JPS62204527A - mask exposure equipment - Google Patents
mask exposure equipmentInfo
- Publication number
- JPS62204527A JPS62204527A JP61046184A JP4618486A JPS62204527A JP S62204527 A JPS62204527 A JP S62204527A JP 61046184 A JP61046184 A JP 61046184A JP 4618486 A JP4618486 A JP 4618486A JP S62204527 A JPS62204527 A JP S62204527A
- Authority
- JP
- Japan
- Prior art keywords
- light
- wafer
- mask
- intensity
- exposure time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/7055—Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
- G03F7/70558—Dose control, i.e. achievement of a desired dose
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/7085—Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は投影光装置に係υ、特に超微細加工技術を用い
る集積回路製造に好適なマスク露光装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a projection light apparatus, and particularly to a mask exposure apparatus suitable for manufacturing integrated circuits using ultrafine processing technology.
従来の装置は特開昭59−161027号に記載のよう
にウェハ上での露光照度の安定化を図るため、照度制御
装置を設けて、光源を制御するようになっていた。しか
し、レジストが塗布されたウェハに吸収される光エネル
ギーがレジスト塗布膜厚の微小な変動により大きく変動
することに対する補正に対しては何等言及されていなか
った。In order to stabilize the exposure illuminance on the wafer, the conventional apparatus is equipped with an illuminance control device to control the light source, as described in Japanese Patent Laid-Open No. 59-161027. However, no mention was made of correction for the fact that the light energy absorbed by a wafer coated with resist varies greatly due to minute variations in the thickness of the resist coated film.
上記従来技術は、ウェハ上での露光照度の安定化を図る
ため、マスク等の直近位置に照度をモニタするセンサを
設けて光源からの光量を直接取シ込み、設定値と比較し
−cpsの光量を制御するものである。In the above conventional technology, in order to stabilize the exposure illuminance on the wafer, a sensor that monitors the illuminance is installed in the vicinity of the mask, etc., and the amount of light from the light source is directly captured, compared with a set value, and -cps is determined. It controls the amount of light.
しかしながら、ウェハのレジスト膜への照射光量が一定
になる様に制御してもレジスト現像寸法が一定になると
は限らない。これは、レジスト膜厚が0.02μm程度
変化してもレジスト表面での反射率が大きく変化して、
実際にレジスト内部に吸収されるエネルギーが大きく変
化するため、レジストの感光の程度が大きく変化し、現
像寸法が変動するためである。However, even if the amount of light irradiated onto the resist film of the wafer is controlled to be constant, the resist development size is not necessarily constant. This is because even if the resist film thickness changes by about 0.02 μm, the reflectance on the resist surface changes greatly.
This is because the energy actually absorbed inside the resist changes greatly, so the degree of photosensitivity of the resist changes greatly, and the developed size fluctuates.
したがって、これを防止するためには、レジスト表面か
ら反射してくる光量を照射光量から差引いた値すなわち
、実際にレジスト膜に吸収される光量(感光量)を一定
に抑える必要がある。Therefore, in order to prevent this, it is necessary to keep the value obtained by subtracting the amount of light reflected from the resist surface from the amount of irradiated light, that is, the amount of light actually absorbed by the resist film (photosensitivity), to a constant value.
本発明の目的は、レジスト膜厚の微小な変動によるレジ
スト膜内へのエネルギー吸収率の変動に対する補正を行
って現像寸法のばらつきを低減できるマスク露光装置を
提供するにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a mask exposure apparatus that can reduce variations in developed dimensions by correcting variations in energy absorption rate within a resist film due to minute variations in resist film thickness.
上記目的は光検出器又は光検出器への光導入路をマスク
露光装置の照射光路内に設けて、レジストを塗布したウ
ェハからの反射光を検矧し、その値を用いて、レジスト
膜への光吸収率の変化を算出し、その変化に合わせてウ
ェハへの露光(光照射)時間を補正することにより、達
成される。The above purpose is to provide a photodetector or a light introduction path to the photodetector in the irradiation optical path of the mask exposure device, measure the reflected light from the wafer coated with resist, and use the value to measure the reflected light from the wafer coated with resist. This is achieved by calculating the change in light absorption rate and correcting the exposure (light irradiation) time to the wafer in accordance with the change.
レジストをウェハ上に111m程度に塗布して。 Apply resist to about 111m on the wafer.
マスクパターンを露光し、;fi像液により、ウエノ・
を現像するとマスクパターンと同様なパターンがレジス
トに形成される。ポジ型レジストを使用した場合、露光
時間を基準値より短くすると、レジストラインの現像寸
法は太くなり、長くすると細くなる傾向を持つ。一方、
レジスト塗布膜厚が基準値よシ0,02μm程度(基準
膜厚の2優程度ンが変動しても、レジスト現像寸法が大
きく変動する。これは、レジスト膜厚の2%程度の変動
によっても、レジスト表面での反射率が10−程度増加
し、あるいは減少し、その結果、実際にレジスト膜内に
吸収されるエネルギーが減少(あるいは増加)して、露
光時間が短く(あるいは長くンなったのと同様な作用を
する念めである。Expose the mask pattern, and use Ueno-
When developed, a pattern similar to the mask pattern is formed in the resist. When using a positive resist, when the exposure time is shorter than the reference value, the developed size of the resist line tends to become thicker, and when the exposure time is lengthened, it tends to become thinner. on the other hand,
Even if the resist coating film thickness changes by about 0.02 μm from the standard value (even if the standard film thickness changes by a certain amount, the resist developed size will change greatly. This is because even a change of about 2% in the resist film thickness , the reflectance at the resist surface increases or decreases by about 10-10, and as a result, the energy actually absorbed into the resist film decreases (or increases), and the exposure time becomes shorter (or longer). It is a reminder that has a similar effect.
そこで、光検出手段によりウエハからの反射光を検昶し
、その値を用いてレジスト膜への変化に対応して露光時
間を制御してやることにより好適な現像寸法のパターン
が得られることになる。Therefore, by detecting the reflected light from the wafer using a light detection means and using the detected value to control the exposure time in accordance with changes in the resist film, a pattern with suitable developed dimensions can be obtained.
以下1本発明の一実施例を第1図により説明する。光源
1から放射された光は反射鏡2で反射しコンデンサレン
ズ5で収束され、平行光になる。An embodiment of the present invention will be described below with reference to FIG. Light emitted from a light source 1 is reflected by a reflecting mirror 2, converged by a condenser lens 5, and becomes parallel light.
この光は回路パターンが描かれたマスク(レティクル)
6を照射し、マスク6の像は投影レンズ7によりウエハ
8に投影される。ウェハ8への照射(露光)時間はシャ
ッタ9の醋閉時間をシャッタ制御装置4によ多制御して
調整する。This light is a mask (reticle) with a circuit pattern drawn on it.
6, and the image of the mask 6 is projected onto the wafer 8 by a projection lens 7. The irradiation (exposure) time to the wafer 8 is adjusted by controlling the closing time of the shutter 9 by the shutter control device 4.
ここで、II!光時間と吸収率との一般的な関係につい
て説明する。基準膜厚のレジストが塗布されたときのウ
ェハの吸収率が八〇、その場合の基準露光時間を1.と
すると、レジスト膜厚が基準値から変動して、ウェハの
吸収率がAIに変化した場合の露光時間の補正値1 /
、は次式で表わされる。Here, II! The general relationship between photoperiod and absorption rate will be explained. If the absorption rate of the wafer is 80 when a resist with a standard film thickness is applied, the standard exposure time in that case is 1. Then, the exposure time correction value when the resist film thickness changes from the reference value and the wafer absorption rate changes to AI is 1 /
, is expressed by the following formula.
11、=1. ・ (At/Ao ン −1・・・
・・・・・・−・・0ン又、ウェハの吸収率A1e A
oはマスク露光装置の光路内に設けられた光センサを用
いてウェハへの照射強度Ipo、Ipt+ ウェハから
の反射光強度ItOsL1を測定することにより算出す
ることができ1次式で表わされる。11,=1.・ (At/Ao n -1...
・・・・・・・・・・0n Also, wafer absorption rate A1e A
o can be calculated by measuring the irradiation intensity Ipo, Ipt+ to the wafer and the intensity ItOsL1 of reflected light from the wafer using an optical sensor provided in the optical path of the mask exposure device, and is expressed by a linear equation.
Ao = (11−o /Ite ) ”・−”・
12)AI = (1−1−s /Ipt ) ・
・・・・団・・・・(3)ここで、’PO# Ir(1
は基準レジスト膜厚のときのウエハへの照射強度と反射
強度s Ipt、Llはレジスト膜が変動した時のそ
れぞれの強度でらる。Ao = (11-o/Ite) ”・-”・
12) AI = (1-1-s/Ipt) ・
... Group ... (3) Here, 'PO# Ir (1
are the irradiation intensity and reflection intensity s Ipt to the wafer when the resist film thickness is the standard, and Ll are the respective intensities when the resist film changes.
(1)式で計算される露光時間tPIを用いて、/!光
を行えば、現像寸法の変動を防止できる。Using the exposure time tPI calculated by equation (1), /! By using light, fluctuations in developed dimensions can be prevented.
第1図において、*光時間tP1は入力装置13から入
力される露光時間設定値TPとウエノ・8への照射強度
Ip(光セ/す12で測定される)及びウェハ8からの
反射強度1.(光セ/す11で測定される)を用いてg
光時間算出610で算出し、シャッタ制御装置4に伝送
され、この露光時間telでシャッタ9が開閉されるよ
うに制御する。In FIG. 1, *light time tP1 is the exposure time setting value TP input from the input device 13, the irradiation intensity Ip to the wafer 8 (measured by the light sensor 12), and the reflection intensity 1 from the wafer 8. .. (measured with optical sensor/su 11) using g
The exposure time tel is calculated by the light time calculation 610 and transmitted to the shutter control device 4, which controls the shutter 9 to open and close at this exposure time tel.
tPlはα)式より次式で表わされる。tPl is expressed by the following equation from equation α).
tpt =rp ・(l Lo /Ipo)/ (l
Lt/bx ) −(4)ここでa 1roy
Lpo+ Lrt* Iptは(2)、 (3)式で使
われた値と同じものである。tpt = rp ・(l Lo /Ipo)/ (l
Lt/bx ) −(4) Here a 1roy
Lpo+Lrt*Ipt is the same value as used in equations (2) and (3).
第1図には光源1の上方に光センサ3が設けられている
。このセンサは光源1の経時変化による発光強度の低下
を測定するものである。光源の発光gi度が低下すると
ウェハ8への露光時間(シャッタ9の開閉時間で制御す
る)が一定であっても。In FIG. 1, an optical sensor 3 is provided above a light source 1. This sensor measures a decrease in the emission intensity of the light source 1 due to changes over time. Even if the exposure time to the wafer 8 (controlled by the opening/closing time of the shutter 9) is constant, if the luminous intensity of the light source decreases.
ウェハ8への照射エネルギーが低下し、露光時間が短く
なったのと同様な作用をするから、ウエノ・への照射エ
ネルギーが一定になるように補正する必要がある。Since the irradiation energy to the wafer 8 is reduced and the exposure time is shortened, it is necessary to correct the irradiation energy to the wafer 8 so that it is constant.
光源1の初期発光強度を工t1.経時変化後の発光強度
をhlとすると4元時間の補正値tP2は次式で表わさ
れる。The initial emission intensity of light source 1 is calculated as t1. When the luminescence intensity after the change over time is hl, the correction value tP2 of the quaternary time is expressed by the following equation.
1、、 = 1.ビ(ItI/It u )
−・” −(5)=Tp・(Iz I/Ltx ) (
1−Iro / Ipo ) (1−I−1/IPI
)・・・・・・・・・(6)
この計算は光センサ3による光源lの発光強度測定値を
露光時間算出器に人力することにより行う1本実施例に
よれば、ウェハ8への吸収エネルギーの変動と光源の発
光強度の変動による現像寸法の変動を防止できるので集
積回路の製造歩留シを向上できる効果がある。1,, = 1. Bi (ItI/It u)
−・” −(5)=Tp・(Iz I/Ltx) (
1-Iro/Ipo) (1-I-1/IPI
)......(6) This calculation is performed by manually inputting the light emission intensity measurement value of the light source 1 by the optical sensor 3 into the exposure time calculator. This has the effect of improving the manufacturing yield of integrated circuits since it is possible to prevent variations in developed dimensions due to variations in absorbed energy and variations in light emission intensity of the light source.
以上述べた露光時間の算出は1g光時間算出器10にて
行なわれるが、内部構成については、第6図に示すよう
に従来の電子計算機の構成と同一で中央処理装置CPU
l0Iと入出力インターフェースl10102とから構
成される。入力値としては光源強度1反射光強度、露光
時間設定値。The exposure time calculation described above is performed by the 1g light time calculator 10, and its internal configuration is the same as that of a conventional computer as shown in FIG.
It consists of l0I and input/output interface l10102. The input values are light source intensity 1 reflected light intensity, and exposure time setting value.
出力1直は露光時間である。The first output shift is the exposure time.
第2図は本発明の他の実施例を示す。第1図と異なるの
は光セン?14,15,16,17が迫力Iされている
点である。本実施例によればマスクの下部、上部、コン
デンサレンズの上部の照射及び反射光強度を測nるよう
になっているため、ウェハの種類、マスクの4類に曾せ
た適切なセンサを選択し、単独で用いるか、4i数li
dの出力の平均値を用いることもできる。本実施例によ
ればウェハへの吸収の変動をf#密に測定できる効果が
ある。FIG. 2 shows another embodiment of the invention. Is the optical sensor different from Figure 1? Points 14, 15, 16, and 17 are impressive. According to this embodiment, the intensity of the irradiated and reflected light at the bottom and top of the mask and the top of the condenser lens is measured, so an appropriate sensor is selected depending on the type of wafer and the mask. and used alone or as 4i number li
It is also possible to use the average value of the outputs of d. According to this embodiment, there is an effect that fluctuations in absorption to the wafer can be measured with f# density.
第3図に本発明の他の実施例を示す。第2図と異ってい
るのは光センサ12,15.17を除去した点である。FIG. 3 shows another embodiment of the invention. The difference from FIG. 2 is that the optical sensors 12, 15, and 17 are removed.
本実施例の場合にはウェハへの照射強度が光(illの
発光強度に比例することを利用。In the case of this embodiment, the fact that the irradiation intensity to the wafer is proportional to the emission intensity of light (ill) is utilized.
して、(6)式におけるウエハへの照射強度’PO+
Lplを光源の発光強度の鍼1j定値に補正係数に、を
掛けた値にする。すなVちIpoe Ipt は次式
で表わされる。Then, the irradiation intensity 'PO+ to the wafer in equation (6) is
Let Lpl be the value obtained by multiplying the fixed value of the light emission intensity of the light source by the correction coefficient. In other words, V, Ipoe Ipt is expressed by the following equation.
Ipo=kp ・Iro・・・・・・・・・(7)I
p1=Kp −Izt ・・・・・・
・・・(8)ここで* Izoは基準レジスト膜厚を
塗布したウェハを露光した時の光(lilの発光強度、
Iztは任意の膜厚のレジストを塗布したウエノ・を
露光した時の光源lの発光強度である。本実施例ではウ
ェハからの反射光強度は光センサ11,14,16のう
ち、少くとも1つを用いて測定する。複数個のセンサを
用いて測定しその平均値を用いる様にすると測定精度が
向上する。Ipo=kp ・Iro・・・・・・(7)I
p1=Kp-Izt...
...(8) Here, * Izo is the light emitted from the wafer coated with the standard resist film thickness (lil emission intensity,
Izt is the light emission intensity of the light source 1 when exposing a film coated with a resist of an arbitrary thickness. In this embodiment, the intensity of reflected light from the wafer is measured using at least one of the optical sensors 11, 14, and 16. Measurement accuracy can be improved by measuring using a plurality of sensors and using the average value.
本実施例での露光時間t1は次式で表わされる。The exposure time t1 in this embodiment is expressed by the following equation.
tp3=Tp ・(Iz I/Iz+ ) (I It
o /kpat o )A I −ir t/ kpI
41)・・・・・・・・・(9)
ここでに、は補正係数である。tp3=Tp ・(Iz I/Iz+) (I It
o / kpat o ) A I -ir t/ kpI
41) (9) Here, is a correction coefficient.
本実IIl!A1511によれば光センサのaを低威し
、コストを低くできる効果がある。The truth IIl! A1511 has the effect of lowering the a of the optical sensor and lowering the cost.
第4図は本発明の他の実施例を示す。第3図と異なるの
はウェハの現像プロセス19におけるレジストの現像寸
法を現像寸法測定装置20によって測定し、その値を露
光時間算出器10に入力するようにして、露光時間の補
正を行う点である。FIG. 4 shows another embodiment of the invention. The difference from FIG. 3 is that the developed dimension of the resist in the wafer development process 19 is measured by a developed dimension measuring device 20, and the value is input into the exposure time calculator 10 to correct the exposure time. be.
この時の補正係数をに、とすると補正露光時間tP4は
次式で表わされる。18は露光装置の光学系の部品を示
す。If the correction coefficient at this time is , then the corrected exposure time tP4 is expressed by the following equation. Reference numeral 18 indicates parts of the optical system of the exposure apparatus.
t、4=J t、、 ・・・・・・
(10)hq =1 +a (Xz Xs )
−−(11)ここで、xtニレジスト現像寸法
Xs ニレジスト現像寸法設定値
α:補正係数
である。αはレジストの種類によって異なった値をとる
。t, 4=J t,...
(10) hq = 1 + a (Xz Xs)
--(11) Here, xt Ni-resist development dimension Xs Ni-resist development dimension setting value α: Correction coefficient. α takes different values depending on the type of resist.
本実施例によれば現像プロセス条件の微小な変動の補償
も行えるので製造歩留りが同上する効果がある。According to this embodiment, it is possible to compensate for minute fluctuations in the developing process conditions, so that the manufacturing yield can be improved.
gs図に本発明の他の実施例を示す。第1図と異ってい
るのは光センサ11を光路内に設置せずに、外部に置き
、光導出器21により光路内の光を光センサ11まで導
いている点である。本実施例によれば、光導出器21を
小さくできるので。Another embodiment of the present invention is shown in the gs diagram. The difference from FIG. 1 is that the optical sensor 11 is not installed in the optical path, but is placed outside, and the light in the optical path is guided to the optical sensor 11 by a light guide 21. According to this embodiment, the light guide device 21 can be made smaller.
マスク投影像に影を生じさせない効果がある。This has the effect of not creating a shadow on the mask projection image.
本発明によれば、ウェハ上でのレジスト膜厚の微小な変
動によるVシスト膜内へのエネルギー吸収率の変動に対
する補正ができるので、レジスト現像寸法のばらつきを
低減可能なマスク露光装置を提供できる効果がある。According to the present invention, it is possible to compensate for variations in the energy absorption rate in the V cyst film due to minute variations in the resist film thickness on the wafer, so it is possible to provide a mask exposure apparatus that can reduce variations in resist development dimensions. effective.
第1図は本発明の基本構成にがかる一実施例を示す図、
第2図から第5図は本発明の他の実施例を示す図、第6
図は露元時間算出器の内部構成を示す図でるる。
1・・・光源、4・・・シャッタ制御装置、6・・・マ
スク、7・・・投影Vンズ、8・・・ウェハ、9・・・
クヤツタ。FIG. 1 is a diagram showing an embodiment of the basic configuration of the present invention;
2 to 5 are diagrams showing other embodiments of the present invention, and FIG. 6 is a diagram showing another embodiment of the present invention.
The figure shows the internal configuration of the exposure time calculator. DESCRIPTION OF SYMBOLS 1... Light source, 4... Shutter control device, 6... Mask, 7... Projection lens, 8... Wafer, 9...
Kuyatsuta.
Claims (1)
照射し、該マスク像を光学系によりウエハ上に投影して
マスク露光を行なうマスク露光装置において、前記照射
光路内に、マスクへの照射時間を制御するシャッタと、
ウエハからの反射光を検知する光検出手段を設け、該反
射光による光強度を用いて露光時間を算出し、該シャッ
タを動作させて露光時間を調整することを特徴とするマ
スク露光装置。 2、特許請求の範囲第1項において、前記露光時間を算
出する際に前記反射光による光強度に加えて、ウエハの
現像プロセスにおけるレジストの現像寸法を測定して露
光時間の補正を行なうことを特徴とするマスク露光装置
。 3、特許請求の範囲第1項において、前記マスク露光装
置を投影光装置で構成したことを特徴とするマスク露光
装置。 4、特許請求の範囲第1項において、前記マスク像をウ
ェハ上に投影する光学系は、縮小投影レンズで構成した
ことを特徴とするマスク露光装置。 5、特許請求の範囲第1項において、前記光検出手段を
光センサで構成したことを特徴とするマスク露光装置。 6、特許請求の範囲第1項において、前記光検出手段を
光導出器により照射光路内の少くとも一部の光を光セン
サに導いて測定する構成としたことを特徴とするマスク
露光装置。[Scope of Claims] 1. In a mask exposure apparatus that performs mask exposure by converging a light beam from a light source for mask irradiation and irradiating the mask, and projecting the mask image onto a wafer by an optical system, A shutter that controls the irradiation time to the mask,
1. A mask exposure apparatus comprising: a light detection means for detecting reflected light from a wafer; the exposure time is calculated using the light intensity of the reflected light; and the exposure time is adjusted by operating the shutter. 2. Claim 1 provides that when calculating the exposure time, in addition to the light intensity of the reflected light, the developed dimension of the resist in the wafer development process is measured to correct the exposure time. Features of mask exposure equipment. 3. A mask exposure apparatus according to claim 1, characterized in that the mask exposure apparatus is constituted by a projection light apparatus. 4. The mask exposure apparatus according to claim 1, wherein the optical system for projecting the mask image onto the wafer includes a reduction projection lens. 5. The mask exposure apparatus according to claim 1, wherein the light detection means is constituted by a light sensor. 6. The mask exposure apparatus according to claim 1, wherein the light detecting means is configured to guide at least a part of the light in the irradiation optical path to an optical sensor using a light guide for measurement.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61046184A JPS62204527A (en) | 1986-03-05 | 1986-03-05 | mask exposure equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61046184A JPS62204527A (en) | 1986-03-05 | 1986-03-05 | mask exposure equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62204527A true JPS62204527A (en) | 1987-09-09 |
Family
ID=12739953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61046184A Pending JPS62204527A (en) | 1986-03-05 | 1986-03-05 | mask exposure equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62204527A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63284811A (en) * | 1987-05-15 | 1988-11-22 | Nec Corp | Semiconductor substrate aligner |
EP0421746A2 (en) * | 1989-10-03 | 1991-04-10 | Canon Kabushiki Kaisha | Exposure apparatus |
US5285488A (en) * | 1989-09-21 | 1994-02-08 | Canon Kabushiki Kaisha | Exposure apparatus |
EP0947883A2 (en) * | 1998-03-27 | 1999-10-06 | Canon Kabushiki Kaisha | Exposure apparatus and method, device manufacturing method, and discharge lamp |
EP1039509A1 (en) * | 1997-04-18 | 2000-09-27 | Nikon Corporation | Aligner, exposure method using the aligner, and method of manufacture of circuit device |
EP1233304A1 (en) * | 2001-02-14 | 2002-08-21 | Asm Lithography B.V. | Lithographic apparatus |
EP1235114A1 (en) * | 2001-02-14 | 2002-08-28 | ASML Netherlands B.V. | Lithographic apparatus and method of manufacturing a device |
US6850313B2 (en) | 1999-10-01 | 2005-02-01 | Nikon Corporation | Exposure method, exposure apparatus and its making method, device manufacturing method, and device |
KR100566152B1 (en) * | 2002-08-30 | 2006-03-31 | 에이에스엠엘 네델란즈 비.브이. | Lithographic Apparatus and Device Manufacturing Method |
US7283208B2 (en) | 2001-02-14 | 2007-10-16 | Asml Netherlands B.V. | Lithographic apparatus, method of manufacturing a device, and device manufactured thereby |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5068066A (en) * | 1973-10-17 | 1975-06-07 | ||
JPS5952246A (en) * | 1982-09-20 | 1984-03-26 | Nippon Kogaku Kk <Nikon> | Exposure controller |
JPS60177623A (en) * | 1984-02-24 | 1985-09-11 | Hitachi Ltd | Exposure device |
-
1986
- 1986-03-05 JP JP61046184A patent/JPS62204527A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5068066A (en) * | 1973-10-17 | 1975-06-07 | ||
JPS5952246A (en) * | 1982-09-20 | 1984-03-26 | Nippon Kogaku Kk <Nikon> | Exposure controller |
JPS60177623A (en) * | 1984-02-24 | 1985-09-11 | Hitachi Ltd | Exposure device |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63284811A (en) * | 1987-05-15 | 1988-11-22 | Nec Corp | Semiconductor substrate aligner |
US5285488A (en) * | 1989-09-21 | 1994-02-08 | Canon Kabushiki Kaisha | Exposure apparatus |
EP0421746A2 (en) * | 1989-10-03 | 1991-04-10 | Canon Kabushiki Kaisha | Exposure apparatus |
EP1039509A4 (en) * | 1997-04-18 | 2005-01-12 | Nikon Corp | Aligner, exposure method using the aligner, and method of manufacture of circuit device |
EP1039509A1 (en) * | 1997-04-18 | 2000-09-27 | Nikon Corporation | Aligner, exposure method using the aligner, and method of manufacture of circuit device |
EP1220040A3 (en) * | 1998-03-27 | 2002-07-10 | Canon Kabushiki Kaisha | Exposure apparatus and method, device manufacturing method, and discharge lamp |
US6369876B1 (en) | 1998-03-27 | 2002-04-09 | Canon Kabushiki Kaisha | Exposure apparatus and method, device manufacturing method, and discharge lamp |
EP1220040A2 (en) * | 1998-03-27 | 2002-07-03 | Canon Kabushiki Kaisha | Exposure apparatus and method, device manufacturing method, and discharge lamp |
EP0947883A3 (en) * | 1998-03-27 | 2001-03-21 | Canon Kabushiki Kaisha | Exposure apparatus and method, device manufacturing method, and discharge lamp |
US6771353B2 (en) | 1998-03-27 | 2004-08-03 | Canon Kabushiki Kaisha | Exposure apparatus and method, device manufacturing method, and discharge lamp |
EP0947883A2 (en) * | 1998-03-27 | 1999-10-06 | Canon Kabushiki Kaisha | Exposure apparatus and method, device manufacturing method, and discharge lamp |
US6850313B2 (en) | 1999-10-01 | 2005-02-01 | Nikon Corporation | Exposure method, exposure apparatus and its making method, device manufacturing method, and device |
EP1233304A1 (en) * | 2001-02-14 | 2002-08-21 | Asm Lithography B.V. | Lithographic apparatus |
EP1235114A1 (en) * | 2001-02-14 | 2002-08-28 | ASML Netherlands B.V. | Lithographic apparatus and method of manufacturing a device |
US6700646B2 (en) | 2001-02-14 | 2004-03-02 | Asml Netherlands B.V. | Lithographic apparatus, method of manufacturing a device, and device manufactured thereby |
US7283208B2 (en) | 2001-02-14 | 2007-10-16 | Asml Netherlands B.V. | Lithographic apparatus, method of manufacturing a device, and device manufactured thereby |
KR100566152B1 (en) * | 2002-08-30 | 2006-03-31 | 에이에스엠엘 네델란즈 비.브이. | Lithographic Apparatus and Device Manufacturing Method |
US7108960B2 (en) * | 2002-08-30 | 2006-09-19 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5250797A (en) | Exposure method and apparatus for controlling light pulse emission using determined exposure quantities and control parameters | |
JP3412981B2 (en) | Projection exposure apparatus and projection exposure method | |
JPS62204527A (en) | mask exposure equipment | |
US4624551A (en) | Light irradiation control method for projection exposure apparatus | |
KR0178629B1 (en) | Exposure method and exposure device | |
JPH10116766A (en) | Aligner and fabrication of device | |
US6492649B1 (en) | Projection exposure apparatus, projection exposure method, optical cleaning method and method of fabricating semiconductor device | |
JP2765422B2 (en) | Exposure apparatus and method for manufacturing semiconductor device using the same | |
JP3184582B2 (en) | X-ray exposure apparatus and X-ray exposure method | |
JPH0513292A (en) | Exposure apparatus | |
JPH0758678B2 (en) | Exposure equipment | |
US4982226A (en) | Exposure device | |
JP2796404B2 (en) | Exposure method and apparatus, and thin film production control method and apparatus using the same | |
JP2550579B2 (en) | Projection exposure apparatus and projection exposure method | |
US5757838A (en) | Output control method for excimer laser | |
JP2002198281A (en) | Illuminating device and projection aligner using it | |
JPS63281425A (en) | Transfer device | |
US20040184015A1 (en) | Aligner and device fabrication method | |
JP2550658B2 (en) | Projection exposure apparatus and projection exposure method | |
JPH0225016A (en) | Aligner | |
JPS6169132A (en) | Exposing device | |
JPH0416424Y2 (en) | ||
JPH07142363A (en) | Method and apparatus for manufacturing semiconductor integrated circuit device | |
JPS63187625A (en) | Aligner | |
JP3201025B2 (en) | Exposure method and apparatus, and element manufacturing method |