JPS62205193A - Storage of coal water slurry in high concentration - Google Patents
Storage of coal water slurry in high concentrationInfo
- Publication number
- JPS62205193A JPS62205193A JP4619886A JP4619886A JPS62205193A JP S62205193 A JPS62205193 A JP S62205193A JP 4619886 A JP4619886 A JP 4619886A JP 4619886 A JP4619886 A JP 4619886A JP S62205193 A JPS62205193 A JP S62205193A
- Authority
- JP
- Japan
- Prior art keywords
- slurry
- coal
- viscosity
- water
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002002 slurry Substances 0.000 title claims description 102
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 45
- 239000003245 coal Substances 0.000 title description 57
- 238000003860 storage Methods 0.000 title description 16
- 229910021645 metal ion Inorganic materials 0.000 claims description 16
- 150000001768 cations Chemical class 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 13
- 150000001450 anions Chemical class 0.000 claims description 6
- -1 alkali metal salt Chemical class 0.000 claims description 4
- 229910052783 alkali metal Inorganic materials 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims description 2
- 239000002245 particle Substances 0.000 description 36
- 238000004519 manufacturing process Methods 0.000 description 15
- 239000002956 ash Substances 0.000 description 12
- 150000002500 ions Chemical class 0.000 description 10
- 150000003839 salts Chemical class 0.000 description 10
- 230000008859 change Effects 0.000 description 8
- 238000010828 elution Methods 0.000 description 8
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 7
- 239000004115 Sodium Silicate Substances 0.000 description 7
- 229910001424 calcium ion Inorganic materials 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 7
- 229910052911 sodium silicate Inorganic materials 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 239000000654 additive Substances 0.000 description 6
- 239000003945 anionic surfactant Substances 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- 239000004094 surface-active agent Substances 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 239000000084 colloidal system Substances 0.000 description 4
- 239000008139 complexing agent Substances 0.000 description 4
- 235000013601 eggs Nutrition 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- 230000008719 thickening Effects 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000010883 coal ash Substances 0.000 description 1
- 239000003250 coal slurry Substances 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910021432 inorganic complex Inorganic materials 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- XUXNAKZDHHEHPC-UHFFFAOYSA-M sodium bromate Chemical compound [Na+].[O-]Br(=O)=O XUXNAKZDHHEHPC-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Landscapes
- Liquid Carbonaceous Fuels (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[産業上の利用分野〕
本発明は微粉砕した石炭と水を混合することにより、管
路輸送が可能な程度の低粘性のスラリとする高濃度石炭
水スラリ製造技術において、スラリの粘度を低下し、か
つ、貯蔵時のスラリの経時的増粘を防止する方法に関す
る。[Detailed Description of the Invention] [Industrial Application Field] The present invention is a technology for producing a highly concentrated coal-water slurry by mixing pulverized coal and water to create a slurry with a low viscosity that can be transported through pipes. The present invention relates to a method of reducing the viscosity of a slurry and preventing thickening of the slurry over time during storage.
(従来の技術〕
粉体のスラリ輸送技術は、固体である粉体を取扱いが簡
単な流体状にして輸送する方法として古くから研究が行
われている。近年、石炭の輸送に、石炭の自然発火や粉
じん飛散等の心配がなく、安全で、しかも、管路輸送が
可能なため取扱いが容易で、輸送効率の向上を図ること
が出来る方法として、高濃度石炭水スラリの製造技術開
発が盛んに行われている。従来の高濃度石炭水スラリは
、すでに開示されているように、粉砕した石炭の粒径分
布をWR整し、空げき率ができるだけ小さくなるように
調製した微粉炭と水とを混合することにより、石炭を6
0〜70重量%以上含有させるものであった。(Prior art) Powder slurry transportation technology has been researched for a long time as a method of transporting solid powder in the form of an easy-to-handle fluid.In recent years, coal's natural There is no need to worry about ignition or dust scattering, it is safe, and since it can be transported through pipes, it is easy to handle, and technology for producing highly concentrated coal-water slurry is being actively developed as a method that can improve transport efficiency. As previously disclosed, conventional high-concentration coal-water slurry is made by adjusting the particle size distribution of pulverized coal and water with pulverized coal prepared so that the void ratio is as small as possible. By mixing coal with 6
The content was 0 to 70% by weight or more.
このようにして調製した高濃度石炭水スラリはtooo
〜2000cPの粘度をもち、流体として管路輸送を行
うに充分な流動特性をもつ、しかし、このような高濃度
石炭水スラリは1石炭粒子が非常に密に充てんされてお
り、その流動状態では個々の石炭粒子は絶えず他の石炭
粒子との衝突をくり返している。このように高濃度の石
炭を含有するスラリでは、僅かなスラリ組成の変化や、
スラリ中への少量の不純物の混入により、その流動特性
は大きく変化し、高濃度石炭水スラリの管路輸送時にこ
のような流動特性の変化が起こった場合、管路の閉塞等
の問題を起こすことになる。The highly concentrated coal water slurry prepared in this way is too
It has a viscosity of ~2000 cP and has sufficient flow characteristics to be transported through pipes as a fluid. However, such a highly concentrated coal-water slurry is packed with one coal particle very densely, and in its fluid state. Individual coal particles are constantly colliding with other coal particles. In a slurry containing such a high concentration of coal, slight changes in slurry composition,
The mixing of small amounts of impurities into slurry can significantly change its flow characteristics, and if such changes in flow characteristics occur during pipeline transportation of high-concentration coal-water slurry, problems such as pipeline blockage may occur. It turns out.
高濃度石炭水スラリの粘度はそのp I−1値の影響を
大きく受け、一般に、PH値を高くする程、スラリの粘
度が低くなることは良く知られている。The viscosity of a high-concentration coal-water slurry is greatly influenced by its p I-1 value, and it is generally well known that the higher the PH value, the lower the viscosity of the slurry.
これはスラリ媒質中の水素イオン濃度の変化により、石
炭粒子表面の電荷量が変化したり1石炭粒子表面に吸着
した界面活性剤の作用が変化し、粒子間の相互作用が変
化するためと考えられる。このように、高濃度石炭水ス
ラリには石炭粒子が非常に密に充てんされており、粒子
間距離が非常に小さくなっているため、粒子間相互作用
のごく僅かな変化でも、スラリの粘性が大きく変化する
。This is thought to be because changes in the hydrogen ion concentration in the slurry medium change the amount of charge on the surface of the coal particles, change the action of the surfactant adsorbed on the surface of the coal particles, and change the interaction between particles. It will be done. In this way, the highly concentrated coal-water slurry is packed with coal particles very densely, and the distance between the particles is very small, so even a slight change in the interaction between particles can change the viscosity of the slurry. Changes greatly.
水素イオン以外にも、正の電荷を持った金属イオン、特
に、多価の金属イオンもスラリの粘度を高くすることが
知られている。In addition to hydrogen ions, positively charged metal ions, particularly polyvalent metal ions, are also known to increase the viscosity of slurry.
周知のように、石炭表面の酸性度は石炭のランクや、貯
炭時の条件により異なるが、石炭の水スラリは一般に酸
性である。また、石炭中には灰分が含有されており、そ
の主成分はシリカ、アルミナであるが、この他クロム、
バナジウム、鉄、その他の重金属が含有されているため
、酸性スラリ中でこれらの重金属が溶出し、スラリ粘度
を経時的に上昇させる。As is well known, the acidity of the coal surface varies depending on the rank of the coal and the conditions during coal storage, but the water slurry of coal is generally acidic. In addition, coal contains ash, the main components of which are silica and alumina, but also chromium,
Since it contains vanadium, iron, and other heavy metals, these heavy metals are eluted in the acidic slurry and increase the slurry viscosity over time.
この難点を解決するために、スラリ調製時にアルカリを
添加し、スラリPHを高くする方法があるが、このよう
に調製したアルカリ性のスラリでも、長時間保存してお
くとスラリは酸性となり、難点の根本的な解決策とはな
っていない。In order to solve this problem, there is a method of increasing the pH of the slurry by adding alkali when preparing the slurry, but even if the slurry is alkaline prepared in this way, if it is stored for a long time, the slurry will become acidic. It is not a fundamental solution.
また、スラリ製造時に金属イオンと不溶性塩を形成する
陰イオンのアルカリ金属塩や錯化剤を添加する方法(特
開59−206491号公報)があるが、石炭からの金
属イオンの溶出は非常に徐々に進行するため、長期間ス
ラリを貯蔵する場合、製造時の添加量のみでは不足して
しまう、製造時にこの添加剤を多量に添加すると石炭粒
子の沈降性が増加するため、貯蔵を安定に行うためには
製造時に添加量を必要最少限にしておくことが必要であ
り、やはり、スラリ粘度の経済的な上昇を防止するため
の根本的な解決策とはなっていない。Additionally, there is a method of adding anionic alkali metal salts or complexing agents that form insoluble salts with metal ions during slurry production (Japanese Patent Application Laid-open No. 59-206491), but the elution of metal ions from coal is extremely difficult. Because the process progresses gradually, if the slurry is stored for a long period of time, the amount added at the time of production alone will not be enough.If a large amount of this additive is added at the time of production, the sedimentation of coal particles will increase, so storage should be stabilized. In order to do this, it is necessary to keep the amount added during production to the minimum necessary, and this is still not a fundamental solution for preventing an economic increase in slurry viscosity.
高濃度石炭水スラリの分散媒は水であり、スラリか、−
担、lI造されると石炭粒子表面は常時水と接触してい
ることになる。良く知られているように、水は極性溶媒
であり、解離性物質の溶解作用が大きい1石炭は炭質分
と、シリカ、アルミナ、その他の金属塩で構成された灰
分との混成物であり、灰分の一部は粉砕により粒子表面
に露出する。The dispersion medium of highly concentrated coal-water slurry is water, and whether the slurry is
Once the coal particles are formed, the surface of the coal particles is constantly in contact with water. As is well known, water is a polar solvent and has a strong ability to dissolve dissociative substances.Coal is a mixture of carbonaceous matter and ash composed of silica, alumina, and other metal salts. A portion of the ash is exposed on the particle surface through crushing.
従って、高濃度石炭水スラリ中に存在する石炭中の灰分
も、常時水と接触しており、その中の一部の成分は良溶
媒である水中に溶出し、すでに述べたようにスラリの粘
度を高くする。このような灰分の溶出はp Hが低い程
一般に速くなるが、どのようなp H領域でも溶解量を
ゼロにすることは不可能である。高濃度石炭水スラリの
製造において、一般に、荷性ソーダ等を加えてアルカリ
性にWIlII!するが1石炭中の灰分は経時的に溶出
して、スラリの粘度を高くする。また、灰分の溶出特性
は石炭中の灰分の性状によって大きく異なり、一部の石
炭では高濃度石炭水スラリの製造と同時に多量の灰分が
溶出して来るため、高濃度で流動性の高いスラリを製造
することが困難なものもある。Therefore, the ash content in the coal that is present in the highly concentrated coal-water slurry is also in constant contact with water, and some components of it are eluted into water, which is a good solvent, and as mentioned above, the viscosity of the slurry make it higher. Generally, the lower the pH, the faster the dissolution of ash becomes, but it is impossible to reduce the dissolution amount to zero in any pH range. In the production of high-concentration coal-water slurry, it is generally made alkaline by adding loading soda, etc. However, the ash content in the coal dissolves over time, increasing the viscosity of the slurry. In addition, the elution characteristics of ash vary greatly depending on the nature of the ash in the coal, and with some coals, a large amount of ash elutes at the same time as the production of highly concentrated coal-water slurry. Some are difficult to manufacture.
更に、スラリを長期間にわたって貯蔵する場合、灰分の
溶出は経時的に進行するため、スラリ粘度は徐々に増加
する。Furthermore, when the slurry is stored for a long period of time, the elution of ash progresses over time, so the slurry viscosity gradually increases.
以上のように、高濃度石炭水スラリでは、分散媒(水)
中への灰分の溶出は避けられない、従って、高濃度石炭
水スラリを真に高濃度で低粘性のスラリとするには上記
のように溶出して来た灰分を何らかの方法で水中から除
去し、その影響を取り除くことが必要である0本発明者
らは以下に述べるように、高濃度石炭水スラリの低粘性
化機構について考察した結果に基づき、その目的を達成
するために、このようにして生成した陽イオンを分散媒
中から除去する手段として、陽イオンと結合して水に不
溶性の塩を形成するような陰イオンを添加する、あるい
は、陽イオンと結合して非常番ご安定な錯塩を形成する
ような錯化剤を添加することにより、陽イオンの影響を
除去する方法を発考するに到った。As mentioned above, in high-concentration coal-water slurry, dispersion medium (water)
The elution of ash into the water is unavoidable. Therefore, in order to make high-concentration coal-water slurry into a truly high-concentration, low-viscosity slurry, the ash that has eluted as described above must be removed from the water by some method. , it is necessary to eliminate that influence.As described below, the present inventors have developed the following method based on the results of considering the viscosity reduction mechanism of high-concentration coal-water slurry. As a means of removing the cations generated from the dispersion medium, it is possible to add anions that combine with the cations to form water-insoluble salts, or to add anions that combine with the cations to form extremely stable salts. We came up with a method to remove the influence of cations by adding a complexing agent that forms a complex salt.
発明者らは上述の難点を解決するため鋭意研究を重ね、
高濃度石炭水スラリの粘度が経時的に上昇する原因を次
のように考えた。In order to solve the above-mentioned difficulties, the inventors conducted extensive research,
The reason why the viscosity of high-concentration coal-water slurry increases over time was considered as follows.
高濃度石炭水スラリの製造ではその粘度を低下するため
に、界面活性剤を添加するが、この界面活性剤は、通常
、陰イオン系のものである。添加された界面活性剤は石
炭粒子表面にその疎水基により吸着した石炭表面を親水
性とし1石炭粒子を負に帯電させる。このように陰イオ
ン系界面活性剤は、もともと疎水性の石炭表面を親水性
に変化させる作用をし、言わば、高濃度石炭水スラリを
疎水性コロイドから親水性コロイドに変換する作用をす
る。陰イオン系界面活性剤の添加により、高濃度石炭ス
ラリの粘度を低下できるのは、界面活性剤の上述の二つ
の作用によるものである。即ち、第一に、石炭粒子表面
を親水性とすることにより5石炭粒子の回りに水の′g
1.膜を形成させ、立体障害により石炭粒子同士の凝集
を防止し、第二に、石炭粒子を負に帯電させることによ
り、石炭粒子間に静電反発力を発生させ、石炭粒子同士
の凝集を防止することにより、スラリの粘度を下げる。In the production of high-concentration coal-water slurry, a surfactant is added to reduce the viscosity of the slurry, and this surfactant is usually anionic. The added surfactant makes the surface of the coal adsorbed on the surface of the coal particles hydrophilic by its hydrophobic groups, thereby negatively charging each coal particle. In this way, the anionic surfactant has the effect of changing the coal surface, which is originally hydrophobic, to be hydrophilic, and, so to speak, has the effect of converting the highly concentrated coal-water slurry from a hydrophobic colloid to a hydrophilic colloid. The reason why the viscosity of a highly concentrated coal slurry can be reduced by adding an anionic surfactant is due to the above-mentioned two effects of the surfactant. That is, first, by making the surface of the coal particles hydrophilic, it is possible to increase the amount of water around the coal particles.
1. Forming a film to prevent coal particles from aggregating with each other due to steric hindrance.Secondly, by negatively charging the coal particles, electrostatic repulsion is generated between the coal particles to prevent coal particles from agglomerating with each other. This reduces the viscosity of the slurry.
第一の作用は、陰イオン系の界面活性剤でなく、非イオ
ン系の界面活性剤でもその目的を達成することができる
が、高濃度石炭水スラリでは、石炭濃度が70重量%以
上であり、このような高濃度スラリ中では石炭粒子同士
が非常に密に充てんされているため、粒子同士が非常に
接近しており、この様な状態では、粒子間の静電反発力
が凝集防止に重要な役割をする。この理由により、高濃
度石炭水スラリでは、特に、陰イオン系界面活性剤が用
いられる。The first action can be achieved with nonionic surfactants instead of anionic surfactants, but in high-concentration coal-water slurry, the coal concentration is 70% by weight or more. In such a highly concentrated slurry, the coal particles are packed very closely together, making them very close to each other. play an important role. For this reason, anionic surfactants are particularly used in highly concentrated coal-water slurries.
このように、高濃度石炭水スラリでは粒子の電荷が粘性
低下に非常に重要な役割をしていると考えられ、粒子の
荷電量を減少するような条件ではスラリ粘度は上昇する
。よく知られているように、負に帯電した親水性コロイ
ド粒子の荷電量は溶媒中の陽イオンのN類及び濃度によ
り大きく変化する。これは負に?iF電した粒子の回り
に陽イオンが選択的に吸着し、粒子の電荷を中和してし
まうためで、陽イオンの吸着が強い程粒子の電荷量が小
さくなる。負に帯電した粒子に対する陽イオンの吸着は
親水性コロイドの安全性に関係しており、古くから研究
されている。良く知られているように、負に帯電した粒
子に対する陽イオンの吸着はH+イオンが最も強く、次
に、多価金属イオンがその価数の減少とともに弱くなる
。これは陽イオンの電荷密度と関係があり、電荷密度の
高いイオン程強く吸着されると言われている。Thus, in a highly concentrated coal-water slurry, the charge on the particles is thought to play a very important role in reducing the viscosity, and under conditions that reduce the amount of charge on the particles, the slurry viscosity increases. As is well known, the amount of charge of negatively charged hydrophilic colloid particles varies greatly depending on the N cations and the concentration in the solvent. Is this negative? This is because cations are selectively adsorbed around iF-charged particles and neutralize the charge on the particles, and the stronger the adsorption of cations, the smaller the amount of charge on the particles. The adsorption of cations onto negatively charged particles is related to the safety of hydrophilic colloids and has been studied for a long time. As is well known, adsorption of cations to negatively charged particles is strongest for H+ ions, followed by polyvalent metal ions, which becomes weaker as the valence decreases. This is related to the charge density of cations, and it is said that ions with higher charge density are more strongly adsorbed.
このことから、前述のように、PHの変化により、スラ
リ粘度が大きく変化する高濃度石炭水スラリの性質を良
く説明することが出来る。From this, it is possible to well explain the properties of high-concentration coal-water slurry in which the slurry viscosity changes greatly due to changes in pH, as described above.
発明者らは高濃度石炭水スラリの研究において、P H
変化だけでは説明できない現象のあることを見出した。In our research on high-concentration coal-water slurry, the inventors found that P H
We discovered that there are some phenomena that cannot be explained by change alone.
即ち、高濃度石炭水スラリをXllし、長時間保存する
と時間の経過とともにスラリ粒度が上昇する。そして、
スラリの上澄液を分析したところ、カルシウムやマグネ
シウム等の陽イオン濃度が、スラリ製造時に比べて著し
く増加していることが明らかになった。本発明者らはす
でに。That is, when a high concentration coal water slurry is heated and stored for a long time, the slurry particle size increases with the passage of time. and,
Analysis of the supernatant liquid of the slurry revealed that the concentration of cations such as calcium and magnesium had increased significantly compared to when the slurry was manufactured. The inventors have already
スラリ中の多価金属イオンを除去する手段として、多価
金属イオンと難溶性塩を形成する陰イオン。Anions that form poorly soluble salts with polyvalent metal ions as a means of removing polyvalent metal ions in the slurry.
あるいは、安定な金属錯体を形成する錯化剤を添加する
ことにより、有害な多価金属イオンをマスクして、これ
らの金属イオンの石炭粒子への吸着を防止し、高濃度石
炭水スラリの低粘性化を図り、性状の安定したスラリを
製造する方法を開示したが、このようにして製造したス
ラリでも、長期間にわたって貯蔵すると上記のように上
澄中の陽イオン溶度が増加し、スラリの粘度が上昇する
ことが認められた。Alternatively, the addition of complexing agents that form stable metal complexes can mask harmful polyvalent metal ions and prevent the adsorption of these metal ions onto coal particles, reducing the Although a method for producing a slurry with stable properties by increasing its viscosity has been disclosed, even when the slurry produced in this way is stored for a long period of time, the cation solubility in the supernatant increases as described above, and the slurry becomes viscous. It was observed that the viscosity of
この新事実から、本発明者らはここに貯蔵スラリの経時
増粘を防止する方法として、スラリ中のカルシウムイオ
ン濃度を、常時、監視し、その測定値が所定の許容値よ
り大きくなった時点で上記の多価金属イオンと難溶性塩
を形成する陰イオン、あるいは、安定な金属錯体を形成
する錯化剤を上記の測定カルシウムイオン濃度に応じて
添加する方法を見出した。Based on this new fact, the present inventors hereby provide a method for preventing thickening of stored slurry over time by constantly monitoring the calcium ion concentration in the slurry, and when the measured value becomes larger than a predetermined tolerance value. We found a method in which an anion that forms a poorly soluble salt with the above polyvalent metal ion or a complexing agent that forms a stable metal complex is added in accordance with the above measured calcium ion concentration.
〈実施例1〉
石炭を水及び陰イオン系界面活性剤の共存下でボールミ
ルにより粉砕し、高濃度石炭水スラリを調製した。粉砕
後の石炭の粒径分布は、60メツシュ以下97%、10
0メツシュ以下89%。<Example 1> Coal was ground in a ball mill in the coexistence of water and an anionic surfactant to prepare a highly concentrated coal-water slurry. The particle size distribution of the coal after pulverization is 97% below 60 mesh, 10
89% below 0 metshu.
200メツシュ以下80%、400メツシュ以下55%
であった。スラリ中の石炭濃度は62重量%で、陰イオ
ン系界面活性剤は石炭に対し0.5重量%添加した。こ
のスラリを20℃、50℃。200 mesh or less 80%, 400 mesh or less 55%
Met. The coal concentration in the slurry was 62% by weight, and the anionic surfactant was added in an amount of 0.5% by weight based on the coal. This slurry was heated to 20℃ and 50℃.
70℃の温度で玉子日間貯蔵試験を行ったところ、スラ
リ粘度が増加していることがわかった。製造直後のスラ
リの粘度は700.pa・Sであったが、20.50.
70℃で三樹貯蔵試験後のスラリの粘度は各々、720
,950.及び1500−Pa・8に増加していた。ち
なみに、粘度測定時のスラリ中の石炭濃度はすべて製造
直後の値である62重重景に調整している。When an egg storage test was conducted for one day at a temperature of 70°C, it was found that the slurry viscosity increased. The viscosity of the slurry immediately after production is 700. It was pa・S, but it was 20.50.
The viscosity of the slurry after Miki storage test at 70℃ is 720
,950. and increased to 1500-Pa·8. Incidentally, the coal concentration in the slurry during viscosity measurement was all adjusted to 62x, which is the value immediately after production.
各スラリの上澄液中のCa”十及びM gQ+の濃度を
測定したところ、高温で貯蔵したスラリ中の各イオン濃
度が増加していることがわかった0分析結果を表1に示
す。The concentrations of Ca'' and MgQ+ in the supernatant of each slurry were measured, and it was found that the concentrations of each ion increased in the slurry stored at high temperatures.Table 1 shows the analysis results.
表1
貯蔵によめ増粘り程度や、上記イオンの溶出量の絶対値
はスラリに使用する石炭の種類によって異なるが、上記
の傾向は全ての炭種について共通するものである。Table 1 The degree of thickening due to storage and the absolute value of the elution amount of the above ions vary depending on the type of coal used for the slurry, but the above trends are common to all types of coal.
尚、上記の試験において、スラリ製造時にpHを7.9
に調整したが、貯蔵試験後のスラリpHも約7.9
であり、この試験でp Hの変化はほとんど認められな
かった。70℃で玉子日間貯蔵後のスラリに、多価金属
イオンと結合して不溶性塩を形成する陰イオンとしてケ
イ酸を選び、スラリにケイ酸ナトリウム水溶液を添加し
た後、その粘度を測定すると、石炭濃度62%で700
.pa・3であり、製造直後の粘度に復することがわか
った。In addition, in the above test, the pH was adjusted to 7.9 during slurry production.
However, the slurry pH after the storage test was also approximately 7.9.
In this test, almost no change in pH was observed. Silicic acid was selected as an anion that combines with polyvalent metal ions to form an insoluble salt in the slurry after storing eggs for days at 70°C, and after adding an aqueous solution of sodium silicate to the slurry, the viscosity of the slurry was measured. 700 at 62% concentration
.. pa·3, and it was found that the viscosity returned to that immediately after production.
〈実施例2〉
実施例1で製造したスラリを第1図に示したような装置
を用いて貯蔵試験を行い1本発明の効果を確認した。貯
蔵タンク1で、スラリを保温して保管した。貯蔵中にス
ラリ中の石炭粒子が沈降するのを防止するため、タンク
1内のスラリをポンプ2と配管3を用いて循環し、撹拌
翼4によりタンク内スラリを撹拌した。タンク内スラリ
中のカルシウムイオン(Ca2+)1度はタンク内に挿
入したカルシウムイオン電極5及び検出器6により測定
した。カルシウムイオン濃度が1100pp以上になる
と、薬剤タンク9に保存した硅酸ナトリウムの水溶液を
定量ポンプ8により貯蔵タンク1中に供給した。ポンプ
8はポンプ制御Ja7により制御され、カルシウムイオ
ン電極5及び検出器6により検出したカルシラ11イオ
ン濃度が50ppmになった時点で硅酸ナトリウムの供
給を停止するようにした。<Example 2> The slurry produced in Example 1 was subjected to a storage test using the apparatus shown in FIG. 1 to confirm the effects of the present invention. In storage tank 1, the slurry was kept warm and stored. In order to prevent coal particles in the slurry from settling during storage, the slurry in the tank 1 was circulated using a pump 2 and piping 3, and the slurry in the tank was stirred by a stirring blade 4. Calcium ions (Ca2+) in the slurry in the tank were measured once using a calcium ion electrode 5 and a detector 6 inserted into the tank. When the calcium ion concentration reached 1100 pp or more, the aqueous solution of sodium silicate stored in the drug tank 9 was supplied into the storage tank 1 using the metering pump 8. The pump 8 was controlled by a pump control Ja7, and the supply of sodium silicate was stopped when the concentration of Calcilla 11 ions detected by the calcium ion electrode 5 and the detector 6 reached 50 ppm.
このようにして、実施例1において最も粘度上昇の大き
かった70℃において、スラリを保存し。In this way, the slurry was stored at 70°C, where the viscosity increase was greatest in Example 1.
その増粘の傾向を調べた所、玉子日放置後にも、また、
60日放置後にも、スラリ粘度は製造直後と全く同じで
あった0本貯蔵試験中に硅酸ナトリウム水溶液は約20
日に一度注入されており、−回の注入量はスラリ1トン
当り約1.6Q であった、ただし、薬剤タンク内の硅
酸ナトリウム水溶液の濃度は20重量%であった。When we investigated the tendency of the egg to thicken, we found that even after leaving the egg for a day,
Even after being left for 60 days, the slurry viscosity was exactly the same as that immediately after production.During the 0 bottle storage test, the sodium silicate aqueous solution
It was injected once a day, and the amount of each injection was about 1.6 Q per ton of slurry. However, the concentration of the sodium silicate aqueous solution in the chemical tank was 20% by weight.
本実施例により、本発明のなる方法によりスラリの粘度
上昇を防止し、貯蔵中にも安定した性状に保存できるこ
とが明らかになった0本実施例では添加剤として硅酸ナ
トリウムを用いたが、添加剤としては多価金属イオンと
結合して芝溶性、あるいは、不溶性塩を形成する陰イオ
ンのアルカリ金属塩、あるいは、多価金属イオンと結合
して安定性の高い錯化合物を形成する有機、あるいは。This example revealed that the method of the present invention can prevent slurry from increasing in viscosity and maintain stable properties during storage. In this example, sodium silicate was used as an additive. Additives include anionic alkali metal salts that combine with polyvalent metal ions to form grass-soluble or insoluble salts, or organic salts that combine with polyvalent metal ions to form highly stable complex compounds. or.
無機の錯形成剤であれば本実施例と同様の効果を得るこ
とができ1本実施例は本発明の範囲を限定するものでは
ない。硅酸ナトリウム以外の添加剤として、例えば、燐
酸ナトリウA、EDTA、臭酸ナトリウム等がある。If an inorganic complex forming agent is used, the same effects as in this example can be obtained, and this example is not intended to limit the scope of the present invention. Examples of additives other than sodium silicate include sodium A phosphate, EDTA, and sodium bromate.
〈実施例3〉
石炭灰分の溶出成分を調べるため、二種類の石炭を種々
のpHの水に浸漬し、溶出して来たイオンの分析を行っ
た。石炭を粉砕し、粒径37〜105μmのものを分取
した。この石炭60gを種々のp Hに調整した水30
0gに約−ケ月間浸漬した後、その上澄液の組成分析を
行った。浸漬中のpH;!11aは塩酸又は水酸化ナト
リウム水溶液を逐次添加することにより行い、pHを一
定に保持するようにした。上済液の分析結果を第2図及
び第3図に示す、炭種によって各成分の溶出量は異なっ
ているが、鉄やアルミニウム等のイオンはPH上昇とと
もに溶出量が低下し1通常の高濃度石炭水スラリのp■
■域であるpH7〜9になれば、溶出量はほぼゼロにな
っていることがわかる。これに対し、Ca ”十及びM
gt+は、いずれの石炭でも、上記p H領域でもか
なりの量が溶出していることを示しており、実施例1に
示したスラリの経時増粘の主原因は、これら二つのイオ
ン種であることがわかる。実施例2では添加剤注入の判
断基準としてスラリ中のCa 2+濃度を検出していた
が、本実施例の結果から、Mg2+濃度をその基準とし
て用いても良いこと、及び、炭種によってその基準物質
を予め選定しておく必要があることがわかる。<Example 3> In order to investigate the eluted components of coal ash, two types of coal were immersed in water with various pH values, and the ions eluted were analyzed. Coal was pulverized, and coal with a particle size of 37 to 105 μm was separated. 60g of this coal was mixed with 30g of water adjusted to various pH values.
After being immersed in 0 g for about - months, the composition of the supernatant liquid was analyzed. pH during soaking;! 11a was carried out by sequentially adding hydrochloric acid or an aqueous sodium hydroxide solution to keep the pH constant. The analysis results of the purified liquid are shown in Figures 2 and 3. The elution amount of each component differs depending on the type of coal, but the elution amount of iron, aluminum, etc. ions decreases as the pH increases, and 1. p of concentrated coal water slurry
It can be seen that when the pH reaches the pH range of 7 to 9, the elution amount becomes almost zero. On the other hand, Ca” ten and M
gt+ indicates that a considerable amount of coal is eluted even in the above pH range, and these two ion species are the main cause of the thickening of the slurry over time shown in Example 1. I understand that. In Example 2, the Ca 2+ concentration in the slurry was detected as the criterion for additive injection, but from the results of this example, it was found that the Mg 2+ concentration could be used as the criterion, and that the criterion could be changed depending on the type of coal. It can be seen that it is necessary to select the substance in advance.
本発明によれば、高濃度石炭水スラリの長期間貯蔵にお
いて、スラリ中に溶出した多価金属イオンによるスラリ
粘度の増加を防止できるため、常に、製造時の性状に保
持することができる。According to the present invention, during long-term storage of high-concentration coal-water slurry, increase in slurry viscosity due to polyvalent metal ions eluted into the slurry can be prevented, so that the properties at the time of manufacture can always be maintained.
実施例2では添加剤水溶液をタンクに投入しているが(
第1図)、投入場所はスラリか撹拌されている場所が好
ましい。この意味から、投入位置は循環パイプライン3
の中、あるいは、撹拌翼の近傍が良い。In Example 2, the additive aqueous solution was put into the tank (
(Fig. 1), the place where the slurry is added is preferably a place where the slurry is being stirred. In this sense, the input position is circulation pipeline 3.
Inside or near the stirring blade is best.
実施例2ではCa”+イオン濃度が所定量以下になるま
で添加したが、貯蔵タンク内のスラリ吐と計測イオン濃
度から必要添加量は予め算出できるため、ポンプ制御器
7によりこの必要量を添加するように、ポンプ8を制御
して添加することも考えられる。In Example 2, Ca''+ ion concentration was added until it became below a predetermined amount, but since the necessary addition amount can be calculated in advance from the slurry discharge in the storage tank and the measured ion concentration, this necessary amount was added by the pump controller 7. It is also conceivable to control the pump 8 so as to add it.
Claims (1)
るいは、間歇的に測定し、その値が所定の値を越えたと
き、多価金属イオンと結合した陰イオンのアルカリ金属
塩、あるいは、多価金属イオンと結合した錯化合物を形
成する錯形成剤を添加することを特徴とする高濃度石炭
水スラリの貯蔵法。1. The concentration of cations in the highly concentrated coal-water slurry is measured constantly or intermittently, and when the value exceeds a predetermined value, an alkali metal salt of an anion combined with a polyvalent metal ion, or A method for storing a highly concentrated coal-water slurry, characterized by adding a complex forming agent that forms a complex compound combined with polyvalent metal ions.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4619886A JPS62205193A (en) | 1986-03-05 | 1986-03-05 | Storage of coal water slurry in high concentration |
CA000531135A CA1275020A (en) | 1986-03-05 | 1987-03-04 | Method of maintaining a stabilized coal-water slurry |
CN 87101684 CN1017062B (en) | 1986-03-05 | 1987-03-05 | Method for maintaining stabilized coal-water slurry |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4619886A JPS62205193A (en) | 1986-03-05 | 1986-03-05 | Storage of coal water slurry in high concentration |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62205193A true JPS62205193A (en) | 1987-09-09 |
Family
ID=12740376
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4619886A Pending JPS62205193A (en) | 1986-03-05 | 1986-03-05 | Storage of coal water slurry in high concentration |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62205193A (en) |
-
1986
- 1986-03-05 JP JP4619886A patent/JPS62205193A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3142784B1 (en) | Process for producing a calcium phosphate reactant | |
CN101484392B (en) | Method and apparatus for treating selenium-containing wastewater | |
TWI589545B (en) | Simple calcium-containing magnesium suspension | |
WO1995013886A1 (en) | Method of waste disposal | |
US4402851A (en) | Pumpable composition for water-purifying purpose containing iron (II) sulphate, and a method for producing the same | |
CN110088045A (en) | The supply method of active carbon slurry | |
JPS62205193A (en) | Storage of coal water slurry in high concentration | |
JP4363128B2 (en) | Water treatment method | |
JPS63251498A (en) | Low viscosity stabilization method for coal water slurry | |
JPS62235392A (en) | Stabilization of coal-water slurry having high concentration in low-viscosity state | |
DE4021525C2 (en) | Sedimentation-stable aqueous suspensions of calcium hydroxide, hydrated lime or hydrated dolomite lime, process for their production and solid mixtures suitable therefor | |
JP6598377B2 (en) | Alumina colloid-containing aqueous solution | |
JPS63260989A (en) | Preparation method of high concentration coal water slurry | |
US2411074A (en) | Scale-peptizing composition | |
CA1275020A (en) | Method of maintaining a stabilized coal-water slurry | |
CN113209934A (en) | Preparation method and application of lanthanum-loaded LDHs modified bentonite phosphorus control material | |
Savitskii et al. | Rheological properties of water-coal slurries based on brown coal in the presence of sodium lignosulfonates and alkali | |
US3480332A (en) | Use of water to improve separation of solids from slurries with oil | |
Pearce et al. | Stoichiometry of fluoride release from fluorhydroxyapatite during acid dissolution | |
JPS5998728A (en) | Magnesium oxide-magnesium hydroxide slurry | |
JP2853772B2 (en) | Ground injection agent | |
US3527591A (en) | Suspending agent for liquid fertilizer | |
JP3131900B2 (en) | Grout material for ground injection | |
JPS59206491A (en) | Production of highly concentrated coal/water slurry | |
JP2020534151A (en) | Compositions and methods for removing impurities from fluids |