JPS6220867B2 - - Google Patents
Info
- Publication number
- JPS6220867B2 JPS6220867B2 JP19825682A JP19825682A JPS6220867B2 JP S6220867 B2 JPS6220867 B2 JP S6220867B2 JP 19825682 A JP19825682 A JP 19825682A JP 19825682 A JP19825682 A JP 19825682A JP S6220867 B2 JPS6220867 B2 JP S6220867B2
- Authority
- JP
- Japan
- Prior art keywords
- seawater
- weight
- approximately
- drinking water
- ceramic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 26
- 239000013535 sea water Substances 0.000 claims description 26
- 239000000919 ceramic Substances 0.000 claims description 22
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 14
- 239000004927 clay Substances 0.000 claims description 13
- 239000003651 drinking water Substances 0.000 claims description 13
- 235000020188 drinking water Nutrition 0.000 claims description 13
- 239000000377 silicon dioxide Substances 0.000 claims description 13
- 229910052799 carbon Inorganic materials 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 11
- 239000004575 stone Substances 0.000 claims description 11
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 10
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 10
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 10
- 238000010304 firing Methods 0.000 claims description 5
- 239000000843 powder Substances 0.000 claims description 4
- 238000001914 filtration Methods 0.000 claims description 2
- 238000011085 pressure filtration Methods 0.000 claims description 2
- 239000008187 granular material Substances 0.000 claims 1
- 239000011148 porous material Substances 0.000 claims 1
- 150000003839 salts Chemical class 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 239000013505 freshwater Substances 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 229910008051 Si-OH Inorganic materials 0.000 description 3
- 229910006358 Si—OH Inorganic materials 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000005342 ion exchange Methods 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052570 clay Inorganic materials 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000001223 reverse osmosis Methods 0.000 description 2
- 238000000108 ultra-filtration Methods 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 229910018557 Si O Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- -1 chlorine ions Chemical class 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 125000005372 silanol group Chemical group 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Landscapes
- Treatment Of Water By Ion Exchange (AREA)
Description
本発明は海水を容易且つ安価に飲料水化するた
めの海水の飲料水化方法に関する。
従来、海水を飲料水化する方法としては、薄膜
蒸発法・限外濾過法・通電隔膜法や逆浸透法など
があり、薄膜蒸発法では処理水を導電率500μ
v/cm以下にすることができるが高価につくこと
から、又限外濾過法・通電隔膜法や逆浸透法など
では、処理水の導電率が500μv/cm以下になら
ないことから、これ等を工業的な海水の飲料水化
方法として用いることは問題であり、更にこれ等
を用いて海水を淡水化する場合においてもその処
理費は高くつき、特殊用途の淡水であれば特別高
価なものになつてもよいが一般の飲料水などの淡
水化にあつては淡水化費用が高くなり過ぎる傾向
がある。
本発明は従来のこのような海水の淡水方法に鑑
み容易に且つ安価な海水の飲料水化方法を提供せ
んとするものであり、その要旨とするところは、
粘土・珪石並びに水酸化アルミニウムから選んだ
二種以上のものに気孔形成用材料を添加して焼成
することにより、SiO2とAl2O3を主成分として持
つポーラスなセラミツクを生成せしめ、このセラ
ミツク例えば、略50重量%〜略75重量%に炭素分
例えば、略50重量%〜略25重量%を混合したもの
を濾材として用い、この濾材で海水を自然濾過又
は加圧濾過などをすることにより海水の飲料水化
方法を実現したものである。
即ち、本発明に係る海水の飲料水化方法は、粘
土・珪石並びに水酸化アルミニウムから選んだ二
種以上のもの、例えば粘土と珪石を基材としてこ
れに水酸化アルミニウム並びに気泡形成用材料を
混合したものを小生して作成した多孔質セラミツ
クと炭素分を互いに混合状態で濾材として用い、
この濾材に対し海水を通水させることで海水中の
各種塩分を除去し、飲料水に供し得る淡水を得る
ことが知見されたことに基づくものである。
ここにポーラスなセラミツクとは、粘土・珪石
並びに水酸化アルミニウムから選んだ二種以上の
もの、例えば粘土と珪石を基材としてこれに水酸
化アルミニウムを混合物又は粘土と珪石の混合物
に気泡形成用材料として例えばオガクズやモミガ
ラを添加して混合し、この混合物をブロツク状態
で又は他の適当な形状で乾燥させ、次いで焼成す
ることにより気泡形成用材料が焼失して作成され
る粘土・珪石並びに水酸化アルミニウム等による
ポーラスなセラミツク生成物である。
例えば前記三成分による場合は、粘土として略
20重量%〜略70重量%、珪石として略70重量%〜
略20重量%、水酸化アルミニウムとして略10重量
%のもの100重量部に対しオガクズを略100重量部
〜略140重量部を加えるとともに水を加え撹拌混
合し、自然乾燥又は強制乾燥等で一定状態まで乾
燥したのち、温度1200℃〜1350℃で焼成すること
でSiO2並びにAl2O3を主成分とするポーラスなセ
ラミツクを作るのである。
ここにSiO2並びにAl2O3については、SiO2が80
重量%〜45重量%、Al2O3にあつては15重量%〜
40重量%を含むことが望ましく、夫々の下限値即
ちSiO2が45重量%以下の状態、Al2O3が15重量%
以下の状態では本願発明に用いるに好ましいポー
ラスなセラミツクを作成することが出来ず、又
SiO2が80重量%以上、Al2O3が40重量%以上にお
いても同様の理由により好ましくないことが知見
された。
即ち、本発明におけるポーラスなセラミツクと
は、前記の粘土・珪石・水酸化アルミニウムから
選んだ二種類以上のものを1300℃程度の高温度で
焼成することにより、前記したSiO2並びにAl2O3
を主成分とする生成物である。
そして、本発明の海水の飲料水化方法にあつて
は、このセラミツク略50重量%〜略75重量%に炭
素分略50重量%〜略25重量%を混合したものを濾
材として用いるのが好ましい。このセラミツクと
炭素分の混合比は、前記範囲のものが本発明の濾
材として好ましいといえるが極端に一方の成分が
減少したとき、例えばセラミツクの絶対量が少な
いときには、海水中のNaやK等のプラスイオン
を処理できず又炭素分が少ないときには、この炭
素分がポーラスなセラミツクが保有するSi―OH
基へ塩素イオンを結合させる為の促進用であるこ
とから塩素イオンの除去を行なうことができない
か減少するのである。
このポーラスなセラミツクは4個のシラノール
基を有し、これを海水例えばNaCl水中に浸漬す
ると電気二重層が生じて表面でイオン交換反応が
行われることになる。
このイオン交換は次のような式で示される。
(1) (Si−OH)2+2Na+→
(Si−O-)2Na2 ++2H+
(2) (Si−OH)+Cl-→(Si−Cl)+OH-
そしてこの二式の反応における珪酸塩のプロト
ン解離のためには炭素の存在が必要となるのであ
り、もつて、本発明の濾材で海水中のプラスイオ
ンとマイナスイオンの除去が可能となる。
以下、本発明の内容を更に詳しく示す為に実施
例を記載する。
実施例 1
粘土450Kg・珪石450Kg・水酸化アルミニウム
100Kg・水3500Kg並びに気泡形成用材料としてオ
ガクズ1000Kg添加して均一に撹拌混合してレンガ
状に形成し、これを100℃程度で48時間加熱乾燥
してできたブロツクを1350℃で30分間焼成した。
この焼成物には前記混合した気泡形成用材料と
してのオガクズがすでに焼失し全体が連続したポ
ーラスなセラミツクとして形成されており、又セ
ラミツク中にはSiO268重量%、Al2O3が21重量%
存在していた。次いでこのセラミツクの粉体65重
量%と活性炭35重量%を混合したものを5Kg用意
し、内径100mm・高さ1000mmのカラムに800mmの高
さで充填し、このカラムに食塩34000ppmを含有
する海水を自然落下で通過させたところ、表1の
A並びにA―1の如き結果が得られた。表1のA
は前記海水がカラムを通過して550c.c.得た状態
(採出時間31分間、食塩濃度屈折計で示される食
塩が1ppmの段階)の分析値であり、A―1は次
いで得た137c.c.(採出時間40分間、食塩濃度屈折
計で示される食塩が4ppmの段階)の分析値であ
る。
この表から解るごとく本発明における濾材を通
過せしめた海水は、表の通りの成分状態であつた
が、通過後はナトリウム分その他の成分とくに塩
素イオンが相当量除去され飲用可能な状態になつ
たことが知見される。尚A―1がAに比べてその
通過水にける含有各成分の濃度が高くなつている
のは本発明で用いているセラミツク並びに炭素分
のイオン交換能力の低下原因しているものと考え
られる。
実施例 2
実施例1と同じ配分率・生成条件でポーラスな
セラミツクを作り、これを実施例1と同様な条件
で再実験したところ、食塩濃度屈折計で1ppmを
示した状態のカラム通過処理水は38分間で680c.c.
であり、その成分状態は表2Bのとおりであつ
た。同様に食塩濃度屈折計で4ppmを示した段階
のカラムを通過した淡水は46分間で1126c.c.であ
り、この処理水の含有成分は表2B―1の状態で
あつた。ここからも解るごとくBの導電率は260
μv/cmで導電率500μv/cm以下の状態がみら
れ、又ナトリウム等の各成分は原水である海水の
各含有成分よりも極めて低く、飲用可能な状態で
あることを示している。
実施例 3
粘土5Kg・珪石5Kg・オガクズ10Kg・水35Kgを
均一に混合してレンガ状のものを作り、これを
100℃で6時間強制乾燥させてできたブロツクを
1350℃で60分間焼成して得たポーラスなセラミツ
ク材の粉末と活性炭とを混合したもの(試料A〜
E)を内径100mm・高さ1000mmのカラムに充填し
て海水を通過させたところ表3のとおりであつ
た。なお、前記該実施例3において作成したポー
ラスなセラミツク材の粉末の組成は、SiO267.50
重量%、Al2O322.50重量%の存在であつた。
The present invention relates to a method for converting seawater into drinking water easily and inexpensively. Conventional methods for converting seawater into drinking water include thin film evaporation, ultrafiltration, electrical diaphragm, and reverse osmosis.
V/cm or less, but it is expensive, and ultrafiltration, current-carrying diaphragm, and reverse osmosis methods do not reduce the conductivity of the treated water to less than 500 μv/cm. It is a problem to use it as an industrial method for turning seawater into drinking water, and furthermore, even when seawater is desalinated using these methods, the processing cost is high, and if it is fresh water for special purposes, it is especially expensive. However, when desalinating general drinking water, the desalination costs tend to be too high. The present invention aims to provide an easy and inexpensive method for converting seawater into drinking water in view of the conventional methods for making freshwater from seawater, and the gist thereof is as follows:
By adding a pore-forming material to two or more materials selected from clay, silica, and aluminum hydroxide and firing them, a porous ceramic containing SiO 2 and Al 2 O 3 as main components is produced. For example, by using a mixture of about 50% to about 75% by weight and carbon content, for example, about 50% to about 25% by weight, as a filter medium, and performing natural filtration or pressure filtration of seawater with this filter medium. This is a method to convert seawater into drinking water. That is, the method of converting seawater into drinking water according to the present invention uses two or more materials selected from clay, silica stone, and aluminum hydroxide, such as clay and silica stone, as base materials, and mixing aluminum hydroxide and a material for forming bubbles with the base materials. Porous ceramics made by growing the raw materials and carbon are mixed together and used as a filter medium.
This is based on the discovery that by passing seawater through this filter medium, various salts in the seawater can be removed and fresh water that can be used as drinking water can be obtained. Porous ceramic here refers to two or more types selected from clay, silica stone, and aluminum hydroxide, such as a mixture of clay and silica stone as a base material with aluminum hydroxide, or a mixture of clay and silica stone with a material for forming bubbles. For example, clay, silica stone, and hydroxide are prepared by adding and mixing sawdust or rice hulls, drying this mixture in the form of blocks or other suitable shapes, and then calcining to burn off the foam-forming material. It is a porous ceramic product made of aluminum etc. For example, in the case of the above three components, it is abbreviated as clay.
20% to approximately 70% by weight, approximately 70% by weight as silica stone
Approximately 100 parts by weight to approximately 140 parts by weight of sawdust is added to 100 parts by weight of approximately 20% by weight and approximately 10% by weight as aluminum hydroxide, water is added, stirred and mixed, and dried naturally or forced to a constant state. After drying to a temperature of 1,200°C to 1,350°C, porous ceramics containing SiO 2 and Al 2 O 3 as main components are created. Here, regarding SiO 2 and Al 2 O 3 , SiO 2 is 80
Weight% ~ 45% by weight, 15% by weight for Al 2 O 3
It is desirable to contain 40% by weight, and the lower limit of each is 45% by weight or less for SiO 2 and 15% by weight for Al 2 O 3 .
Under the following conditions, it is not possible to create a porous ceramic suitable for use in the present invention, or
It has been found that SiO 2 of 80% by weight or more and Al 2 O 3 of 40% by weight or more are not preferable for the same reason. That is, the porous ceramic in the present invention is produced by firing two or more types selected from the above-mentioned clay, silica, and aluminum hydroxide at a high temperature of about 1300°C, to form the above-mentioned SiO 2 and Al 2 O 3 .
It is a product whose main component is In the method of converting seawater into drinking water according to the present invention, it is preferable to use a mixture of approximately 50% to approximately 75% by weight of this ceramic and approximately 50% to approximately 25% by weight of carbon as the filter medium. . It can be said that a mixture ratio of ceramic and carbon in the above range is preferable for the filter medium of the present invention, but when one of the components is extremely reduced, for example when the absolute amount of ceramic is small, Na and K in seawater may be mixed. When the positive ions cannot be processed and the carbon content is low, this carbon content is absorbed by the Si-OH contained in the porous ceramic.
Since it is used to promote the bonding of chloride ions to groups, chloride ions cannot be removed or are reduced. This porous ceramic has four silanol groups, and when it is immersed in seawater, for example, NaCl water, an electric double layer is generated and an ion exchange reaction takes place on the surface. This ion exchange is expressed by the following formula. (1) (Si−OH) 2 +2Na + → (Si−O − ) 2 Na 2 + +2H + (2) (Si−OH)+Cl − → (Si−Cl)+OH − and silicic acid in this binary reaction The presence of carbon is required for proton dissociation of salt, and the filter medium of the present invention can remove positive and negative ions from seawater. Examples will be described below to show the content of the present invention in more detail. Example 1 Clay 450Kg, silica stone 450Kg, aluminum hydroxide
Added 100Kg, 3500Kg of water, and 1000Kg of sawdust as a material for forming bubbles, stirred and mixed them uniformly to form a brick shape, heated and dried this at about 100℃ for 48 hours, and baked the resulting block at 1350℃ for 30 minutes. . In this fired product, the mixed sawdust as the material for forming bubbles has already been burned off, and the entire ceramic is formed as a continuous porous ceramic, and the ceramic contains 68% by weight of SiO 2 and 21% by weight of Al 2 O 3 . %
It existed. Next, 5kg of a mixture of 65% by weight of this ceramic powder and 35% by weight of activated carbon was prepared and packed into a column with an inner diameter of 100mm and a height of 1000mm at a height of 800mm, and seawater containing 34000ppm of salt was poured into the column. When the samples were allowed to pass by gravity, results such as A and A-1 in Table 1 were obtained. A in Table 1
is the analysis value when the seawater passed through the column and obtained 550 c.c. (collection time was 31 minutes, the salt concentration was 1 ppm as indicated by the salt concentration refractometer), and A-1 was the 137 c.c. obtained after passing through the column. This is an analysis value of .c. (sampling time was 40 minutes, and the salt concentration was 4 ppm as indicated by the salt concentration refractometer). As can be seen from this table, the seawater that was passed through the filter medium of the present invention had the composition shown in the table, but after passing through, a considerable amount of sodium and other components, especially chlorine ions, were removed and the seawater became drinkable. It is found that It should be noted that the reason that the concentration of each component contained in the passing water of A-1 is higher than that of A is thought to be due to a decrease in the ion exchange ability of the ceramic and carbon used in the present invention. . Example 2 A porous ceramic was made using the same distribution ratio and production conditions as in Example 1, and it was re-experimented under the same conditions as in Example 1. As a result, the treated water passing through the column showed a salt concentration of 1 ppm on a refractometer. is 680 c.c. in 38 minutes.
The compositional state was as shown in Table 2B. Similarly, the fresh water that passed through the column at a stage where the salt concentration refractometer showed 4 ppm was 1126 c.c. in 46 minutes, and the components of this treated water were as shown in Table 2B-1. As you can see from this, the conductivity of B is 260
The electrical conductivity was found to be less than 500 μv/cm in terms of μv/cm, and each component such as sodium was extremely lower than each component contained in seawater, which is the raw water, indicating that it was in a drinkable state. Example 3 5 kg of clay, 5 kg of silica stone, 10 kg of sawdust, and 35 kg of water were mixed uniformly to make a brick-like object.
Blocks made by force drying at 100℃ for 6 hours
A mixture of porous ceramic material powder obtained by firing at 1350℃ for 60 minutes and activated carbon (Samples A~
E) was packed into a column with an inner diameter of 100 mm and a height of 1000 mm, and seawater was passed through it, and the results were as shown in Table 3. The composition of the porous ceramic material powder prepared in Example 3 was SiO 2 67.50
% by weight, the presence of 22.50% by weight Al 2 O 3 .
【表】【table】
【表】【table】
【表】【table】
Claims (1)
んだ二種以上のものに気孔形成用材料を添加して
焼成することにより、SiO2とAl2O3を主成分とし
て持つポーラスなセラミツクを生成せしめ、この
セラミツクに炭素分を混合したものを濾材として
用い、海水を自然濾過又は加圧濾過で濾材と接触
させることによる海水の飲料水化方法。 2 セラミツクとして略50重量%〜略75重量%、
炭素分として略50重量%〜略25重量%を用いてな
る特許請求の範囲第1項記載の海水の飲料水化方
法。 3 前記ポーラスなセラミツクとして、粘土・珪
石・水酸化アルミニウムに気泡形成用材料を添加
して焼成したものを粒状又は粉末状化して用いて
なる特許請求の範囲第1項又は第2項記載の海水
の飲料水化方法。 4 炭素分として粉末活性炭を用いてなる特許請
求の範囲第1項又は第2項又は第3項記載の海水
の飲料水化方法。[Claims] 1. A porous material containing SiO 2 and Al 2 O 3 as main components is created by adding a pore-forming material to two or more materials selected from clay, silica stone, and aluminum hydroxide and firing the mixture. A method for converting seawater into drinking water by producing ceramic, using the ceramic mixed with carbon as a filter medium, and bringing seawater into contact with the filter medium through natural filtration or pressure filtration. 2 Approximately 50% to approximately 75% by weight as ceramic,
The method for converting seawater into drinking water according to claim 1, wherein the carbon content is approximately 50% to approximately 25% by weight. 3. The seawater according to claim 1 or 2, wherein the porous ceramic is obtained by adding a bubble-forming material to clay, silica stone, or aluminum hydroxide and firing it into granules or powder. How to make drinking water. 4. A method for converting seawater into drinking water according to claim 1, 2, or 3, which uses powdered activated carbon as the carbon component.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19825682A JPS5987091A (en) | 1982-11-10 | 1982-11-10 | Conversion of sea water into potable water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19825682A JPS5987091A (en) | 1982-11-10 | 1982-11-10 | Conversion of sea water into potable water |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5987091A JPS5987091A (en) | 1984-05-19 |
JPS6220867B2 true JPS6220867B2 (en) | 1987-05-09 |
Family
ID=16388096
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19825682A Granted JPS5987091A (en) | 1982-11-10 | 1982-11-10 | Conversion of sea water into potable water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5987091A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1988000574A1 (en) * | 1986-07-11 | 1988-01-28 | Kabushiki Kaisha Astec | Method of treating water by making use of proton releasing material and/or magnetic field and apparatus for use in said method |
US6537939B1 (en) * | 2000-10-20 | 2003-03-25 | Anthony Reid Harvey | Porous grog composition, water purification device containing the porous grog and method for making same |
-
1982
- 1982-11-10 JP JP19825682A patent/JPS5987091A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5987091A (en) | 1984-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dalai et al. | Synthesis of NaX zeolite using silica from rice husk ash | |
WO2021054116A1 (en) | Phosphorus adsorbent | |
US20170151550A1 (en) | Method of Preparing Adsorbent for Phosphorus Adsorption and Adsorbent Prepared by the Same | |
JPS6220867B2 (en) | ||
JPS59145087A (en) | Sintered body for purification of drinking water | |
CN1765488A (en) | Preparation method of adsorbent with functions of phosphorus enrichment and phosphorus recovery | |
JP3131678B2 (en) | Method for producing microbial carrier | |
CN103127922B (en) | A kind of production method of adsorbent | |
CN1509805A (en) | Preparing method for nanometer multi-microporous ceramic composite membrane for water treatment | |
CN104275096A (en) | Preparation method of attapulgite porous membrane | |
JP2003144820A (en) | Porous sintered filter material | |
WO2012153104A1 (en) | Activated carbon composites | |
JP2002361266A (en) | Chemicals for water treatment and method for using the same | |
JPH0221941A (en) | Phosphorus adsorbent and production thereof | |
KR102010135B1 (en) | Adsorbent for treating water and manufacturing method thereof | |
RU2200721C2 (en) | Ceramic mass for wall ceramics article making | |
CN118515467B (en) | Wastewater treatment method | |
JP3431416B2 (en) | Porous surface amorphous porous ceramics and method for producing the same | |
JPH03505542A (en) | Filtration media for technical filters | |
JP2003047974A (en) | Underwater dephosphorizing agent composition and method for removing phosphor from water by using the same | |
Amon et al. | Physico-chemical and structural properties of clay-based ceramic filters from Côte d'Ivoire. | |
JPH06104173B2 (en) | Filter material made from paper sludge | |
Ono et al. | Development of porous silica production by hydrothermal method | |
JP2758917B2 (en) | Glass ceramic filter | |
KR0182996B1 (en) | Adsorbent for heavy metal treatment using clay minerals and its manufacturing method |