[go: up one dir, main page]

JPS62211363A - Low-pressure plasma working method - Google Patents

Low-pressure plasma working method

Info

Publication number
JPS62211363A
JPS62211363A JP2419586A JP2419586A JPS62211363A JP S62211363 A JPS62211363 A JP S62211363A JP 2419586 A JP2419586 A JP 2419586A JP 2419586 A JP2419586 A JP 2419586A JP S62211363 A JPS62211363 A JP S62211363A
Authority
JP
Japan
Prior art keywords
base material
ceramics
low
plasma
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2419586A
Other languages
Japanese (ja)
Inventor
Motoaki Suzuki
鈴木 元昭
Minoru Matsuda
穣 松田
Shigechika Kosuge
小菅 茂義
Moriaki Ono
守章 小野
Kiyokazu Nakada
清和 仲田
Itaru Watanabe
渡邊 之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2419586A priority Critical patent/JPS62211363A/en
Publication of JPS62211363A publication Critical patent/JPS62211363A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To form a coating layer having excellent adhesiveness, corrosion resistance, etc., by subjecting a metal which is the base material for ceramics to low-pressure plasma spraying onto a metallic base material, then implanting an element which forms ceramics by binding with the above-mentioned base material. CONSTITUTION:A voltage is impressed between an electrode 13 and a water- cooled copper nozzle 12 from a DC power source 22 to generate a glow discharge and to form a plasma jet 31 of a working gas 14 such as Ar in a low- pressure atmosphere. Metallic powder 19 of Ti, etc., which is the base material for the ceramics is thermally sprayed into the above-mentioned plasma jet 31 to form a thermally sprayed film 32 of the above-mentioned metal on the metallic base material 11. The plasma jet of N2 or the like which forms the ceramics by binding with the above-mentioned base material 11 is then blown. The metallic film 32 is thereby converted to ceramics such as TiN by which the ceramic coating layer having the excellent adhesive powder, uniformity, corrosion resistance, wear resistance, etc., is formed.

Description

【発明の詳細な説明】 〔産業上の利用分胃〕 この発明は例え、ば鋼板の表面にセラミックスなどの層
を形成する方法に関する。より詳しくはプラズマ溶射の
原理を応用して金属の表面にTiNなとセラミックスの
層を形成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Applications] The present invention relates to, for example, a method for forming a layer of ceramics or the like on the surface of a steel plate. More specifically, the present invention relates to a method of forming a layer of TiN or other ceramics on a metal surface by applying the principle of plasma spraying.

〔従来の技術〕[Conventional technology]

第3図は低圧プラズマ溶射の原理によって金属基材1の
上にTiNの被膜を形成する従来の方法を示す説明図で
ある。図において、1はプラズマ加工装置を収容するチ
ャンバー、2はこのチャンバー内の空間、3はこの空間
内を低圧(200〜ITorr)にするための気体の排
出方向を示す矢印、11は被加工物である金属基材、1
2は電極13を収容し水冷装置を併設(図示せず)して
いる水冷鋼ノズル、14はこの水冷鋼ノズル12と電極
13との間に導入される動作ガス(例えばNtlAr、
Noなど)、 15はこの動作ガス14を導入するパイプ、16は水冷
鋼ノズルの先端直前部に設けたパイプ、17はこのパイ
プ16に導入される溶射被膜32の原料となる粉末、 18は水冷鋼ノズル12の先端から噴射されているプラ
ズマジェット31の途中に設けたパイプ、19はこのパ
イプ18を通じて導入され原料となる粉末、21は水冷
鋼ノズル12と金属基材11との間に電位差を与えプラ
ズマを形成させる直流電源、22は電極13と水冷鋼ノ
ズル12との間にプラズマを形成させる直流電源、図中
e1eはこの直流電源の極性を示す記号である。
FIG. 3 is an explanatory diagram showing a conventional method of forming a TiN film on a metal substrate 1 using the principle of low-pressure plasma spraying. In the figure, 1 is a chamber that accommodates a plasma processing device, 2 is a space inside this chamber, 3 is an arrow indicating the direction of gas discharge to make the inside of this space a low pressure (200 to I Torr), and 11 is a workpiece A metal base material that is 1
2 is a water-cooled steel nozzle that accommodates the electrode 13 and is equipped with a water cooling device (not shown); 14 is a working gas (for example, NtlAr,
15 is a pipe for introducing this working gas 14, 16 is a pipe provided just before the tip of the water-cooled steel nozzle, 17 is a powder that is the raw material for the thermal spray coating 32 introduced into this pipe 16, 18 is a water-cooled pipe. A pipe 19 is provided in the middle of the plasma jet 31 that is injected from the tip of the steel nozzle 12, 19 is a powder introduced through this pipe 18 to serve as a raw material, and 21 is a material that creates a potential difference between the water-cooled steel nozzle 12 and the metal base material 11. 22 is a DC power source that generates plasma between the electrode 13 and the water-cooled steel nozzle 12, and e1e in the figure is a symbol indicating the polarity of this DC power source.

次にこの動作について説明する。金属基材11とプラズ
マ発生装置とをチャンバー1内に収容して排気3 (5
Torr) j、ながらパイプ15より例えばN2ガス
を導入し水冷鋼ノズル12と電極13とめ間に電位差(
30〜50v)を与えればグロー放電を開始し、N、ガ
スはプラズマとなって水冷鋼ノズル12のの先端より噴
射する。
Next, this operation will be explained. The metal base material 11 and the plasma generator are housed in the chamber 1, and the exhaust gas 3 (5
Torr) j, for example, N2 gas is introduced from the pipe 15 to create a potential difference (
When a voltage of 30 to 50 V) is applied, a glow discharge starts, and the N gas becomes plasma and is injected from the tip of the water-cooled steel nozzle 12.

ここでパイプ16又は18よりTiの粉末17又は19
を導入すればプラズマのエネルギーはTi粉末を半溶融
状態にすると共にTiNを含むプラズマジェット31と
なって金属基材11の上に溶射被#32を形成する。
Here, from the pipe 16 or 18, Ti powder 17 or 19 is
When the plasma energy is introduced, the Ti powder becomes a semi-molten state and becomes a plasma jet 31 containing TiN to form a sprayed coating #32 on the metal base material 11.

チャンバー1内の空間2を低圧にする理由はプラズマジ
ェット31の噴出速度を上昇させなり溶射粒子の酸化を
防止するためでこれを低圧プラズマ溶射と言う。
The reason why the pressure in the space 2 in the chamber 1 is made low is to increase the ejection speed of the plasma jet 31 and prevent oxidation of the sprayed particles, and this is called low-pressure plasma spraying.

ところが此様にして形成したTiNを含む溶射被膜32
は金属基材11への密着力、粒径分布、耐蝕性、気孔率
などの点で問題があった。
However, the thermal spray coating 32 containing TiN formed in this way
had problems in terms of adhesion to the metal substrate 11, particle size distribution, corrosion resistance, porosity, etc.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来の低圧プラズマ溶射方法においては、
例えば鋼板とTiNを含む溶射粒との密着力、噴射ノズ
ルと被加工物との距離による溶着粒子の粒径分布のバラ
ツキ、溶射粒子相互間に生ずる気孔率のバラツキ、この
気孔率に起因する耐蝕性の劣化、被加工物(基材)と溶
射粒子(セラミックス)間の熱膨張率の差による亀裂の
発生などの問題があった。
In the conventional low pressure plasma spraying method as described above,
For example, the adhesion between the steel plate and the spray particles containing TiN, the variation in the particle size distribution of the deposited particles due to the distance between the spray nozzle and the workpiece, the variation in porosity that occurs between the spray particles, and the corrosion resistance caused by this porosity. There were problems such as deterioration in properties and the occurrence of cracks due to the difference in coefficient of thermal expansion between the workpiece (base material) and the sprayed particles (ceramics).

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る低圧プラズマ加工法においては、金属基
材の上にセラミックスの層を形成する工法において、第
1工程は上記金属基材に上記セラミックスの母材となる
金属をプラズマ溶射し、第2工程はこの母材と結合して
セラミックスを形成する元素を注入するようにしたもの
である。
In the low-pressure plasma processing method according to the present invention, in the method of forming a ceramic layer on a metal base material, the first step is plasma spraying of a metal that will become the base material of the ceramics onto the metal base material, and the second step is The process involves injecting elements that combine with this base material to form ceramics.

〔作用〕[Effect]

この発明においては、被加工物とプラズマ加工装置を低
圧容器(チャンバー)の中に設け、第1工程はこの容器
を真空にすると共に、水冷銅ノズルと被加工物(基材)
との間に不活性ガスのプラズマを発生させ、このプラズ
マ内に溶射用金属の粉末を導入して基材の上に被加工物
の母材(例えば′riのみ)を溶射し金属被膜を形成し
、第2工程はN2などのプラズマジェットを吹き付けて
、この被膜を窒化する。
In this invention, the workpiece and the plasma processing device are placed in a low-pressure container (chamber), and in the first step, this container is evacuated, and the water-cooled copper nozzle and the workpiece (substrate material) are
An inert gas plasma is generated between the two, and a metal powder for thermal spraying is introduced into the plasma, and the base material of the workpiece (for example, only 'ri) is thermally sprayed onto the base material to form a metal coating. However, in the second step, this coating is nitrided by spraying a plasma jet of N2 or the like.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示す第1工程の低圧プラ
ズマ加工方法の説明図である。図において、チャンバー
1は省略し、3.11.12.13.14.19.22
.31は第3図に示す従来の装置と同−又は相当部分を
示す。
FIG. 1 is an explanatory diagram of a first step of a low-pressure plasma processing method showing an embodiment of the present invention. In the figure, chamber 1 is omitted, and 3.11.12.13.14.19.22
.. Reference numeral 31 indicates the same or equivalent portion of the conventional device shown in FIG.

次にこの動作について説明する。プラズマ溶射の動作原
理は第3図に示した従来装置と同様であるが、この第1
工程においては基材11の表面にTiの溶射被膜32だ
けを形成する。Tiは金属基材11と共に純金属である
から被膜の密着性、粒子間の一合性などは極めて良いと
言う特徴を利用したものである。
Next, this operation will be explained. The operating principle of plasma spraying is the same as that of the conventional apparatus shown in Figure 3, but this first
In the process, only the sprayed Ti coating 32 is formed on the surface of the base material 11. Since Ti is a pure metal together with the metal base material 11, the adhesion of the film and the consistency between particles are extremely good.

第2図はこの発明の一実施例の第2工程を示す低圧プラ
ズマ加工方法の説明図である。図において、基本的構成
は第1図と同様であるが、ここでは上記第1工程で溶射
したTiの溶射被膜32に対してN、のプラズマジェッ
ト31(窒素イオン)を吹付ける。
FIG. 2 is an explanatory diagram of a low-pressure plasma processing method showing the second step of an embodiment of the present invention. In the figure, the basic configuration is the same as that in FIG. 1, but here a N plasma jet 31 (nitrogen ions) is sprayed onto the Ti thermal spray coating 32 thermally sprayed in the first step.

窒素イオンはその高温なプラズマと共に反応して、先に
形成されていた溶射被膜32の表面に新たにTiNの薄
い層34を形成する。この第2工程によるN34はセラ
ミックスの層であると共にその密着力、均一性、耐蝕性
、耐摩耗性などの性質は極めて優秀なものである。
The nitrogen ions react with the high temperature plasma to form a new thin layer 34 of TiN on the surface of the previously formed thermally sprayed coating 32. The N34 produced in this second step is a ceramic layer and has extremely excellent properties such as adhesion, uniformity, corrosion resistance, and abrasion resistance.

次に上記第1図(第1工N) 、第2図(第2工程)に
示した低圧プラズマ加工方法によって次の溶射条件のも
とに実施した結果と従来技術による結果とを比較対象し
た。
Next, we compared the results obtained using the low-pressure plasma processing method shown in Figure 1 (1st process N) and Figure 2 (2nd process) under the following thermal spraying conditions with the results obtained using the conventional technique. .

溶射条件 第1工程・・・プラズマ出力48 kW (600A、
 80r)プラズマガスAr−5Xf[2,5Torr
第2工程・・・プラズマ出力48 kW (600A、
 80r)プラズマガXNt、200 Torr (8
1%囲気)酸化性 腐食性 摩耗性 又その試験条件は下記の通りである。
Thermal spraying conditions 1st step...Plasma output 48 kW (600A,
80r) Plasma gas Ar-5Xf [2,5Torr
2nd step...Plasma output 48 kW (600A,
80r) Plasmaga XNt, 200 Torr (8
1% ambient air) Oxidizing, corrosive, and abrasive properties and the test conditions are as follows.

(A)酸化性試験方法 大気中90℃で5時間放置して単位重量増加を測定。(A) Oxidizing test method The unit weight increase was measured after being left in the atmosphere at 90°C for 5 hours.

(B)腐食性試験方法 15%Helに浸漬、80℃下で腐食減量を測定した。(B) Corrosion test method It was immersed in 15% Hel and the corrosion loss was measured at 80°C.

(C)摩耗試験方法 ピンオンデスク法によって回転デスクを5km走行させ
た時の摩耗量を測定した。
(C) Wear test method The amount of wear was measured by the pin-on-desk method when the rotary desk was run for 5 km.

以上のように従来技術に比較して本発明は顕著な効果を
示している。
As described above, the present invention has shown remarkable effects compared to the prior art.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明した通り低圧プラズマ加工方法を用
いて金属基材の表面にセラミックスの層を形成させるた
めに、第1工程においてセラミックスの母材の粒子を溶
射して金属被膜層を形成し、第2工程においてはこの層
と化合してセラミックスを形成するようにしたので、セ
ラミックスの薄膜でありながら各層にわたって気孔がほ
とんどなく、密着性、耐摩耗性、耐蝕性など従来の欠点
を克服して余りある効果を有する。
As explained above, in order to form a ceramic layer on the surface of a metal base material using a low-pressure plasma processing method, in the first step, particles of a ceramic base material are sprayed to form a metal coating layer, In the second step, this layer is combined to form ceramics, so even though it is a thin ceramic film, there are almost no pores in each layer, and it overcomes the conventional drawbacks such as adhesion, abrasion resistance, and corrosion resistance. It has a lot of effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は此の発明の一実施例の第1工程を示す説明図、
第2図は此の発明の一実施例の第2工程を示す説明図、
第3図は従来の技術を示す説明図である。 図において、11は金属基材、12は水冷鋼ノズル、1
3は電極、14は動作ガス、19は粉末、31はプラズ
マジェット、32は溶射被膜、34は層である。 代理人 弁理士 佐 藤 正 年 第1図
FIG. 1 is an explanatory diagram showing the first step of an embodiment of this invention,
FIG. 2 is an explanatory diagram showing the second step of an embodiment of this invention,
FIG. 3 is an explanatory diagram showing a conventional technique. In the figure, 11 is a metal base material, 12 is a water-cooled steel nozzle, 1
3 is an electrode, 14 is a working gas, 19 is a powder, 31 is a plasma jet, 32 is a thermal spray coating, and 34 is a layer. Agent Patent Attorney Tadashi Sato Figure 1

Claims (1)

【特許請求の範囲】[Claims] 金属基材の上にセラミックスの層を形成する方法におい
て、第1工程は上記金属基材に上記セラミックスの母材
となる金属をプラズマ溶射し、第2工程はこの母材と結
合してセラミックスを形成する元素を注入することを特
徴とする低圧プラズマ加工方法。
In the method of forming a ceramic layer on a metal base material, the first step is plasma spraying of a metal that will become the base material of the ceramics onto the metal base material, and the second step is to bond with this base material to form the ceramics. A low-pressure plasma processing method characterized by implanting elements to be formed.
JP2419586A 1986-02-07 1986-02-07 Low-pressure plasma working method Pending JPS62211363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2419586A JPS62211363A (en) 1986-02-07 1986-02-07 Low-pressure plasma working method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2419586A JPS62211363A (en) 1986-02-07 1986-02-07 Low-pressure plasma working method

Publications (1)

Publication Number Publication Date
JPS62211363A true JPS62211363A (en) 1987-09-17

Family

ID=12131542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2419586A Pending JPS62211363A (en) 1986-02-07 1986-02-07 Low-pressure plasma working method

Country Status (1)

Country Link
JP (1) JPS62211363A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100248975B1 (en) * 1997-06-21 2000-04-01 지종기 The high frequency induction plasma torch using thin film coating and gas phase synthesis of the diamond and non-oxide ceramic powder
US7916447B2 (en) * 2003-07-08 2011-03-29 Future Vision Inc. Electrostatic chuck for substrate stage, electrode used for the chuck, and treating system having the chuck and electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100248975B1 (en) * 1997-06-21 2000-04-01 지종기 The high frequency induction plasma torch using thin film coating and gas phase synthesis of the diamond and non-oxide ceramic powder
US7916447B2 (en) * 2003-07-08 2011-03-29 Future Vision Inc. Electrostatic chuck for substrate stage, electrode used for the chuck, and treating system having the chuck and electrode

Similar Documents

Publication Publication Date Title
RU2266978C2 (en) Method of application of coat and rocket engine manifold with such coat
US6756073B2 (en) Method for applying sealing coating with low gas permeability
JP3649210B2 (en) Corrosion resistant material
JPH0969554A (en) Electrostatic chuck member and production thereof
KR102130346B1 (en) Coating method of spray surface
EP0623415B1 (en) Method of making cathode targets comprising silicon
US11047035B2 (en) Protective yttria coating for semiconductor equipment parts
CN107675120A (en) A kind of method for preparing silication molybdenum coating in molybdenum or molybdenum alloy surface
CN110004393A (en) A method for preparing Y2O3 ceramic coating by supersonic flame spraying technology
JPS62211363A (en) Low-pressure plasma working method
CN106591763A (en) Method for preparing high-purity yttrium oxide coating for IC equipment aluminum alloy part through explosion spraying
US20120164437A1 (en) Coated article and method for making same
TWI295327B (en)
JPS60184676A (en) Coated base material or manufacture of coated member
JP2932618B2 (en) Casting pin for aluminum casting
US20230187182A1 (en) Plasma resistant arc preventative coatings for manufacturing equpiment components
JP2933508B2 (en) Plasma processing equipment
US8609240B2 (en) Coated article and method for making same
JPS58199855A (en) Surface treatment of tuyere
CN103074564A (en) Preparation of Y by vacuum plasma spraying technology2O3Method for coating
KR20050065911A (en) Metal preparations and processing method of a coating film thereof
JP3059250B2 (en) Method for forming composite of alumina and aluminum nitride
RU2078846C1 (en) Method of coating application by plasma spraying on figure of rotation shape pieces
Asahi et al. Low Pressure Plasma Spray Coating
JPH01119576A (en) Surface treatment of concrete