[go: up one dir, main page]

JPS62212235A - Production of glass - Google Patents

Production of glass

Info

Publication number
JPS62212235A
JPS62212235A JP4380186A JP4380186A JPS62212235A JP S62212235 A JPS62212235 A JP S62212235A JP 4380186 A JP4380186 A JP 4380186A JP 4380186 A JP4380186 A JP 4380186A JP S62212235 A JPS62212235 A JP S62212235A
Authority
JP
Japan
Prior art keywords
sintered
glass
articles
phase
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4380186A
Other languages
Japanese (ja)
Inventor
Hiroshi Morishita
博司 森下
Teruichi Imayoshi
今吉 照一
Hitoshi Kikuchi
菊池 ▲均▼
Akihiro Nakamura
章寛 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP4380186A priority Critical patent/JPS62212235A/en
Priority to DE8787901658T priority patent/DE3773306D1/en
Priority to EP87901658A priority patent/EP0258457B1/en
Priority to US07/126,102 priority patent/US4828593A/en
Priority to PCT/JP1987/000126 priority patent/WO1987005287A1/en
Publication of JPS62212235A publication Critical patent/JPS62212235A/en
Priority to KR1019870700958A priority patent/KR880700775A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To easily obtain high-quality transparent glass having excellent functionality at a low cost, by filling SiO2 powder containing a phase-transition promoter in plural containers, heating the powder to obtain sintered articles having cristobalite crystal phase, collecting the articles to a desired form and integrating the articles by heating and melting in vacuum. CONSTITUTION:SiO2 powder containing a phase-transition promoter such as Na component is filled in plural containers made of mullite and heated at >=1,100 deg.C to obtain sintered porous articles having open cell structure and excellent processability and containing cristobalite crystal phase. A plurality of the sintered articles are collected to form a sintered aggregate having a desired shape and the aggregate is introduced into a vacuum furnace and heated at >=1,750 deg.C in vacuum of <=0.5mb. The collected plurality of sintered articles are integrated, melted and vitrified by this treatment.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は二酸化珪素を原料とし、真空溶融法によってガ
ラスを’It造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing glass by a vacuum melting method using silicon dioxide as a raw material.

(従来の技術) 一般に工業製品としてのガラスは、所定の割合で調合さ
れた原料粉末をルツボあるいはタンク窯などで液相m度
以上に加熱し、均一な溶液状態としたものを冷却するこ
とによって製造される。その際、原料粉末に吸着してい
るガス、反応時に発生するガスにより融液中に生じた気
泡は、融液の温度を充分に上げて融液の粘度を下げ、表
面に浮上させて除去する等の手段により透明化するのが
普通である。
(Prior art) Generally, glass as an industrial product is produced by heating raw material powder prepared at a predetermined ratio in a crucible or tank kiln to a temperature above the liquid phase, and cooling the resulting uniform solution. Manufactured. At this time, bubbles generated in the melt due to gases adsorbed to the raw material powder or gases generated during the reaction are removed by raising the temperature of the melt sufficiently to lower the viscosity of the melt and allowing it to float to the surface. It is common to make the material transparent by means such as methods.

しかし、二酸化珪素を原料としてガラスを製造する場合
は、高粘性であること、融点が高いためルツボ、炉の耐
火物などの制約が脱泡に有効な温度まで上げることかで
きないこと、温度を上げすぎると、原料自身の揮発、原
料とルツボなどとの反応によりガスが発生し、逆に気泡
が生ずるなどのことから上記方法は採用できない。この
ようなことから二酸化珪素を原料として透明な石英ガラ
スを得るには、一般に ■ 二酸化珪素粉をアルゴン−酸素、プラズマ炎あるい
は酸水素炎中に少しづつ供給して溶融してガラス化し、
これを台の上に堆積させてゆく方法。このとき発生する
ガスは表面から放散される。(ベルヌーイ法) ■ 二酸化珪素の微粉子からなる多孔体を作っておき、
それを一端から帯状に溶かしてガラス化してゆく方法。
However, when manufacturing glass using silicon dioxide as a raw material, due to its high viscosity and high melting point, constraints such as crucible and furnace refractories make it impossible to raise the temperature to an effective temperature for defoaming. If the temperature is too high, gas will be generated due to volatilization of the raw material itself and reaction between the raw material and the crucible, and conversely bubbles will be generated, so the above method cannot be adopted. For this reason, in order to obtain transparent quartz glass using silicon dioxide as a raw material, the following steps are generally taken:
How to deposit this on the table. The gas generated at this time is dissipated from the surface. (Bernoulli method) ■ A porous body made of fine powder of silicon dioxide is made,
A method of melting it into a strip from one end and turning it into glass.

発生ガスは、未溶融の多孔体を通って逃げてゆく。(常
溶融法)■ 粒径100ハm4¥度に調整された水晶粉
をルツボに入れ真空加熱炉で溶融しガラス化させる方法
で発生ガスは強制的に除去する。(真空溶融法) のいずれかによっている。
The generated gas escapes through the unmolten porous body. (Normal melting method) ■ Quartz crystal powder adjusted to a particle size of 100 ham 4 yen is placed in a crucible and melted in a vacuum heating furnace to vitrify it, and the generated gas is forcibly removed. (vacuum melting method).

しかし■、■の方法はいずれも一個のガラスブロックを
製造するのに極めて長時門を要し生産性の悪いことは周
知であるし、殊にベルヌーイ法の場合、原料効率が30
〜40%と掩めて悪い。又、アルゴン−酸素プラズマ炎
を熱源とした場合は、残存−〇H基が少なく、かつ比較
内泡も少ないガラスを得られるがエネルギーコストが高
くなり、エネルギーコストの安い酸水素炎を用いた場合
は残存−〇H基の多い製品しか得られない問題点がある
。しかも製造可能なインゴットの形状は丸くかつ細いも
のに限られるから、以後の処理工程に難点がある。
However, it is well known that both methods ① and ③ require an extremely long time to produce one glass block and have poor productivity.In particular, in the case of the Bernoulli method, the raw material efficiency is 30%.
~40%, which is bad. Furthermore, if an argon-oxygen plasma flame is used as the heat source, a glass with less residual -〇H groups and fewer internal bubbles can be obtained, but the energy cost is high, whereas when using an oxyhydrogen flame, which has a lower energy cost. However, there is a problem that only products with a large amount of residual -○H groups can be obtained. Moreover, the shapes of ingots that can be produced are limited to round and thin ones, which poses difficulties in subsequent processing steps.

次に■の真空溶融法によると、残存−08Mが少なく、
高温における粘性も高い等の特徴をもち、比較的大型の
インゴットが得られるが、原料粉をルツボ等容器に充填
したものを溶融し、ガラス化するため脱ガスに難点があ
り、しがも容器との接触による反応ガス発生等のことか
ら比較内泡が多く高品質のものは得られない。又、水晶
粉を使用するため、資源枯渇による原料供給上の難点も
ある。
Next, according to the vacuum melting method (■), there is little residual -08M,
It has characteristics such as high viscosity at high temperatures, and relatively large ingots can be obtained, but since raw material powder is filled in a container such as a crucible and then melted and vitrified, degassing is difficult, so it is difficult to make ingots in containers. Due to reaction gas generation due to contact with other materials, there are many internal bubbles and high quality products cannot be obtained. In addition, since crystal powder is used, there are also difficulties in supplying raw materials due to resource depletion.

以上のことに鑑み、本出願人は、高品質な透明又は機能
性をもつガラスを安価なコストで容易に製造できる方法
を11発した。これは、二酸化珪素粉を適宜な容器に充
填し、アルカリ余病成分等の相転移促進剤の存在下加熱
して融点直下の結晶相に統一した連続気孔をもつ多孔体
に成型した後、真空化溶融してガラス化することを特徴
とするものである(特願昭59−181586号、特願
昭59−181587号、特願昭59−181588号
、−特願昭60−170663号、特願昭60−170
664@)。
In view of the above, the present applicant has proposed 11 methods for easily manufacturing high-quality transparent or functional glass at low cost. This is done by filling a suitable container with silicon dioxide powder, heating it in the presence of a phase transition accelerator such as an alkali component, and molding it into a porous body with continuous pores unified into a crystalline phase just below the melting point. (Japanese Patent Application No. 59-181586, Japanese Patent Application No. 59-181587, Japanese Patent Application No. 59-181588, - Japanese Patent Application No. 60-170663, Gansho 60-170
664@).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明に係るガラスの製造法は、上記したように二酸化
珪素粉を加熱処理してクリストバライト結晶相の成型体
とする工程と、該成型体を真空下加熱溶融してガラス化
する工程とからなるものである。
As described above, the method for producing glass according to the present invention includes the steps of heat-treating silicon dioxide powder to form a molded body having a cristobalite crystal phase, and vitrifying the molded body by heating and melting it under vacuum. It is something.

ところで周知のように結晶質二酸化珪素は加熱過程にお
いて加熱される温度により低温域の石英相からトリジマ
イト相、クリストバライト相へと相転移が行なわれる。
By the way, as is well known, crystalline silicon dioxide undergoes a phase transition from a quartz phase in a low temperature range to a tridymite phase and a cristobalite phase depending on the temperature at which it is heated during the heating process.

この相転移は、二酸化珪素単独テハ起り難く、L i2
0.Na2O,に20゜MQO,Cab、P20S 、
8203等の金属成分を相転移促進剤として用いると有
効なことは知られている。一方非晶質二酸化珪素も単独
では直接溶解してしまうので、クリストバライト相に結
晶化するためには、上記のような金属添加物を必要とす
る。従って、本発明方法においても二酸化珪素粉をクリ
ストバライト結晶相とする過程で前記金属成分が利用さ
れるが、前記従来技術の説明からも容易に理解されるよ
うに一般にガラスの製造法においては、原料中に上記の
如き金属成分が含まれることは、水分等と同様最終製品
の純度低下をもたらす要因となり好ましくない。即ち、
従来のガラス製造法においては、純度の高い石英ガラス
を得ることと、原料中に不純物を添加する、あるいは不
純物を含む原料を採用することとは相反する関係にある
This phase transition is difficult to occur in silicon dioxide alone, and L i2
0. Na2O, 20°MQO, Cab, P20S,
It is known that it is effective to use a metal component such as 8203 as a phase transition promoter. On the other hand, since amorphous silicon dioxide alone is directly dissolved, metal additives such as those mentioned above are required in order to crystallize it into a cristobalite phase. Therefore, in the method of the present invention, the metal component is also used in the process of converting silicon dioxide powder into a cristobalite crystal phase, but as can be easily understood from the explanation of the prior art, generally in the glass manufacturing method, the raw material is The inclusion of metal components such as those mentioned above is not preferable, as it causes a decrease in the purity of the final product, similar to moisture and the like. That is,
In conventional glass manufacturing methods, there is a contradictory relationship between obtaining highly pure quartz glass and adding impurities to raw materials or using raw materials containing impurities.

このようなことから二酸化珪素に相転移促進剤を添加さ
せる、もしくは相転移に有効な成分を含有した二酸化珪
素を選択して原料とする本発明に係るガラス製造法は従
来概念にない製造方法であるが、この方法によって従来
法に比し容易に高品質のガラスが得られる所以は、クリ
ストバライト結晶相の焼結成型体がもつ特性が真空溶融
法の採用と相俟って多くの効果をもたらすことにある。
For this reason, the glass manufacturing method of the present invention, in which a phase transition accelerator is added to silicon dioxide, or silicon dioxide containing an effective component for phase transition is selected as a raw material, is a manufacturing method that has no conventional concept. However, the reason why high-quality glass can be obtained more easily by this method than by conventional methods is that the characteristics of the sintered molded body of the cristobalite crystal phase, together with the adoption of the vacuum melting method, bring about many effects. There is a particular thing.

即ち、クリストバライト結晶相の焼結体は、周知のよう
に融点が一意的なものであるから該融点直下の温度まで
加熱し、かつ脱気処理ができること、およびクリストバ
ライト結晶相の焼結体は連続開気孔をもつ多孔体である
こと等により脱気が充分にしかも容易に行なえることに
よる。従って融点、 以下の温度で容易に分解し、離脱
排気されるNa等の金属成分を相転移促進剤として採用
すれば、不純物(相転移促進剤を含めて)のほぼ完全に
除去された透明な石英ガラスが得られるし、当該融点で
分解除去しない促進剤を選択すれば該促進剤のみが含有
され、他の不純物が除去された機能性ガラスを得ること
ができる。
That is, as is well known, the sintered body of the cristobalite crystal phase has a unique melting point, so it can be heated to a temperature just below the melting point and degassed, and the sintered body of the cristobalite crystal phase is continuous. This is because it is a porous body with open pores, so that deaeration can be carried out sufficiently and easily. Therefore, if a metal component such as Na, which is easily decomposed and released and exhausted at a temperature below the melting point, is used as a phase transition accelerator, it is possible to obtain a transparent material from which impurities (including phase transition accelerators) are almost completely removed. Quartz glass can be obtained, and if a promoter that is not decomposed and removed at the melting point is selected, a functional glass containing only the promoter and other impurities removed can be obtained.

本発明に係るガラスの製造法は上記した如く、相転移促
進剤を利用した結晶化工程と、真空溶融法によるガラス
化工程とを有機的に組合せることにより、生産性よく高
品質のガラスインゴットが得られる。又、比較的大型の
ガラスインゴットが得られる効果をももつが、より大型
のインゴットを得るには、焼結成型体の容器を比例して
大型化せざるを得なくなり容器が耐熱性のものであるこ
と等より製作が困難になる。それにも増して原料として
使用される二酸化珪素粉は、嵩密度、熱伝導率共に小さ
いので大型の焼結成型体を得る場合は生産効率が悪くな
るか、品質上問題が生ずる。
As described above, the method for producing glass according to the present invention organically combines a crystallization process using a phase transition accelerator and a vitrification process using a vacuum melting method, thereby producing a high-quality glass ingot with good productivity. is obtained. In addition, it has the effect of obtaining a relatively large glass ingot, but in order to obtain a larger ingot, the container for the sintered molded body must be made proportionally larger, and the container must be heat-resistant. This makes production difficult due to certain factors. In addition, the silicon dioxide powder used as a raw material has a low bulk density and low thermal conductivity, so when a large sintered molded body is obtained, production efficiency becomes poor or quality problems occur.

本発明はこのようなことから、より大型のガラスインゴ
ットを生産性を低下させることなり製造する方法の提供
を目的としたものである。
In view of the above, the present invention aims to provide a method for manufacturing larger glass ingots without reducing productivity.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記問題点を解決するため、相転移促進用を含
む二酸化珪素粉を複数の容器に充填した後、加熱してク
リストバライト結晶相をもつ焼結成型体とし、得られた
該成型体を所望形状に集積して焼結集積体を形成せしめ
た上、真空下加熱溶融してガラス化したことを特徴とす
るものである。
In order to solve the above-mentioned problems, the present invention has been developed by filling a plurality of containers with silicon dioxide powder containing phase transition promoting powder, heating it to form a sintered molded body having a cristobalite crystal phase, and converting the resulting molded body into a sintered molded body having a cristobalite crystal phase. It is characterized by being aggregated into a desired shape to form a sintered aggregate, and then heated and melted under vacuum to vitrify it.

上記したように本発明に係るガラスの[i法は原料粉を
直接ガラス化せずクリストバライト結晶相をもった焼結
成型体とする工程をもつことにより、従来法にみられな
い効果をもつものであるが、前記した如く、より大きな
ガラスインゴットを得るには、生産効率低下をある程度
容認せざるを得ない。
As mentioned above, the method (i) of the glass according to the present invention has an effect not seen in conventional methods by having a step of forming a sintered molded body having a cristobalite crystal phase without directly vitrifying the raw material powder. However, as mentioned above, in order to obtain a larger glass ingot, it is necessary to accept a certain reduction in production efficiency.

本発明者等は、より大型のガラスインゴットを得る手段
として種々考究した結果、原料粉を結晶化した成形体と
する製法上の特徴を有効に利用することによって生産性
を低下させずにより大ぎなガラスインボッ!・の得られ
ることを見出した。即ち、クリストバライト結晶相をも
った焼結成型体は適度の基持強度をもち、かつ加工性に
優れていることと共に融点直下の結晶相であって融点が
一意的である特徴を活用することにあり、以下にその概
要を説明する。
As a result of various studies as a means of obtaining larger glass ingots, the inventors of the present invention have found that by effectively utilizing the characteristics of the manufacturing method that produces a crystallized molded product from raw material powder, a larger glass ingot can be obtained without reducing productivity. Glass inbo!・We have found that the following benefits can be obtained. In other words, a sintered molded body with a cristobalite crystal phase has moderate base strength and excellent workability, and it is possible to utilize the characteristics that it is a crystal phase just below the melting point and has a unique melting point. There is, and the outline is explained below.

例えば四塩化珪素を酸化して得られる非晶質二酸化珪素
粉に相転移促進剤としてNa成分を曵は比で約1.0O
OpI)■添加する。添加手段としては、該二酸化珪素
粉を比表面積を実質的に変えずに粒径を大きく造粒する
ことが望ましいことがらN a OI−1水溶液中に二
酸化珪素粉を没入し、撹拌混合した後、脱水、乾燥処理
することが好ましい。
For example, when a Na component is added as a phase transition accelerator to amorphous silicon dioxide powder obtained by oxidizing silicon tetrachloride, the ratio is approximately 1.0 O.
OpI)■ Add. As a means of addition, since it is desirable to granulate the silicon dioxide powder to a large particle size without substantially changing the specific surface area, the silicon dioxide powder is immersed in an aqueous NaOI-1 solution, stirred and mixed, and then , dehydration, and drying are preferred.

このようにして得られたNa成分含有二酸化珪素粉を製
造容易な比較的小型のムライト賀でなる容器複数個に分
取して充填した後、任意の加熱手段で1.100℃以主
に加熱することによりクリストバライト結晶相をもった
焼結体とする。該焼結体は充填容器に対応した形状をも
ち、連続開気孔を有する多孔状物で、かつ適度な基持強
度をもつものであり、前記原料粉の加工等によってこれ
らの特性を得ることができる。
The silicon dioxide powder containing Na component obtained in this manner is divided and filled into a plurality of relatively small containers made of mullite, which are easy to manufacture, and then heated to 1.100°C or less using any heating means. By doing so, a sintered body having a cristobalite crystal phase is obtained. The sintered body has a shape corresponding to a filled container, is porous with continuous open pores, and has an appropriate base strength, and these characteristics can be obtained by processing the raw material powder, etc. can.

次に得られた複数個の焼結体を集積して所望形状をもっ
た焼結集積体とする。集積形状としては上積み、寄せ集
め等又大きさ等任意であるが所望形状9寸法を得るため
予め前記焼結用容器の形状。
Next, the plurality of obtained sintered bodies are assembled to form a sintered aggregate having a desired shape. The shape of the accumulation may be stacked, gathered, etc., and the size may be arbitrary, but in order to obtain the desired shape and dimensions, the shape of the sintering container is determined in advance.

寸法を求め用意する必要がある。又密に集積するよう個
々の焼結体接触面に凹凸がないよう成型することも必要
であるが、焼結体は加工性がよいので成型は容易である
It is necessary to obtain and prepare the dimensions. It is also necessary to mold the individual sintered bodies so that there are no irregularities on their contact surfaces so that the sintered bodies are densely assembled, but since the sintered bodies have good workability, molding is easy.

このようにして得られた焼結集積体を真空炉に搬入して
0.5mb以下の真空下1,750℃以上に加熱し、集
積された瘉数個の焼結体を一体化して溶融ガラス化させ
る。
The sintered aggregate obtained in this way is carried into a vacuum furnace and heated to 1,750°C or higher under a vacuum of 0.5 mb or less, and the several sintered bodies are integrated into a molten glass. to become

(実施例) Na成分約1.0001)Ilm  (重量化)含ム二
S化珪素粉を内径420m、高さ620m+のムライト
賀からなる容器2個にそれぞれ25Kg充填した後加熱
炉で加熱した。加熱は1,100℃まで75時間、1,
100℃で5時IFJ Ift持し、これにより外径2
65m+、高さ3905mのクリストバライト結晶相を
もつ焼結成型体を得た。この成型体2個をその周囲をナ
イフ等で切削し成形した後、噌ね合せ外径265am、
高さ750m1+の焼結集積体とし、真空下加熱溶融し
た。加熱は1,730℃まで12時間、1,730℃で
3時間保持し、これにより外径265m、高さ400s
I、ffiffi49Kgの一体化し透明石英ガラスが
得られた。
(Example) Na content: approximately 1.0001) Ilm (Weight) 25 kg of each of two containers made of mullite having an inner diameter of 420 m and a height of 620 m+ were filled with 25 kg of silicon powder containing silica, and then heated in a heating furnace. Heating to 1,100℃ for 75 hours, 1,
Hold IFJ Ift at 100℃ at 5 o'clock, and this will reduce the outer diameter to 2.
A sintered molded body having a cristobalite crystal phase with a length of 65 m+ and a height of 3905 m was obtained. After shaping these two molded bodies by cutting the periphery with a knife etc., the outer diameter of the two molded bodies is 265 am.
A sintered aggregate with a height of 750 m1+ was prepared and heated and melted under vacuum. Heating was carried out for 12 hours to 1,730℃ and held at 1,730℃ for 3 hours, resulting in an outer diameter of 265m and a height of 400s.
An integrated transparent quartz glass weighing 49 kg of I,ffiffi was obtained.

〔発明の効果〕〔Effect of the invention〕

本発明に係るガラス製造法によると、従来のベルヌーイ
法等が避けることのできなかった原料効率の悪さ、もし
くは長いガラス化時間を必要とした生産効率の悪さが解
消でき、しかも格別高価な熱源を必要としないため安価
に生産できる特徴をもつが、本発明方法によりその効果
が一層助長される。即ち、本発明方法によってガラスイ
ンゴットを得た場合、比較的生産容易な焼結体製造工程
で結果的に大型のガラスインゴットが製造できるので生
産性を疎害することなく、しかも生産コストを安価にで
きる利点をらつ。
According to the glass manufacturing method of the present invention, it is possible to eliminate the poor raw material efficiency and the poor production efficiency that required a long vitrification time, which were unavoidable in the conventional Bernoulli method, and moreover, it does not require an extremely expensive heat source. Since it is not necessary, it can be produced at low cost, and the method of the present invention further enhances this effect. That is, when a glass ingot is obtained by the method of the present invention, a large-sized glass ingot can be manufactured through a relatively easy-to-produce sintered body manufacturing process, so that productivity is not adversely affected and production costs can be reduced. Enjoy the benefits.

Claims (1)

【特許請求の範囲】 1、相転移促進剤を含む二酸化珪素粉を複数の容器に充
填した後、加熱してクリストバライト結晶相をもつ焼結
成型体とし、得られた該成型体を所望形状に集積して焼
結集積体を形成せしめた上、真空下加熱し、一体に溶融
してガラス化することを特徴とするガラスの製造法。 2、前記容器が比較的小径のものであることを特徴とす
る特許請求の範囲第1項記載のガラスの製造法。 3、前記得られた焼結成型体の外周面を成形した後集積
化することを特徴とする特許請求の範囲第1項又は第2
項記載のガラスの製造法。
[Claims] 1. Fill a plurality of containers with silicon dioxide powder containing a phase transition accelerator, heat it to form a sintered molded body having a cristobalite crystal phase, and shape the obtained molded body into a desired shape. A method for producing glass, which comprises accumulating them to form a sintered aggregate, then heating them under vacuum to melt them together and vitrify them. 2. The method for manufacturing glass according to claim 1, wherein the container has a relatively small diameter. 3. Claims 1 or 2, characterized in that the outer peripheral surface of the obtained sintered molded body is formed and then integrated.
Method for producing glass as described in section.
JP4380186A 1986-02-28 1986-02-28 Production of glass Pending JPS62212235A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP4380186A JPS62212235A (en) 1986-02-28 1986-02-28 Production of glass
DE8787901658T DE3773306D1 (en) 1986-02-28 1987-02-27 METHOD FOR PRODUCING GLASS.
EP87901658A EP0258457B1 (en) 1986-02-28 1987-02-27 Process for manufacturing glass
US07/126,102 US4828593A (en) 1986-02-28 1987-02-27 Process for the production of glass
PCT/JP1987/000126 WO1987005287A1 (en) 1986-02-28 1987-02-27 Process for manufacturing glass
KR1019870700958A KR880700775A (en) 1986-02-28 1987-10-20 Recipe for glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4380186A JPS62212235A (en) 1986-02-28 1986-02-28 Production of glass

Publications (1)

Publication Number Publication Date
JPS62212235A true JPS62212235A (en) 1987-09-18

Family

ID=12673850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4380186A Pending JPS62212235A (en) 1986-02-28 1986-02-28 Production of glass

Country Status (1)

Country Link
JP (1) JPS62212235A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10618833B2 (en) 2015-12-18 2020-04-14 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a synthetic quartz glass grain
US10676388B2 (en) 2015-12-18 2020-06-09 Heraeus Quarzglas Gmbh & Co. Kg Glass fibers and pre-forms made of homogeneous quartz glass
US10730780B2 (en) 2015-12-18 2020-08-04 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a multi-chamber oven
US11053152B2 (en) 2015-12-18 2021-07-06 Heraeus Quarzglas Gmbh & Co. Kg Spray granulation of silicon dioxide in the preparation of quartz glass
US11236002B2 (en) 2015-12-18 2022-02-01 Heraeus Quarzglas Gmbh & Co. Kg Preparation of an opaque quartz glass body
US11299417B2 (en) 2015-12-18 2022-04-12 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a melting crucible of refractory metal
US11339076B2 (en) 2015-12-18 2022-05-24 Heraeus Quarzglas Gmbh & Co. Kg Preparation of carbon-doped silicon dioxide granulate as an intermediate in the preparation of quartz glass
US11492282B2 (en) 2015-12-18 2022-11-08 Heraeus Quarzglas Gmbh & Co. Kg Preparation of quartz glass bodies with dew point monitoring in the melting oven
US11492285B2 (en) 2015-12-18 2022-11-08 Heraeus Quarzglas Gmbh & Co. Kg Preparation of quartz glass bodies from silicon dioxide granulate
US11952303B2 (en) 2015-12-18 2024-04-09 Heraeus Quarzglas Gmbh & Co. Kg Increase in silicon content in the preparation of quartz glass

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10618833B2 (en) 2015-12-18 2020-04-14 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a synthetic quartz glass grain
US10676388B2 (en) 2015-12-18 2020-06-09 Heraeus Quarzglas Gmbh & Co. Kg Glass fibers and pre-forms made of homogeneous quartz glass
US10730780B2 (en) 2015-12-18 2020-08-04 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a multi-chamber oven
US11053152B2 (en) 2015-12-18 2021-07-06 Heraeus Quarzglas Gmbh & Co. Kg Spray granulation of silicon dioxide in the preparation of quartz glass
US11236002B2 (en) 2015-12-18 2022-02-01 Heraeus Quarzglas Gmbh & Co. Kg Preparation of an opaque quartz glass body
US11299417B2 (en) 2015-12-18 2022-04-12 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a melting crucible of refractory metal
US11339076B2 (en) 2015-12-18 2022-05-24 Heraeus Quarzglas Gmbh & Co. Kg Preparation of carbon-doped silicon dioxide granulate as an intermediate in the preparation of quartz glass
US11492282B2 (en) 2015-12-18 2022-11-08 Heraeus Quarzglas Gmbh & Co. Kg Preparation of quartz glass bodies with dew point monitoring in the melting oven
US11492285B2 (en) 2015-12-18 2022-11-08 Heraeus Quarzglas Gmbh & Co. Kg Preparation of quartz glass bodies from silicon dioxide granulate
US11708290B2 (en) 2015-12-18 2023-07-25 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a multi-chamber oven
US11952303B2 (en) 2015-12-18 2024-04-09 Heraeus Quarzglas Gmbh & Co. Kg Increase in silicon content in the preparation of quartz glass

Similar Documents

Publication Publication Date Title
EP1290250B1 (en) Multilayered quartz glass crucible and method of its production
JP2933404B2 (en) Quartz glass crucible for pulling silicon single crystal and its manufacturing method
US5053359A (en) Cristobalite reinforcement of high silica glass
US5389582A (en) Cristobalite reinforcement of quartz glass
EP0173961B1 (en) Process for the production of glass
EP0258457B1 (en) Process for manufacturing glass
JPS62212234A (en) Production of glass
JPS62212235A (en) Production of glass
JPH029783A (en) Quartz crucible
JPH0940434A (en) High-purity quartz glass and method for producing the same
JPS62212236A (en) Production of glass
JPS62202826A (en) Production of glass
JPS62212233A (en) Production of glass
JPH0575703B2 (en)
JPS6158823A (en) Preparation of transparent quartz glass
JPS6158824A (en) Preparation of transparent quartz glass
JP3770566B2 (en) Method for producing cylindrical quartz glass
JP3449654B2 (en) Method for producing opaque quartz glass
JPS6230633A (en) Production of glass
CN113636744A (en) Preparation process of quartz glass crucible and application method of quartz glass crucible for polycrystalline silicon ingot casting
JPS6230634A (en) Production of quartz glass
KR20200073152A (en) Vitreous silica crucible and manufacturing method thereof
CN218969432U (en) Silicon nitride crucible
CN112624579B (en) Preparation method and device for producing large-diameter transparent quartz lump by integrated method
JP3050351B2 (en) Method for producing opaque quartz glass