CONSTITUTION:The data of a signal processing unit 1 and the output of a pilot signal generator 4 are mixed by transmitter 2, 3 and the result is sent via a coupler 5 and an antenna 6. After the signal is received by an antenna 7, the result is separated by a demultiplexer 8, compensated by an interference compensation circuit 10, the phase of the pilot signal of each polarized wave recovered by carrier recovery circuits 13, 14 are compared by using a signal from demodulator 11, 12 and its output controls a variable phase shifter 9 so that the phases of both the pilot signals are made coincident.

Description

【発明の詳細な説明】 〔概 要〕 交差偏波伝送方式により伝送される2つの信号に送信側
でパイロット信号をそれぞれ挿入し、受信側では受信し
た信号中の上記両パイロット信号の位相が一致するよう
に、中間周波段に設けられた干渉補償回路の前段でいず
れか一方の信号の中間周波の位相を調整することにより
、この補償回路での相互干渉の補償を容易かつ適正なの
ものとし得るようにした。
[Detailed Description of the Invention] [Summary] A pilot signal is inserted into two signals transmitted by a cross-polarization transmission method on the transmitting side, and the phases of both pilot signals in the received signals match on the receiving side. By adjusting the phase of the intermediate frequency of one of the signals at the stage before the interference compensation circuit provided in the intermediate frequency stage, mutual interference compensation in this compensation circuit can be made easy and appropriate. I did it like that.

〔産業上の利用分野〕[Industrial application field]

本発明は、同一周波数の水平偏波および垂直偏波、ある
いは右円偏波と左円偏波などの互いに相手側と独立に信
号を伝送できる2つの偏波(以下、交差偏波という)に
よる2つの伝送路を組合せてディジタル信号を伝送する
ディジタル無線伝送方式に関する。この伝送方式におい
ては、フェージングなどにより交差偏波識別特性(X 
P D)の劣化が生じ、各偏波の信号間で干渉を生じる
。よって、受信側においてこの干渉を補償する必要があ
る。
The present invention utilizes two polarized waves (hereinafter referred to as cross-polarized waves) that can transmit signals independently from each other, such as horizontally polarized waves and vertically polarized waves of the same frequency, or right-handed circularly polarized waves and left-handed circularly polarized waves. The present invention relates to a digital wireless transmission system that transmits digital signals by combining two transmission paths. In this transmission method, cross-polarization discrimination characteristics (X
PD) is degraded, causing interference between signals of each polarization. Therefore, it is necessary to compensate for this interference on the receiving side.

〔従来の技術〕[Conventional technology]

従来この干渉を除去するために、各偏波の信号をtlm
して、それぞれIチャネルとQチャネルのベースバンド
の信号とした後にトランスバーサル・フィルタを用いて
補償を行なったり、第3図に示すように受信信号を中間
周波帯に変換した後に、トランスバーサル・フィルタを
用いて受信偏波信号を時間幅Tずつ遅延させ、前後の該
偏波信号に制御回路からの制御信号によりそれぞれ重み
づけをして合成することにより補償信号を得ることが行
なわれている。
Conventionally, in order to remove this interference, the signals of each polarization are
After converting the signals into baseband signals for the I channel and Q channel, compensation is performed using a transversal filter, or as shown in Figure 3, after converting the received signal to an intermediate frequency band, transversal A compensation signal is obtained by delaying the received polarized signal by a time width T using a filter, and weighting and combining the preceding and subsequent polarized signals with control signals from a control circuit. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ベースバンドで補償を行なう上記の従来技術においては
、■チャネルとQチャネルの両方にトランスバーサル・
フィルタを設ける必要があるため回路規模が大きくなる
という問題点があり、また中間周波帯で補償を行なうも
のにおいては、各偏波の伝播時間の差等による偏波間の
位相差も補償しなければならず、補償が充分でないとい
う問題点があった。
In the above conventional technology that performs compensation at the baseband, transversal signals are applied to both the ■ channel and the Q channel.
There is a problem in that the circuit scale becomes large because it is necessary to provide a filter, and in systems that perform compensation in the intermediate frequency band, it is also necessary to compensate for the phase difference between polarized waves due to differences in propagation time of each polarized wave, etc. However, there was a problem that the compensation was not sufficient.

〔問題点を解決するための手段〕 本発明は上記の問題点を解決するため第1図の原理図に
示すように、バイロフト信号発生器4からのパイロット
信号を各偏波により送信する送信機2および送信機3と
により信号処理装置1からのデータ情報とともに結合器
5、アンテナ6を介して受信機に伝送する。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides a transmitter that transmits the pilot signal from the viroft signal generator 4 using each polarization, as shown in the principle diagram of FIG. 2 and transmitter 3 transmit the signal together with data information from signal processing device 1 to a receiver via coupler 5 and antenna 6.

受信側においては、上記の信号をアンテナ7により受信
した後に分波器8によって各偏波信号として個別に取り
出し、一方の偏波信号はそのまま干渉補償回路10へ、
また他方の偏波信号は可変移相器9を介して干渉補償回
路10へ供給される。
On the receiving side, after the above signals are received by the antenna 7, each polarized signal is extracted individually by the splitter 8, and one polarized signal is directly sent to the interference compensation circuit 10.
The other polarized signal is also supplied to the interference compensation circuit 10 via the variable phase shifter 9.

そして、復調器11.12からの信号によりキャリア再
生回路13.14で再生された各偏波のパイロット信号
の位相を位相比較器15により位相比較し、該位相比較
器15からの位相比較出力により上記の両パイロット信
号の位相が一致するように、中間周波段の上記干渉補償
回路10の前段に設けられた可変移相器9を制御するよ
うにした。
A phase comparator 15 compares the phases of the pilot signals of each polarization regenerated by the carrier regeneration circuit 13.14 using the signal from the demodulator 11.12, and based on the phase comparison output from the phase comparator 15, The variable phase shifter 9 provided at the front stage of the interference compensation circuit 10 in the intermediate frequency stage is controlled so that the phases of both pilot signals coincide with each other.

〔作 用〕[For production]

上記の構成により、干渉補償回路への各偏波の中間周波
入力信号の位相は互いに一致しているので、これら両信
号の位相のずれによる補償を上記干渉補償回路により行
なう必要がなく、適正な補償を行なうことができる。
With the above configuration, the phases of the intermediate frequency input signals of each polarization to the interference compensation circuit match each other, so there is no need for the interference compensation circuit to compensate for the phase shift between these two signals, and the appropriate Compensation can be made.

〔実施例〕〔Example〕

第2図は本発明を、交差偏波伝送方式を用いたディジタ
ル直交振幅変間(以下、CAMという)信号の伝送に通
用した実施例を示すもので、図の左側は送信機、右側は
受信機であり、これら送受信機間は無線回線により接続
されている。第2図の信号処理装置20は第1図の信号
処理装置1に、ディジタル−アナログ変換器21〜22
、ローパスフィルタ25〜26、電源29、混合器32
〜33、ハイブリッド回路36で構成される部分は第1
図の送信機3に、ディジタル−アナログ変換器23〜2
4、ローパスフィルタ27〜28、電源30.混合機3
4〜35、ハイブリッド回路37で構成される部分は第
1図の送信機2に、ハイブリッド回路101〜104、
トランスバーサル・フィルタ105〜106で構成され
る干渉補償回路10は第1図の干渉補償回路10に、同
期検波器41〜42は第1図の復調器11に、同期検波
器43〜44は第1図の復調器12に、識別器161〜
162は第1図の識別器16に、識別器171〜172
は第1図の識別器17にそれぞれ対応する。なお、上記
の直交振幅変Uni (QAM : Quadratu
re  Amplitude  Modulation
 )方式は、送信データのキャリア(ill送波)に位
相成分(Q)および振幅成分H)の変調を加えたもので
、変調ベクトル平面上の任意の点を符号点に選べるので
符号配置上の自由度が高い変調方式である。
Figure 2 shows an embodiment in which the present invention is applied to the transmission of a digital quadrature amplitude variable (hereinafter referred to as CAM) signal using a cross-polarization transmission method.The left side of the figure is the transmitter, and the right side is the receiver. These transmitters and receivers are connected by a wireless line. The signal processing device 20 in FIG. 2 has digital-to-analog converters 21 to 22 added to the signal processing device 1 in FIG.
, low-pass filters 25 to 26, power supply 29, mixer 32
~33, the part consisting of the hybrid circuit 36 is the first
The transmitter 3 in the figure is equipped with digital-to-analog converters 23 to 2.
4, low pass filters 27-28, power supply 30. Mixer 3
4 to 35 and the hybrid circuit 37 are included in the transmitter 2 in FIG.
The interference compensation circuit 10 composed of transversal filters 105-106 is included in the interference compensation circuit 10 in FIG. 1, the synchronous detectors 41-42 are included in the demodulator 11 in FIG. The demodulator 12 in FIG.
162 is the discriminator 16 of FIG.
correspond to the discriminator 17 in FIG. In addition, the above quadrature amplitude variation Uni (QAM: Quadratu
re Amplitude Modulation
) method modulates the phase component (Q) and amplitude component H) on the transmission data carrier (ill transmission), and since any point on the modulation vector plane can be selected as the code point, it is easy to use on the code arrangement. This is a modulation method with a high degree of freedom.

信号処理装置20からの4つの送出ディジタルデータ8
1〜S4はそれぞれディジタル−アナログ変換器21〜
24によりアナログ信号に変換される。該アナログ信号
はそれぞれローパスフィルタ25〜28を経て搬送波発
生器31の搬送波出力と混合器32〜35により混合さ
れるが、このとき混合器32.34には位相がOoの搬
送波が、また混合器33.35には位相が90”の搬送
波が該搬送波発生器31から供給されるので、上記の混
合器32と混合器33の出力、および混合器34と混合
器35の出力はそれぞれ互いに直角変調された■信号お
よびQ信号となる。該■信号およびQ信号は、それぞれ
ハイブリッド回路36゜37により合成されて2組のQ
AM信号Sv、S8となり、このSv倍信号垂直偏波に
より、またSH倍信号水平偏波により結合器5を経てア
ンテナ6から無線伝送路を介して受信機に伝送される。
Four output digital data 8 from the signal processing device 20
1 to S4 are digital-to-analog converters 21 to 1, respectively.
24 into an analog signal. The analog signals pass through low-pass filters 25 to 28, respectively, and are mixed with the carrier wave output of the carrier wave generator 31 by mixers 32 to 35. 33.35, a carrier wave with a phase of 90'' is supplied from the carrier wave generator 31, so the outputs of the mixer 32 and mixer 33, and the outputs of the mixer 34 and mixer 35 are quadrature modulated with respect to each other. The ■ signal and the Q signal are synthesized by the hybrid circuits 36 and 37, respectively, to generate two sets of Q signals.
The AM signals Sv and S8 are transmitted by vertical polarization of the Sv multiplication signal and by horizontal polarization of the SH multiplication signal through the coupler 5 and from the antenna 6 via the wireless transmission path to the receiver.

なお、■チャネル側に設けられた混合器32゜34の入
力側に示されている電源29.30は、■チャネルのア
ナログ信号に直流成分を重畳し、これにより混合器出力
に搬送波と同相のパイロット信号を生じさせるためのも
のである。
In addition, the power supplies 29 and 30 shown on the input side of the mixer 32 and 34 provided on the ■ channel side superimpose a DC component on the analog signal of the ■ channel, thereby causing the output of the mixer to be in phase with the carrier wave. It is for generating a pilot signal.

受信機側においてアンテナ7を介して受信された信号は
、分波器8により垂直偏波により伝送された信号、Sv
と、水平偏波により伝送された信号SHとに分離され、
それぞれ局部発振器3日からの出力と混合器39.40
により混合されて中間周波数の信号iv 、INとされ
る。
The signal received via the antenna 7 on the receiver side is a signal transmitted by vertical polarization by the splitter 8, Sv
and a signal SH transmitted by horizontal polarization,
Output from local oscillator 3 and mixer 39.40 respectively
The signals iv and IN are mixed together to form intermediate frequency signals iv and IN.

本発明により付加された可変移相器9についての説明は
後述するとして、上記の中間周波信号■V y IHは
、信号の分割・混合を行なうハイブリッド回路101,
102,103,104と受信信号により時間領域にお
いて交差偏波間干渉が最小となるようにその伝送特性が
制御されるトランスバーサル・フィルタ105,106
から構成される公知の干渉補償回路10を経て、受信信
号中のパイロット信号からPLL回路などにより構成さ
れるキャリア再生回路13.14により再生されたキャ
リアを用いて同期検波器41〜44によって同期検波さ
れて復調される。
The variable phase shifter 9 added according to the present invention will be explained later.
102, 103, 104 and transversal filters 105, 106 whose transmission characteristics are controlled by the received signals so that cross-polarization interference is minimized in the time domain.
After passing through a known interference compensation circuit 10 consisting of a pilot signal in the received signal, synchronous detection is performed by synchronous detectors 41 to 44 using the carrier regenerated from a pilot signal in the received signal by a carrier regeneration circuit 13 and 14 consisting of a PLL circuit or the like. and demodulated.

上記のキャリア再生回路13.14により再生されるキ
ャリアの位相は、送信側において上記した垂直偏波によ
り伝送される信号SV、水平偏波により伝送される信号
SHのIチャネルにそれぞれ直流電源29.30を信号
源として挿入されたIチャネルのパイロット信号の位相
に等しいものが得られる。したがって、該キャリア再生
回路13.14の出力により同期検波された同期検波器
42.44からの出力はそれぞれ信号Sv、SHの■チ
ャネル信号成分であり、またキャリア再生回路13.1
4の出力をそれぞれ90度移相器45.46を介して印
加される同期検波器41,43からの出力はそれぞれ信
号Sv、S14のQチャネル信号成分となり、識別器1
61,162,171.172からはSvおよびSH倍
信号Qチャネル信号および!チャネル信号を得ることが
できる。
The phase of the carrier regenerated by the above carrier regeneration circuits 13 and 14 is determined by the DC power supply 29. 30 as the signal source is obtained which is equal to the phase of the I channel pilot signal inserted. Therefore, the outputs from the synchronous detectors 42.44, which are synchronously detected by the outputs of the carrier regeneration circuits 13.14, are channel signal components of the signals Sv and SH, respectively, and the carrier regeneration circuits 13.1
The outputs from the synchronous detectors 41 and 43, to which the outputs of the synchronous detectors 41 and 43 are respectively applied through 90 degree phase shifters 45 and 46, become the Q channel signal components of the signals Sv and S14, respectively, and the outputs from the discriminator 1
From 61,162,171.172, Sv and SH double signal Q channel signal and! channel signal can be obtained.

そして、上記の信号Svの■チャネル信号およびQチャ
ネル信号と、信号SHのIチャネル信号およびQチャネ
ル信号から制御信号生成回路18により、前述の干渉補
償回路lOのトランスバーサル・フィルタ105,10
6の伝送特性を制御する信号が取り出される。
Then, the control signal generation circuit 18 generates the transversal filters 105 and 10 of the interference compensation circuit IO from the ■ channel signal and Q channel signal of the signal Sv and the I channel signal and Q channel signal of the signal SH.
A signal controlling the transmission characteristics of 6 is extracted.

なお、上記の信号Svと信号SHのQチャネル信号の直
流成分は、各偏波の受信波と再生キャリアとの位相差を
示しているため、キャリア再生回路13.14において
この信号に基づいてキャリアを再生している。
Note that the DC components of the Q channel signals of the signal Sv and the signal SH indicate the phase difference between the received wave of each polarization and the regenerated carrier, so the carrier regeneration circuit 13.14 converts the carrier based on this signal. is playing.

本発明においては、各交差偏波により伝送される信号の
中間周波段における信号の干渉補償回路10への入力位
相を一致させるものであり、この実施例においては上記
した信号SHの中間周波信号IHを出力する混合器40
と、上記の干渉補償回路10との間に可変移相器9が挿
入されており、該可変移相器9での移相量は各偏波のパ
イロット信号の位相を有するキャリア再生回路13.1
4のそれぞれの出力を位相比較器15により位相比較し
、その位相比較誤差が零になるように該位相比較器15
の出力により上記の可変移相器9の移相量を制御するも
のである。
In the present invention, the input phases of the signals at the intermediate frequency stage of the signals transmitted by each cross-polarized wave to the interference compensation circuit 10 are made to match, and in this embodiment, the intermediate frequency signal IH of the above-mentioned signal SH is A mixer 40 that outputs
A variable phase shifter 9 is inserted between the carrier regenerating circuit 13 . 1
4 is compared in phase by a phase comparator 15, and the phase comparator 15 is adjusted so that the phase comparison error becomes zero.
The amount of phase shift of the variable phase shifter 9 is controlled by the output of the variable phase shifter 9.

上記した実施例では、■チャネルの同期検波に用いる再
生キャリアを得るためのパイロット信号と、垂直あるい
は水平偏波により伝送された信号の位相を示すパイロッ
ト信号とを兼用した例で説明したが、これらの信号の位
相を示すパイロット信、号源を送信側に別個に設けるこ
とができるのは明らかであろう。
In the above embodiment, the example was explained in which the pilot signal is used both as a pilot signal for obtaining a regenerated carrier used for channel synchronous detection and as a pilot signal indicating the phase of a signal transmitted by vertical or horizontal polarization. It will be obvious that a pilot signal or signal source indicating the phase of the signal can be separately provided on the transmitting side.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、中間周波段に設けられた干渉補償回路
の2つの入力信号、すなわち交差偏波により伝送された
信号間の位相が一致しているので、該干渉補償回路にお
いてはこれら入力信号の位相差に基づいて復調後の信号
に生ずる相互干渉および歪を補償する必要がなく、した
がって、補償が容易になり適正な補償を行なうことがで
きる。
According to the present invention, since the phases of the two input signals of the interference compensation circuit provided in the intermediate frequency stage, that is, the signals transmitted by cross-polarized waves match, in the interference compensation circuit, these input signals There is no need to compensate for mutual interference and distortion that occur in the demodulated signal based on the phase difference between the two, and therefore compensation becomes easy and appropriate compensation can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理図、第2図は本発明の実施例を示
すブロック構成図、第3図はトランスバーサル・フィル
タを用いた従来例を示す構成図である。 4・・・パイロット信号発生器、9・・・可変移相器、
10・・・干渉補償回路、13.14・・・キャリア再
生回路、15・・・位相比較器。
FIG. 1 is a diagram showing the principle of the present invention, FIG. 2 is a block diagram showing an embodiment of the invention, and FIG. 3 is a diagram showing a conventional example using a transversal filter. 4... Pilot signal generator, 9... Variable phase shifter,
10... Interference compensation circuit, 13.14... Carrier regeneration circuit, 15... Phase comparator.

Claims (1)

【特許請求の範囲】 送信側において、2つの交差偏波による伝送路のそれぞ
れにパイロット信号を挿入して伝送し、受信側において
は、各偏波の復調器の信号からそれぞれキャリア再生回
路(13、14)により上記パイロット信号を再生して
これら両パイロット信号の位相を位相比較器(15)に
より位相比較し、 上記両パイロット信号の位相が一致するように受信側の
中間周波段の干渉補償回路(10)の前段に設けられた
可変位相器(9)を上記位相比較器(15)の出力によ
り制御するようにしたことを特徴とする交差偏波間干渉
補償方式。
[Claims] On the transmitting side, a pilot signal is inserted into each of the two cross-polarized transmission paths for transmission, and on the receiving side, a carrier recovery circuit (13 , 14), the phases of both pilot signals are compared by a phase comparator (15), and the interference compensation circuit of the intermediate frequency stage on the receiving side is configured to match the phases of both pilot signals. (10) A cross-polarization interference compensation system characterized in that a variable phase shifter (9) provided at the front stage of the phase comparator (15) is controlled by the output of the phase comparator (15).
JP5496886A 1986-03-14 1986-03-14 Cross polarization interference compensation method Pending JPS62213441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5496886A JPS62213441A (en) 1986-03-14 1986-03-14 Cross polarization interference compensation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5496886A JPS62213441A (en) 1986-03-14 1986-03-14 Cross polarization interference compensation method

Publications (1)

Publication Number Publication Date
JPS62213441A true JPS62213441A (en) 1987-09-19

Family

ID=12985457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5496886A Pending JPS62213441A (en) 1986-03-14 1986-03-14 Cross polarization interference compensation method

Country Status (1)

Country Link
JP (1) JPS62213441A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008060924A (en) * 2006-08-31 2008-03-13 Hitachi Kokusai Electric Inc Transmission method for cross polarization

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008060924A (en) * 2006-08-31 2008-03-13 Hitachi Kokusai Electric Inc Transmission method for cross polarization
JP4627748B2 (en) * 2006-08-31 2011-02-09 株式会社日立国際電気 Transmission method for cross polarization

Similar Documents

Publication Publication Date Title
JP3565160B2 (en) Cross polarization interference compensation circuit
CA1235751A (en) One frequency repeater for a digital microwave radio system with cancellation of transmitter-to-receiver interference
US4789993A (en) One frequency repeater for a digital radio system
JP3337795B2 (en) Relay device
US8396177B1 (en) Interference carrier regeneration and interference cancellation apparatus and methods
JPH06502977A (en) Digital transmission equipment and direct conversion receivers
US4521878A (en) Data transmitting-receiving system
US7068990B1 (en) Receiver for two orthogonally polarized signals
JP2004172975A (en) Both polarized wave receiver, and local phase noise reduction method therefor
EP0110726B1 (en) Method and system for transmitting and receiving data
CN111262604A (en) Beam self-tracking full-duplex communication system and method based on direction backtracking antenna
JPS62213441A (en) Cross polarization interference compensation method
JPH05291995A (en) Method for compensating interference for radio repeater station
JP3287015B2 (en) Auxiliary signal transmission method
JP2682345B2 (en) Compensation system for cross polarization interference generated at non-regenerative wireless relay stations
JPH02100424A (en) Interference compensating circuit
JPH0396886A (en) Interference compensating circuit
JPH01125135A (en) Interference compensation device between cross polarized waves
JP2513311B2 (en) Cross polarization communication system
EP0221476B1 (en) Television interference-compensation apparatus for phase and amplitude compensation
JP2827875B2 (en) Microwave band signal generator
JPH0611125B2 (en) Same frequency relay system
JP2737359B2 (en) Cross polarization interference compensator
JPS6348018A (en) Fm interference suppressing circuit
JPS6124339A (en) Compensating system of cross polarized wave