[go: up one dir, main page]

JPS6220970B2 - - Google Patents

Info

Publication number
JPS6220970B2
JPS6220970B2 JP13469279A JP13469279A JPS6220970B2 JP S6220970 B2 JPS6220970 B2 JP S6220970B2 JP 13469279 A JP13469279 A JP 13469279A JP 13469279 A JP13469279 A JP 13469279A JP S6220970 B2 JPS6220970 B2 JP S6220970B2
Authority
JP
Japan
Prior art keywords
polyether
water
adsorbent
alkaline catalyst
neutralized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13469279A
Other languages
Japanese (ja)
Other versions
JPS5657730A (en
Inventor
Shigeo Mori
Takeshi Fujita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKS Co Ltd
Original Assignee
Dai Ichi Kogyo Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi Kogyo Seiyaku Co Ltd filed Critical Dai Ichi Kogyo Seiyaku Co Ltd
Priority to JP13469279A priority Critical patent/JPS5657730A/en
Publication of JPS5657730A publication Critical patent/JPS5657730A/en
Publication of JPS6220970B2 publication Critical patent/JPS6220970B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyethers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はポリエーテルポリオールの精製法に関
する。 従来より、ポリエーテルポリオール(以下ポリ
エーテルと称する)は、分子中に少なくとも1個
の活性水素基を有する有機化合物にアルカリ性触
媒の存在下でアルキレンオキサイドを付加重合さ
せて得られる。また、この反応において用いられ
るアルカリ性触媒としては、例えば、苛性カリ、
苛性ソーダ、ナトリウムメチラート、カリウムメ
チラート、金属カリウム、炭酸カリウム、炭酸ナ
トリウム等がある。これらのアルカリ性触媒もし
くはその中和塩が、ポリエーテル中に残存した場
合には、ポリエーテルのすべての用途、例えばポ
リウレタン樹脂原料、ブレーキ液原料、化粧品原
料、活性剤原料、合成潤滑油原料等に対して悪影
響を及ぼすため、除去するのが常である。 アルカリ性触媒を含有するポリエーテルよりア
ルカリ性触媒もしくはその中和塩を除去する従来
の精製法としては、次のようなものがある。 (イ) 特公昭37−5597号、特公昭41−21237号およ
び特公昭47−3745号等公報の酸でアルカリ性触
媒を中和し生じた塩を濾過除去する方法。 (ロ) 特公昭38−26158号、特公昭42−13021号、特
公昭45−32432号、特公昭45−33194号、特公昭
52−10018号および特公昭53−123499号等公報
の中和するかもしくは中和せずアルカリ吸着剤
を用いる方法。 (ハ) 特公昭49−14359号公報の溶媒に溶かして水
洗する方法。 (ニ) 特公昭36−22148号および特開昭51−23211号
公報のイオン交換樹脂を用いる方法。 (ホ) 特公昭52−33000号公報のアルカリ性触媒を
炭酸ガスで中和して、生じた炭酸塩を濾過する
方法。 (ヘ) 特開昭51−101098号公報のリン酸で中和して
濾過後、濾液をケイ酸マグネシウム、酸化アル
ミニウム、酸化マグネシウム、水酸化アルミニ
ウム、炭酸アルミニウムもしくはそれらの混合
物で脱酸する方法。 これらの精製方法はいずれも欠点が大きく、改良
が望まれている。すなわち、 (イ)は生成する塩の粒子が細かく、不安定である
ため、濾過が非常に困難であり、また濾圧の変動
に対して敏感であるため、品質に大きなバラツキ
やにごりを生じ易い。 またハロゲン系の酸は、極端にステンレスを腐
食するため、設備の材質に極端な制約がある上
に、設備より重金属イオンが溶出してポリエーテ
ルの用途に支障をきたす。 (ロ)は性能的には比較的好ましい方法であるが、
これらの吸着剤はアルカリ吸着能が充分でないた
め、粉末状で大量に使用せざるを得ず、吸着完了
までに非常に長時間を要する。また濾過時間の経
過および濾過圧の上昇とともに濾液の品質が劣化
する。 (ハ)は精製効果を促進するために静電合体を利用
したとしても精製効果は不充分であり、カリウム
+ナトリウムの残存量、臭気、色相、PH値などに
問題を生ずる。 (ニ)はイオン交換速度が非常に遅いうえに、イオ
ン交換樹脂に含まれる有機性の不純物がポリエー
テル中に溶出し、色相、臭気等が劣化するうえ
に、カリウム+ナトリウム残量も大きい。 (ホ)は炭酸ガス中和によつて生じたアルカリ金属
の炭酸塩の粒子強度が弱いため、濾過圧力によつ
て破壊されて、濾膜を通過し易く、結果としてポ
リエーテルのカリウム+ナトリウム含有量が増大
し、また時折り微濁を生じる。 また、この方法で得られたポリエーテルは酸価が
高い傾向があり、特にポリウレタン樹脂原料とし
ては問題がある。 (ヘ)はリン酸中和・濾過までは(イ)の方法と同じで
あつて公知の事実であり、発明の特徴はむしろ残
存する酸価を低下させるということにあり、精製
方法の概念および効果から判断すれば、(イ)の方法
を越えるものではない。 本発明者らは上記欠点を改良するため鋭意研究
を重ねた結果、本発明を提供するにいたつたもの
である。すなわち、アルカリ性触媒の存在下で合
成されたアルカリ性触媒を含むポリエーテルを水
の存在または不存在下で、(イ)ナトリウムもしくは
リチウムを含有する酸性塩類で中和したのち、必
要により脱水し、次に濾過することを特徴とする
ポリエーテルの精製方法およびアルカリ性触媒の
存在下で合成されたアルカリ性触媒を含むポリエ
ーテルを水の存在または不存在下で、(イ)ナトリウ
ムもしくはリチウムを含有する酸性塩類で中和し
たのち、(ロ)吸着剤を添加し、必要により脱水し、
次に濾過することを特徴とするポリエーテルの精
製方法である。 本発明の適用可能なポリエーテルは、分子中に
少なくとも1個の活性水素基を有する有機化合物
にアルカリ性触媒の存在下でアルキレンオキサイ
ドを付加重合させて得られるものである。ポリエ
ーテルの原料として用いられる分子中に少なくと
も1個の活性水素基を有する有機化合物とは、例
えばメタノール、エタノール、ブタノール、オク
タノール、ラウリルアルコール等の一価アルコー
ル類、エチレングリコール、プロピレングリコー
ル、1.4.ブタンジオール等の二価アルコール類、
グリセリン、トリメチロールプロパン、ペンタエ
リスリツト、ソルビトール、蔗糖等の多価アルコ
ール類、アニリン、アンモニア、エチレンジアミ
ン、ジエチレントリアミン、トルエンジアミン等
のアミン化合物等である。 またアルキレンオキサイドとは、例えばエチレ
ンオキサイド、プロピレンオキサイド、ブチレン
オキサイド、スチレンオキサイド等である。この
ようにして付加重合させて得られるポリエーテル
は、通常アルカリ性触媒を0.1〜1重量%含有す
る粘稠な液体である。次に本発明の精製方法につ
いて述べる。 本発明の精製方法は、はじめにアルカリ性触媒
を含むポリエーテルを水の存在または不存在下で
過剰当量のナトリウムもしくはリチウムを含む酸
性塩で中和することである。 水の存在下で中和を行なう場合、アルカリ性触
媒を含むポリエーテルに5重量%以下、好ましく
は0.5〜2重量%の水を添加しておく。中和は温
度30〜100℃で行なう。 本発明において用いる酸性塩は、例えば
NaHSO3、NaHSO4、NaH2PO4、NaHPO2
NaHCO3、LiHSO3、LiHSO4、LiH2PO4
LiHPO2、LiHCO3およびそれらの水溶液等であ
る。 中和したのち、中和物が中性付近を示す場合、
中和物の水分の除去すなわち脱水が必要であれば
脱水を行なつたのち、次に濾過する。また脱水が
必要なければ直接濾過する。 脱水を行なう場合、80℃以上好ましくは100〜
140℃、減圧下で行なう。中和物が酸性またはア
ルカリ性を示す場合、吸着剤を添加して処理す
る。 中和物が酸性を示す場合、酸吸着剤を、アルカ
リ性を示す場合、アルカリ吸着剤を添加する。酸
吸着剤は、例えば合成硅酸マグネシウム、合成硅
酸アルミニウム、Li2CO3、Na2CO3、MgCO3
CaCO3等の族および族の炭酸塩、MgO、
CaO、Mg(OH)2、Ca(OH)2、Al2O3、Al
(OH)3等の族および族の酸化物もしくは水酸
化物、2.5MgO・Al2O3・XH2O、Mg6Al2
(OH)16CO3・4H2O等の族化合物の複合塩また
はこれらの混合物等である。 アルカリ吸着剤は、例えば合成硅酸マグネシウ
ム、合成硅酸アルミニウム、活性白土、酸性白土
等である。 本発明において用いる吸着剤の好ましい添加量
は、ポリエーテルに対して2重量%以下であり、
好ましくは0.05〜0.5重量%である。 次に中和物を吸着剤で処理したのち、脱水が必
要であれば、上記の条件で脱水を行ない、濾過す
る。また脱水が必要なければ直接濾過する。本発
明の精製方法に従つて得られた精製ポリエーテル
は、すべての用途に要求される規格、例えばワン
シヨツトポリウレタンフオーム用途に要求される
下記の規格を十分満足させるものである。 外 観 透明液体であり、※濁り、カスミのな
いもの ※※色 相(APHA=米国公衆衛生法) 20以下 水 分 0.05%以下 ※※※カリウム+ナトリウム 5ppm以下 ※※※※PH 6.5〜7.5 臭 気 ほとんどないこと 注 ※濁り、カスミ ポリエーテル中に懸濁物、浮遊微粒子
の有無の状態。 ※※色相 ハーゼンNo.法による。 ※※※カリウム+ナトリウム 原子吸光法による。 ※※※※PH イソプロパノール:水(10:6容量
比)溶液100c.c.にサンプル10gを溶か
し測定する。 上記項目中、カリウム+ナトリウムについて
1.0ppm以下である必要がある。 ポリエーテルがこれらの規格を満足させられな
い場合には、ワンシヨトポリウレタンフオームで
は、フオームの亀裂や収縮あるいは変色の原因と
なり、ポリウレタンプレポリマーでは異常固化や
ポツトライフ異常の原因となる。 以下に実施例を示す。実施例中「%」および
「部」は重量基準である。 実施例 1 グリセリン92gに苛性カリ(85%)7.5gを加
え、ついでプロピレンオキサイド2500gを反応温
度130℃、反応圧10Kg/cm2Gで導入し、さらにエ
チレンオキサイド500gを反応温度120℃、反応圧
3Kg/cm2Gで導入してポリエーテルを製造した。 次に、水30gを添加して均一混合したのち、90
℃において重亜硫酸ソーダ水溶液(30重量%)
40gを加え中和した。中和後のPHは5.8であつた。 次に、酸吸着剤として合成硅酸マグネシウム
1.5gを添加し、90℃で2時間処理した。次に120
℃、10mmHg以下で水を留去したのち、硅藻土を
濾過助剤として、グラスフイルターにて濾過し
た。 濾液は次の分析値を示し、ポリウレタン樹脂用
ポリエーテルとして良好な品質を示ことが判つ
た。 分析項目 分析値 酸 価(mgKOH/g) 0.007 水 分(%) 0.016 ナトリウム(ppm) 0.05 カリウム(ppm) 0.10 PH 7.0 ヒドロキシル価(mgKOH/g) 56.8 外 観 無色透明液体 実施例 2 次の3種類のポリエーテルをアルカリ触媒の存
在下で合成した。 ポリエーテルA: 200ステンレス製オートクレーブ中にグリセ
リン4.8Kgと苛性カリ(85%)850gを仕込み、
窒素置換したのちプロピレンオキサイド145.2
Kgを125℃、6Kg/cm2Gで導入し、一たん反応
を完結させたのち、エチレンオキサイド30Kgを
115℃、2Kg/cm2Gで導入して反応させた。 ポリエーテルB: 200のオートクレーブ中に70%シユークロー
ズシロツプ50Kg、エチレングリコール5Kg、エ
チレンジアミン10Kgおよび苛性ソーダ(48%)
375gを仕込み、窒素置換後加熱して105℃と
し、プロピレンオキサイド50Kgを2Kg/cm2Gで
導入し、反応を完結せしめたのち、125℃で水
分を留去させ、次にプロピレンオキサイド65Kg
を125℃、2Kg/cm2Gで導入して反応を完結さ
せた。 ポリエーテルC: 200のオートクレーブ中に70%ソルビトール
6Kg、ジプロピレングリコール6Kgおよび苛性
カリ(48%)800gを仕込み、125℃10mmHg以下
で水を留去させたのち、プロピレンオキサイド
180Kgを125℃、5Kg/cm2Gで導入し、次にエチ
レンオキサイド6Kgを115℃、2Kg/cm2Gで導
入して反応を完結した。 得られたこれらの各種ポリエーテルを本発明の
方法に従つて精製したところ、第1表のようにな
つた。なお、濾過はウルトラフイルタ−(ミウラ
化学工業製)を用いた。
The present invention relates to a method for purifying polyether polyols. Conventionally, polyether polyols (hereinafter referred to as polyethers) are obtained by addition polymerizing an alkylene oxide to an organic compound having at least one active hydrogen group in the molecule in the presence of an alkaline catalyst. In addition, examples of alkaline catalysts used in this reaction include caustic potash,
Examples include caustic soda, sodium methylate, potassium methylate, metallic potassium, potassium carbonate, and sodium carbonate. If these alkaline catalysts or their neutralized salts remain in polyether, they may be used in all uses of polyether, such as raw materials for polyurethane resins, raw materials for brake fluids, raw materials for cosmetics, raw materials for activators, raw materials for synthetic lubricating oils, etc. Since it has a negative effect on the environment, it is usually removed. Conventional purification methods for removing alkaline catalysts or their neutralized salts from polyethers containing alkaline catalysts include the following. (a) A method of neutralizing an alkaline catalyst with an acid and removing the resulting salt by filtration, as disclosed in Japanese Patent Publication No. 37-5597, Japanese Patent Publication No. 41-21237, and Japanese Patent Publication No. 47-3745. (b) Special Publication No. 38-26158, Special Publication No. 13021, Special Publication No. 42-13021, Special Publication No. 32432, Special Publication No. 45-33194, Special Publication No.
52-10018 and Japanese Patent Publication No. 53-123499, etc., methods using an alkali adsorbent with or without neutralization. (c) Method of dissolving in a solvent and washing with water, as disclosed in Japanese Patent Publication No. 14359/1983. (d) A method using the ion exchange resin disclosed in Japanese Patent Publication No. 36-22148 and Japanese Patent Application Laid-Open No. 51-23211. (e) A method disclosed in Japanese Patent Publication No. 52-33000 in which an alkaline catalyst is neutralized with carbon dioxide gas and the resulting carbonate is filtered. (f) A method of neutralizing with phosphoric acid and filtration as described in JP-A-51-101098, and then deoxidizing the filtrate with magnesium silicate, aluminum oxide, magnesium oxide, aluminum hydroxide, aluminum carbonate, or a mixture thereof. All of these purification methods have major drawbacks, and improvements are desired. In other words, in (a), the salt particles produced are fine and unstable, making filtration extremely difficult, and being sensitive to fluctuations in filtration pressure, which tends to cause large variations in quality and cloudiness. . In addition, halogen-based acids extremely corrode stainless steel, which places extreme restrictions on the material of the equipment, and also causes heavy metal ions to be eluted from the equipment, interfering with the use of polyether. Although (b) is a relatively preferable method in terms of performance,
Since these adsorbents do not have sufficient alkali adsorption ability, they must be used in powder form in large quantities, and it takes a very long time to complete adsorption. Furthermore, the quality of the filtrate deteriorates as the filtration time passes and the filtration pressure increases. In (c), even if electrostatic coalescence is used to promote the purification effect, the purification effect is insufficient, and problems arise with the residual amount of potassium + sodium, odor, hue, pH value, etc. In (d), the ion exchange rate is very slow, organic impurities contained in the ion exchange resin are eluted into the polyether, deteriorating the hue, odor, etc., and the amount of potassium + sodium remaining is large. In (e), the particle strength of the alkali metal carbonate produced by carbon dioxide gas neutralization is weak, so it is destroyed by the filtration pressure and easily passes through the filter membrane, resulting in the potassium + sodium content of the polyether. The amount increases and sometimes a slight turbidity occurs. Furthermore, the polyether obtained by this method tends to have a high acid value, which is particularly problematic as a raw material for polyurethane resin. (F) is the same as method (B) up to phosphoric acid neutralization and filtration, and is a well-known fact.The feature of the invention is rather that it lowers the residual acid value, and the concept of the purification method and Judging from the effectiveness, this method is no better than method (a). The present inventors have conducted extensive research to improve the above-mentioned drawbacks, and as a result, have arrived at the present invention. That is, a polyether containing an alkaline catalyst synthesized in the presence of an alkaline catalyst is neutralized with (a) acid salts containing sodium or lithium in the presence or absence of water, and then dehydrated if necessary. A polyether purification method characterized by filtration of polyether and polyether containing an alkaline catalyst synthesized in the presence of an alkaline catalyst in the presence or absence of water (a) acidic salts containing sodium or lithium. After neutralization, (b) add adsorbent, dehydrate if necessary,
This method of purifying polyether is characterized in that it is then filtered. The polyether to which the present invention can be applied is one obtained by addition polymerizing an alkylene oxide to an organic compound having at least one active hydrogen group in the molecule in the presence of an alkaline catalyst. Examples of organic compounds having at least one active hydrogen group in the molecule used as raw materials for polyether include monohydric alcohols such as methanol, ethanol, butanol, octanol, and lauryl alcohol, ethylene glycol, propylene glycol, and 1.4. Dihydric alcohols such as butanediol,
These include polyhydric alcohols such as glycerin, trimethylolpropane, pentaerythritol, sorbitol, and sucrose, and amine compounds such as aniline, ammonia, ethylenediamine, diethylenetriamine, and toluenediamine. Further, the alkylene oxide includes, for example, ethylene oxide, propylene oxide, butylene oxide, styrene oxide, and the like. The polyether obtained by addition polymerization in this manner is usually a viscous liquid containing 0.1 to 1% by weight of an alkaline catalyst. Next, the purification method of the present invention will be described. The purification method of the present invention consists in first neutralizing the polyether containing an alkaline catalyst with an acid salt containing an excess equivalent of sodium or lithium in the presence or absence of water. When neutralization is carried out in the presence of water, up to 5% by weight, preferably from 0.5 to 2% by weight of water is added to the polyether containing the alkaline catalyst. Neutralization is carried out at a temperature of 30-100°C. The acidic salt used in the present invention is, for example,
NaHSO3 , NaHSO4 , NaH2PO4 , NaHPO2 ,
NaHCO3 , LiHSO3 , LiHSO4 , LiH2PO4 ,
These include LiHPO 2 , LiHCO 3 and their aqueous solutions. If the neutralized product shows near neutrality after neutralization,
After removal of water from the neutralized product, that is, dehydration, if necessary, is performed and then filtered. If dehydration is not necessary, it can be directly filtered. When dehydrating, the temperature should be 80℃ or higher, preferably 100℃ or higher.
Conducted at 140°C and under reduced pressure. If the neutralized product is acidic or alkaline, an adsorbent is added for treatment. If the neutralized product is acidic, an acid adsorbent is added, and if the neutralized product is alkaline, an alkali adsorbent is added. Examples of acid adsorbents include synthetic magnesium silicate, synthetic aluminum silicate, Li 2 CO 3 , Na 2 CO 3 , MgCO 3 ,
Group and group carbonates such as CaCO 3 , MgO,
CaO, Mg(OH) 2 , Ca(OH) 2 , Al2O3 , Al
(OH) Oxides or hydroxides of groups such as 3 , 2.5MgO・Al 2 O 3・XH 2 O, Mg 6 Al 2
(OH) 16 Complex salts of group compounds such as CO 3 and 4H 2 O, or mixtures thereof. Examples of the alkali adsorbent include synthetic magnesium silicate, synthetic aluminum silicate, activated clay, and acid clay. The preferred amount of the adsorbent used in the present invention is 2% by weight or less based on the polyether,
Preferably it is 0.05 to 0.5% by weight. Next, after treating the neutralized product with an adsorbent, if dehydration is necessary, dehydration is performed under the above conditions, and then filtered. If dehydration is not necessary, it can be directly filtered. The purified polyether obtained according to the purification method of the present invention fully satisfies the specifications required for all applications, such as the following specifications required for one-shot polyurethane foam applications. Appearance Transparent liquid, *no turbidity or mist**Color (APHA=U.S. Public Health Act) 20 or less Moisture 0.05% or less*※*Potassium + Sodium 5ppm or less*※※※PH 6.5-7.5 Odor Note: Almost none Note: Turbidity, presence or absence of suspended matter or suspended particles in the misty polyether. ※※Hue Based on Hazen No. method. ※※※ Potassium + Sodium Based on atomic absorption method. ※※※※PH Dissolve 10g of sample in 100c.c. of isopropanol:water (10:6 volume ratio) solution and measure. Among the above items, regarding potassium + sodium
Must be 1.0ppm or less. If the polyether does not meet these standards, one-shot polyurethane foam may cause cracking, shrinkage, or discoloration of the foam, and polyurethane prepolymers may cause abnormal solidification or pot life abnormalities. Examples are shown below. In the examples, "%" and "part" are based on weight. Example 1 7.5 g of caustic potash (85%) was added to 92 g of glycerin, then 2500 g of propylene oxide was introduced at a reaction temperature of 130°C and a reaction pressure of 10 Kg/cm 2 G, and then 500 g of ethylene oxide was added at a reaction temperature of 120°C and a reaction pressure of 3 Kg. /cm 2 G to produce polyether. Next, add 30g of water and mix evenly, then add 90g of water.
Sodium bisulfite aqueous solution (30% by weight) at °C
40g was added to neutralize. The pH after neutralization was 5.8. Next, synthetic magnesium silicate was used as an acid adsorbent.
1.5g was added and treated at 90°C for 2 hours. then 120
After distilling off water at a temperature of 10 mmHg or lower, the mixture was filtered through a glass filter using diatomaceous earth as a filter aid. The filtrate showed the following analytical values and was found to have good quality as a polyether for polyurethane resin. Analysis item Analysis value Acid value (mgKOH/g) 0.007 Moisture (%) 0.016 Sodium (ppm) 0.05 Potassium (ppm) 0.10 PH 7.0 Hydroxyl value (mgKOH/g) 56.8 Appearance Colorless transparent liquid Example 2 The following three types The polyether was synthesized in the presence of an alkali catalyst. Polyether A: 4.8 kg of glycerin and 850 g of caustic potash (85%) were placed in a 200 stainless steel autoclave.
Propylene oxide 145.2 after nitrogen substitution
Kg was introduced at 125℃ and 6Kg/cm 2 G, and once the reaction was completed, 30Kg of ethylene oxide was introduced.
The reaction was carried out at 115° C. and at a rate of 2 Kg/cm 2 G. Polyether B: 50Kg of 70% sucrose syrup, 5Kg of ethylene glycol, 10Kg of ethylenediamine and caustic soda (48%) in 200 autoclaves
After charging 375g, heat to 105℃ after purging with nitrogen, introduce 50Kg of propylene oxide at 2Kg/cm 2 G, complete the reaction, distill off water at 125℃, and then add 65Kg of propylene oxide.
was introduced at 125° C. and 2 Kg/cm 2 G to complete the reaction. Polyether C: 6 kg of 70% sorbitol, 6 kg of dipropylene glycol, and 800 g of caustic potash (48%) were placed in a 200° autoclave, and after distilling water off at 125°C and below 10 mmHg, propylene oxide was added.
180 Kg was introduced at 125° C. and 5 Kg/cm 2 G, and then 6 Kg of ethylene oxide was introduced at 115° C. and 2 Kg/cm 2 G to complete the reaction. When these various polyethers obtained were purified according to the method of the present invention, the results were as shown in Table 1. Incidentally, the filtration was carried out using an ultra filter (manufactured by Miura Chemical Industry Co., Ltd.).

【表】 実施例 3 実施例−2の条件において、濾過時に、濾過の
経時に従つてサンプリングを行い、濾膜通過ポリ
エーテルのカリウムおよびナトリウムの分析値の
変動を調べた。結果は第2表のとおり濾過初留か
らしぼりにいたるすべてのサンプルは良質の分析
値を示し、本発明の特長を示した。
[Table] Example 3 Under the conditions of Example-2, sampling was performed over time during filtration to examine fluctuations in the analytical values of potassium and sodium in the polyether that had passed through the filter membrane. As shown in Table 2, all the samples from the initial filtration to the squeezed sample showed good analytical values, demonstrating the features of the present invention.

【表】 比較例 1 実施例−1と全く同様にしてポリエーテルを合
成した。 このポリエーテルに90℃において30%リン酸水
溶液37.1gを添加して中和した。 中和したポリエーテルのPHは5.6であつた。次
に酸吸着剤2.5MgO・Al2O3・XH2Oを15g添加
し、90℃において2時間処理した。 次に120℃、10mmHg以下で水を留去したのち、
硅藻土を濾過助剤としてグラスフイルターにて濾
過した。 濾液は白色の微粒子が懸濁した状態でアルデヒ
ド臭が強いものであつた。 分析項目 分析値 水 分(%) 0.014 酸 価(mgKOH/g) 0.21 PH 6.0 ナトリウム(ppm) 0.10 カリウム(ppm) 142 ヒドロキシル価(mgKOH/g) 57.1 外 観 白色懸濁液体 比較例 2 実施例−1と全く同じ手順でポリエーテルを合
成した。 このポリエーテルについて、次のような手順に
より精製を試みた。 (1) ポリエーテルに、90℃において、30%リン酸
水溶液37.1gを添加して中和し、次に120℃、10
mmHg以下で水を留去したのち、硅藻土を濾過
助剤として濾過した。 精製ポリエーテルの分析値は第3表のとおりで
あつた。 (2) ポリエーテルに合成硅酸マグネシウムを31g
および水60gを添加し、次に120℃で1時間撹
拌したのち脱水し、硅藻土を濾過助剤として濾
過した。 精製ポリエーテルの分析値は第3表のとおりで
あつた。 (3) ポリエーテルに2000gのノルマルヘキサンを
添加し溶解せしめた。ついで水2000gを添加し
混合静置せしめたが、乳化状態で24時間後も分
離の徴は見えなかつた。 (4) ポリエーテルに水6gを添加し、均一に撹拌
したのち、55℃において炭酸ガス8.5gを吹き込
んで中和したところ、PHは6.7になり白濁し
た。 次に同温度のまま窒素ガスを80ml/分で30分
間バブリングした。これをとり出し、減圧下
110℃で30分間トツピンク脱水したのち、硅藻
土を濾過助剤として濾過した。 精製ポリエーテルの分析値は第3表のとおり
であつた。 (5) ポリエーテルに水150gを添加し、これをH
型に再生したカチオン交換樹脂(三菱化成(株)ダ
イセイオンSKIB)300mlを充填した内径35mmの
保温筒管(80℃に保温)に下降流で空間速度
12.5で通過させ、次にロータリーエバポレータ
ーで120℃、10mmHg以下で脱水した。 得られた精製ポリエーテルは第3表の分析値を
示した。
[Table] Comparative Example 1 A polyether was synthesized in exactly the same manner as in Example-1. This polyether was neutralized by adding 37.1 g of a 30% phosphoric acid aqueous solution at 90°C. The pH of the neutralized polyether was 5.6. Next, 15 g of acid adsorbent 2.5MgO.Al 2 O 3 .XH 2 O was added and treated at 90° C. for 2 hours. Next, after distilling off the water at 120℃ and below 10mmHg,
It was filtered through a glass filter using diatomaceous earth as a filter aid. The filtrate had white fine particles suspended in it and had a strong aldehyde odor. Analysis item Analysis value Moisture (%) 0.014 Acid value (mgKOH/g) 0.21 PH 6.0 Sodium (ppm) 0.10 Potassium (ppm) 142 Hydroxyl value (mgKOH/g) 57.1 Appearance White suspension liquid comparative example 2 Example - A polyether was synthesized using exactly the same procedure as in Example 1. An attempt was made to purify this polyether using the following procedure. (1) Neutralize polyether by adding 37.1g of 30% phosphoric acid aqueous solution at 90℃, then neutralize it at 120℃ for 10
After water was distilled off at a temperature below mmHg, the mixture was filtered using diatomaceous earth as a filter aid. The analytical values of the purified polyether were as shown in Table 3. (2) 31g of synthetic magnesium silicate in polyether
and 60 g of water were added thereto, followed by stirring at 120° C. for 1 hour, dehydration, and filtration using diatomaceous earth as a filter aid. The analytical values of the purified polyether were as shown in Table 3. (3) 2000g of normal hexane was added to polyether and dissolved. Next, 2000 g of water was added, mixed and allowed to stand, but the mixture remained in an emulsified state and no signs of separation were visible even after 24 hours. (4) After adding 6 g of water to the polyether and stirring it uniformly, the mixture was neutralized by blowing in 8.5 g of carbon dioxide gas at 55°C. The pH became 6.7 and the mixture became cloudy. Next, nitrogen gas was bubbled at 80 ml/min for 30 minutes while maintaining the same temperature. Take this out and under reduced pressure
After dehydration at 110°C for 30 minutes, the mixture was filtered using diatomaceous earth as a filter aid. The analytical values of the purified polyether were as shown in Table 3. (5) Add 150g of water to polyether and add H
Space velocity is lowered through a heat insulating tube with an inner diameter of 35 mm (kept at 80°C) filled with 300 ml of cation exchange resin (Daiseion SKIB, Mitsubishi Kasei Corporation) recycled into a mold.
12.5 and then dehydrated on a rotary evaporator at 120°C and below 10 mmHg. The obtained purified polyether showed the analytical values shown in Table 3.

【表】 いずれもポリウレタン樹脂用のポリエーテルと
しては、品質不良であつたが、(4)の方法が比較的
良好であつた。 比較例 3 実施例−2と同じ手順で、ポリエーテルA、ポ
リエーテルBおよびポリエーテルCを合成した。 これらのポリエーテルについて、比較例−2で
比較的結果の良かつた(4)の方法についてスケール
アツプテストを行つた。 すなわち、200ステンレスオートクレーブ中
で、ポリエーテルに対して2%の水を添加し、均
一混合したのち、60℃において炭酸ガスを所定量
吹きこんで中和し、ついで窒素ガスを撹拌しなが
ら5/分で30分間バブリングした。次に110℃
で30分間トツピング脱水したのち硅藻土を濾過助
剤として、ウルトラフイルター(ミウラ化学工業
製)で濾過した。濾過開始より一定時間ごとにサ
ンプリングしたところ、第4表のようになり、品
質上のバラツキが極めて大きいことが判つた。
[Table] All of the polyethers for polyurethane resin were of poor quality, but method (4) was relatively good. Comparative Example 3 Polyether A, polyether B, and polyether C were synthesized in the same manner as in Example-2. For these polyethers, a scale-up test was conducted using method (4), which had relatively good results in Comparative Example-2. That is, in a 200 stainless steel autoclave, 2% water was added to polyether, mixed uniformly, and then neutralized by blowing in a predetermined amount of carbon dioxide gas at 60°C, and then mixed with nitrogen gas while stirring. Bubbled for 30 minutes. Then 110℃
After dehydration by topping for 30 minutes, the mixture was filtered through an Ultra Filter (manufactured by Miura Chemical Industry Co., Ltd.) using diatomaceous earth as a filter aid. When samples were taken at regular intervals from the start of filtration, the results were as shown in Table 4, and it was found that there was extremely large variation in quality.

【表】【table】

Claims (1)

【特許請求の範囲】 1 アルカリ性触媒の存在下で合成されたアルカ
リ性触媒を含むポリエーテルポリオールを水の存
在または不存在下で、(イ)ナトリウムもしくはリチ
ウムを含有する酸性塩類で中和したのち、必要に
より脱水し、次に濾過することを特徴とするポリ
エーテルポリオールの精製方法。 2 アルカリ性触媒の存在下で合成されたアルカ
リ性触媒を含むポリエーテルポリオールを水の存
在または不存在下で、(イ)ナトリウムもしくはリチ
ウムを含有する酸性塩類で中和したのち、(ロ)吸着
剤を添加し、必要により脱水し、次に濾過するこ
とを特徴とするポリエーテルポリオールの精製方
法。 3 吸着剤が酸吸着剤またはアルカリ吸着剤であ
る特許請求の範囲第2項のポリエーテルポリオー
ルの精製方法。
[Claims] 1. A polyether polyol containing an alkaline catalyst synthesized in the presence of an alkaline catalyst is neutralized with (a) acidic salts containing sodium or lithium in the presence or absence of water, and then A method for purifying polyether polyol, which comprises dehydration if necessary and then filtration. 2. Polyether polyol containing an alkaline catalyst synthesized in the presence of an alkaline catalyst is neutralized with (a) acid salts containing sodium or lithium in the presence or absence of water, and then (b) adsorbent is added. A method for purifying a polyether polyol, which comprises adding, dehydrating if necessary, and then filtering. 3. The method for purifying polyether polyol according to claim 2, wherein the adsorbent is an acid adsorbent or an alkali adsorbent.
JP13469279A 1979-10-17 1979-10-17 Purification of polyether polyol Granted JPS5657730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13469279A JPS5657730A (en) 1979-10-17 1979-10-17 Purification of polyether polyol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13469279A JPS5657730A (en) 1979-10-17 1979-10-17 Purification of polyether polyol

Publications (2)

Publication Number Publication Date
JPS5657730A JPS5657730A (en) 1981-05-20
JPS6220970B2 true JPS6220970B2 (en) 1987-05-11

Family

ID=15134348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13469279A Granted JPS5657730A (en) 1979-10-17 1979-10-17 Purification of polyether polyol

Country Status (1)

Country Link
JP (1) JPS5657730A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1493769B1 (en) * 2003-06-30 2007-11-21 Repsol Quimica S.A. Process to purify polyether polyols
CN105170046B (en) * 2015-07-23 2018-02-09 百川化工(如皋)有限公司 A kind of DMP Neutralisation treatment methods
CN107602844B (en) * 2017-10-19 2019-11-26 万华化学集团股份有限公司 A kind of method and device of high value added utilization polyethers filter residue

Also Published As

Publication number Publication date
JPS5657730A (en) 1981-05-20

Similar Documents

Publication Publication Date Title
JPS6237048B2 (en)
US4507475A (en) Process for purification of crude polyether polyols
US4987271A (en) Method for purifying a polyoxyalkylene alcohol
JPH04227897A (en) Method for processing waste water containing polyether polyol
US4137398A (en) Process for the removal of catalyst from polyether polyol
JPS6236052B2 (en)
JP4035084B2 (en) Method for purifying crude polyether and adsorbent
JP3281500B2 (en) Purification method of polyether polyol produced using double metal cyanide catalyst
EP0275680A1 (en) Purification of propylene oxide
JP3560248B2 (en) Method for removing transesterification catalyst from polyether polyol
JP4674896B2 (en) Aluminum silicate, method for producing the same, and method for purifying polyoxyalkylene polyol using the same
JPS6220970B2 (en)
JPS6034965B2 (en) Purification method of polyether polyol
CA1266490A (en) Removal of alkali metals from polyols
JPH06157744A (en) Purification of crude polyoxyalkylene compound
WO2018175147A1 (en) Purification of crude polyalkylene oxide polymers with acid functionalized silicas and metal silicates
JP2999798B2 (en) Method for producing polyethers
JPS62267326A (en) Purification of polyether
US20050215831A1 (en) Method for the preparation of polyether alcohols
EP0418533B1 (en) Process for purifying polyether-polyols
CN1229806A (en) Refining tech. of polyether polyol
JP2870926B2 (en) Purification method of polyoxyalkylene alcohol
HU193001B (en) Process for purifying at least restrictedly watersoulble polyethers and/or copolyethers based on ethylene-oxide and/or propylene-oxide
JPH02305819A (en) Method for purifying polyether polyol
JPH0388824A (en) Purification method for polyethers