JPS62204143A - Optical fiber type humidity sensor - Google Patents
Optical fiber type humidity sensorInfo
- Publication number
- JPS62204143A JPS62204143A JP4808386A JP4808386A JPS62204143A JP S62204143 A JPS62204143 A JP S62204143A JP 4808386 A JP4808386 A JP 4808386A JP 4808386 A JP4808386 A JP 4808386A JP S62204143 A JPS62204143 A JP S62204143A
- Authority
- JP
- Japan
- Prior art keywords
- optical fiber
- core
- light
- humidity
- measured
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 58
- 239000010453 quartz Substances 0.000 claims abstract description 20
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000000126 substance Substances 0.000 claims description 9
- 229920005573 silicon-containing polymer Polymers 0.000 claims description 3
- 230000002123 temporal effect Effects 0.000 claims 1
- 238000005259 measurement Methods 0.000 abstract description 19
- 230000003287 optical effect Effects 0.000 abstract description 11
- 239000000463 material Substances 0.000 abstract description 10
- 238000010521 absorption reaction Methods 0.000 abstract description 7
- 230000007423 decrease Effects 0.000 abstract description 3
- 230000000644 propagated effect Effects 0.000 abstract description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract 3
- 239000000835 fiber Substances 0.000 abstract 2
- 239000011043 treated quartz Substances 0.000 abstract 1
- 238000000034 method Methods 0.000 description 12
- 229920005989 resin Polymers 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000032683 aging Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000011896 sensitive detection Methods 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/41—Refractivity; Phase-affecting properties, e.g. optical path length
- G01N21/43—Refractivity; Phase-affecting properties, e.g. optical path length by measuring critical angle
- G01N21/431—Dip refractometers, e.g. using optical fibres
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N21/78—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
- G01N21/81—Indicating humidity
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plasma & Fusion (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は光ファイバ自体を湿磨センザとして用いた光フ
ァイバを湿度センサに関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical fiber humidity sensor in which the optical fiber itself is used as a dampening sensor.
[従来の技術1
従来の湿度測定は、セラミック・プラスチック等の素材
の湿度に対する抵抗変化や容洛変化を利用し、これらを
電気的に検出して湿度を求める方式が大半を占めている
。[Prior art 1] Conventional humidity measurement is mostly based on a method that utilizes changes in resistance and resistance to humidity of materials such as ceramics and plastics, and detects these electrically to determine humidity.
また、光ファイバを用いる方式としては、第6図に示す
ように、送光用光ファイバ1の出射端と受光用光ファイ
バ2の入射端とを空間3を隔てて対向させて配冒し、空
間3内の空気の湿度変化によるその赤外吸収強度変化を
利用して、光源4 hkらの光を送光用光ファイバ1.
空間3および受光用光ファイバ2を伝送させてその強度
を受光器5にて検出する方式がある。更に、この方式を
改良したものとして、送・受光用光ファイバ間に特定波
長の吸収係数が湿度によって変化する感湿樹脂を介装す
る方式も提案されている(特開昭56−67738号)
。In addition, as a method using an optical fiber, as shown in FIG. Using changes in the infrared absorption intensity due to changes in the humidity of the air in the light source 4, the light from the hk and others is transferred to the light transmitting optical fiber 1.
There is a method in which the light is transmitted through a space 3 and an optical fiber 2 for receiving light, and the intensity thereof is detected by a light receiver 5. Furthermore, as an improvement on this method, a method has been proposed in which a moisture-sensitive resin whose absorption coefficient of a specific wavelength changes depending on humidity is interposed between the transmitting and receiving optical fibers (Japanese Patent Laid-Open No. 56-67738).
.
[発明が解決しようとする問題点コ
ところが、上記の湿度に対する抵抗変化笠を電気的に検
出する方式では、高電圧環境下にJ3ける湿度検出は適
用上、電気雑音など多くの問題がある。更に、この方式
では、湿度により11(抗等が変化Jるセンサが設置さ
れた極く限られた領域内の湿度しか検出できず、長区間
にnる湿度分布を測定する場合には数多くのセンサを設
置プる必要がある。[Problems to be Solved by the Invention] However, in the above-mentioned method of electrically detecting the resistance change shade with respect to humidity, there are many problems such as electrical noise due to the application of humidity detection using J3 in a high voltage environment. Furthermore, with this method, humidity can only be detected within a very limited area where the sensor is installed. It is necessary to install a sensor.
また、第6図に示す光学方式では、高電圧下でも適用可
能であるが、湿度変化などによって送光用光ファイバ1
と受光用光ファイバ2との光軸がずれたり、あるいは外
気中のほこりの影響を受けたりし易く安定した測定が困
難であり、限定された環境下でしか使用できない。更に
、光学レンズ6や光ファイバ1.2を支持する治具等に
高rIli度加工が要求される。The optical method shown in Fig. 6 can be applied even under high voltage, but due to changes in humidity, etc., the light transmission optical fiber 1
The optical axis of the light-receiving optical fiber 2 is easily misaligned, or it is easily affected by dust in the outside air, making stable measurement difficult, and it can only be used in limited environments. Furthermore, high rIli degree processing is required for the jigs and the like that support the optical lens 6 and the optical fiber 1.2.
一方、送・受光用光ファイバ間に感湿樹脂を介装する方
式では、光学系の固定が容易となると共に湿度以外のほ
こり等の影響を受けにくくなる。On the other hand, in a method in which a moisture-sensitive resin is interposed between optical fibers for transmitting and receiving light, the optical system can be easily fixed and is less susceptible to influences other than humidity, such as dust.
しかし、感湿樹脂の吸湿膨潤によって感湿樹脂と光ファ
イバとの結合部にマイクロベントが生じ、これに伴いJ
l’l失が増加し安定した測定が難しい。However, due to moisture absorption and swelling of the moisture-sensitive resin, microbent occurs at the joint between the moisture-sensitive resin and the optical fiber, and this causes J.
The l'l loss increases, making stable measurement difficult.
また、感想樹脂が経年劣化し十分な長期性能が得られな
い。更に光伝送路に感湿樹脂を挿入ず方式であり、感湿
を厚くして湿度変化に対する感度を上げようとすると、
必然的に光の減衰が大きくなり受光Wが低下するという
問題がある。In addition, the resin deteriorates over time, making it impossible to obtain sufficient long-term performance. Furthermore, it is a method that does not insert a moisture-sensitive resin into the optical transmission path, and if you try to increase the sensitivity to humidity changes by thickening the moisture-sensitive resin,
There is a problem that the attenuation of light inevitably increases and the received light W decreases.
また、特定の波長の光のみを検出する方式であるため、
装置が高価なものとなる。In addition, since the method detects only light of a specific wavelength,
The equipment becomes expensive.
[発明の目的]
本発明は以上の従来技術の問題点を解消すべく創案され
たものであり、本発明の目的は、高安定。[Object of the Invention] The present invention was devised to solve the above-mentioned problems of the prior art, and an object of the present invention is to provide high stability.
高精度でしかも適用範囲の広い湿度測定を安価に実施で
きる光ファイバ型湿度センサを提供することにある。An object of the present invention is to provide an optical fiber type humidity sensor that can measure humidity with high accuracy and a wide range of applications at low cost.
[発明の概要]
上記の目的を達成するために、本発明は、光ファイバの
石英コア表面に、低湿度領域で石英コアよりも、′:1
屈折率な微細吸湿性物質、例えばシリコーン重合体の炭
化物を散在付着させて表面処理光ファイバコアと成し、
前記表面処理光ファイバコアの外周がその湿度を測定す
る被測定気体によって包囲されるよう配置し、前記表面
処理光ファイバコアに光を入射したときの光の強度変化
から前記被測定気体の湿度を求める構成となっている。[Summary of the Invention] In order to achieve the above object, the present invention provides a quartz core surface of an optical fiber with a
A fine hygroscopic substance with a refractive index, such as carbide of silicone polymer, is scattered and deposited to form a surface-treated optical fiber core,
The surface-treated optical fiber core is arranged so that its outer periphery is surrounded by a gas to be measured whose humidity is to be measured, and the humidity of the gas to be measured is determined from the change in the intensity of light when light is incident on the surface-treated optical fiber core. It has the configuration you are looking for.
し実施例] 本発明の具体例を図を参照しながら詳細に説明する。Examples] Specific examples of the present invention will be described in detail with reference to the drawings.
第1図に本発明の光ファイバ型湿度センVによる湿度検
出のだめの装置を示す。同図において7は石英コア表面
に、低湿度領域で石英コアよりも高屈折率な微細吸湿性
物質を散在付着させた表面処理光ファイバコアであり、
表面処理光ファイバコア7は空気等の被測定気体で満た
された測定域8に配設されている。表面処理光ファイバ
コア7の一端には光源9が、また他端には受光器10が
設置されている。FIG. 1 shows a humidity detection device using an optical fiber type humidity sensor V of the present invention. In the figure, 7 is a surface-treated optical fiber core in which a fine hygroscopic substance having a higher refractive index than the quartz core in a low humidity region is scattered and adhered to the surface of the quartz core.
The surface-treated optical fiber core 7 is arranged in a measurement region 8 filled with a gas to be measured such as air. A light source 9 is installed at one end of the surface-treated optical fiber core 7, and a light receiver 10 is installed at the other end.
光源9より表面処理光ファイバコア7に入射された光は
表面処理光ファイバコア7を伝播し、受光器10により
その強度が検出される。ところが、表面処理光ファイバ
コア7はその石英コア表面に、低温度領域で石英コアよ
りも高屈折率な微細吸湿性物質が散在付着されており、
石英コア内を反射伝播する光が石英コアと微細吸湿性物
質との界面に当ると、この界面で光の漏洩及びフレネル
反射が起こり、光損失が生ずる。この微細吸湿性物質が
吸湿によって微量水分を包含するとその屈折率は減少し
、第3図に示す如く石英コアの屈折率ηCに対し微細吸
湿性物質の屈折率ηmが等しくなるまで、吸湿にJ、っ
て第4図領域■に従って光の漏洩が増加すると共に、漏
洩した光が微細吸湿性物質中の水分の界面で散乱し、石
英コア内への散乱光伝播成分も併せて増加する。このた
め、被測定気体の湿度変化に応じて表面処理光ファイバ
コア7の透過光強度が変化し、受光器10の透過光強度
から被測定気体の湿度が求まることになる。Light incident on the surface-treated optical fiber core 7 from the light source 9 propagates through the surface-treated optical fiber core 7, and its intensity is detected by the light receiver 10. However, in the surface-treated optical fiber core 7, fine hygroscopic substances having a higher refractive index than the quartz core in a low temperature region are scattered and attached to the surface of the quartz core.
When light reflected and propagated within the quartz core hits the interface between the quartz core and the fine hygroscopic material, light leakage and Fresnel reflection occur at this interface, resulting in optical loss. When this fine hygroscopic material absorbs a small amount of moisture due to moisture absorption, its refractive index decreases, and as shown in FIG. Accordingly, the leakage of light increases according to region (3) in FIG. 4, and the leaked light is scattered at the moisture interface in the fine hygroscopic material, and the scattered light propagation component into the quartz core also increases. Therefore, the intensity of light transmitted through the surface-treated optical fiber core 7 changes in accordance with changes in the humidity of the gas to be measured, and the humidity of the gas to be measured can be determined from the intensity of light transmitted through the light receiver 10.
なお、微細吸湿性物質の湿度による屈折率変化は温度に
よる屈折率変化よりも著しく人さ″いので、ig麿の変
化を正確に検出できる。実験により、上記微細吸湿性物
質としてはシリコーン重合体くシリコーンゴム、シリコ
ーン樹脂)の炭化物が適していることが確認された。In addition, since the refractive index change due to humidity of the fine hygroscopic substance is significantly smaller than the refractive index change due to temperature, it is possible to accurately detect the change in IG.Experiments have shown that the fine hygroscopic substance mentioned above is silicone polymer. It was confirmed that carbides of silicone rubber and silicone resin are suitable.
このように、本発明では表面処理光ファイバコア7自体
を湿度センサどして用いているため、高電圧下は勿論の
こと広範な環境下において使用できると共に経年劣化や
光学系の軸ずれ等による10失もなく安定した畠精度の
湿度測定ができる。更に測定波長に制限もなく安価に実
施できる。In this way, in the present invention, the surface-treated optical fiber core 7 itself is used as a humidity sensor, so it can be used not only under high voltage but also in a wide range of environments, and it can also be used in a wide range of environments due to aging, optical system misalignment, etc. Humidity measurement can be performed with stable accuracy without any errors. Furthermore, there is no restriction on the measurement wavelength and it can be carried out at low cost.
第2図には、軸方向に沿って間隔を隔てで測定域8を形
成した表面処理光ファイバコア7に光を入射したとぎ、
その散乱光のうち入射側に戻る後方散乱光の強度から被
測定気体の湿度を求める測定装置を示す。パルス発生器
11により光源9を変調して、パルス光を発生させ、こ
れを表面処理光ファイバコア7に入射する。表面処理光
ファイバコア7の軸方向には被測定気体が包囲する複数
の測定域8があり、表面処理光ファイバコア7の軸方向
には被測定気体が包囲する複数の測定域8があり、表面
処理光ファイバコア7に入射されたパルス光は各測定域
8の被測定気体の湿度変化に対応して漏洩光と漏洩光の
微量水分界面での散乱に変化が生じ、その後方散乱光の
強度は方向性結合器12を介して受光器10により検出
される。FIG. 2 shows that when light is incident on a surface-treated optical fiber core 7 in which measurement areas 8 are formed at intervals along the axial direction,
This figure shows a measuring device that determines the humidity of a gas to be measured from the intensity of backscattered light that returns to the incident side of the scattered light. The light source 9 is modulated by the pulse generator 11 to generate pulsed light, which is incident on the surface-treated optical fiber core 7. There are a plurality of measurement regions 8 surrounded by the gas to be measured in the axial direction of the surface-treated optical fiber core 7, and a plurality of measurement regions 8 surrounded by the gas to be measured in the axial direction of the surface-treated optical fiber core 7, The pulsed light incident on the surface-treated optical fiber core 7 changes in the leakage light and its scattering at the trace moisture interface in response to changes in the humidity of the gas to be measured in each measurement region 8, and the backscattered light changes. The intensity is detected by a photoreceiver 10 via a directional coupler 12.
パルス発生器11のパルス発生時間はタイミング発生器
13で監視し、このパルス発生時間と受光器10が検出
した後方散乱光パルス検出時間及び強度とから、信号処
理回路14で湿度検出位置と湿度を算出しディスプレイ
装置15に表示する。The pulse generation time of the pulse generator 11 is monitored by the timing generator 13, and the humidity detection position and humidity are determined by the signal processing circuit 14 from this pulse generation time and the backscattered light pulse detection time and intensity detected by the light receiver 10. It is calculated and displayed on the display device 15.
この湿度測定は測定域8を複数設けた多点測定であり、
それぞれの湿度分布測定が可能である。This humidity measurement is a multi-point measurement with multiple measurement areas 8,
It is possible to measure each humidity distribution.
本発明の光ファイバ型湿度センサを用いて、空気の相対
湿度を20〜80%の範囲で変化させて後方散乱光強度
変化を第2図の手法で測定したところ、第5図に示すよ
うに3(18以上の強度変化があり、良好な感度及び高
速応答性を有することが確認された。When the optical fiber type humidity sensor of the present invention was used to change the relative humidity of the air in the range of 20 to 80% and measure the change in backscattered light intensity using the method shown in Figure 2, the results were as shown in Figure 5. It was confirmed that there was an intensity change of 3 (18 or more), and that the sample had good sensitivity and high-speed response.
[発明の効果]
以上型するに本発明によれば、次のような優れた効果を
発揮する。[Effects of the Invention] To summarize, according to the present invention, the following excellent effects are achieved.
(1) 光ファイバ自体がq t=センリであり、光
ファイバ以外の光学的素子を全く必要とせず、また赤外
線等の特定波長で測定する必要もない。このため、測定
系の簡素化が図れ、取扱も容易であると共にコストを低
減できる。(1) The optical fiber itself is q t = center, and there is no need for any optical elements other than the optical fiber, and there is no need to measure at a specific wavelength such as infrared rays. Therefore, the measurement system can be simplified, handling is easy, and costs can be reduced.
(2更に、光ファイバ自体を湿度センサとしているので
、経年劣化が光学レンズ等の介在による損失の発生要因
がなく、長期に亙って安定した測定ができる。(2) Furthermore, since the optical fiber itself is used as a humidity sensor, there is no loss caused by intervening optical lenses or the like due to deterioration over time, and stable measurement can be performed over a long period of time.
(3)1点のみでなく、光ファイバの長手方向に沿った
湿度・水分量の分布など長距離センシングが可能である
。(3) It is possible to sense not only one point but also long-distance sensing of humidity and moisture distribution along the length of an optical fiber.
(4)石英コア表面に散在付着させた微細吸湿性物質の
吸湿による顕著な屈折率変化を或は微量水分界面での散
乱光強度変化を利用しているため、広い湿度領域で高感
度の検出ができる。(4) Highly sensitive detection over a wide humidity range due to the use of significant refractive index changes due to moisture absorption of fine hygroscopic substances scattered on the quartz core surface or changes in scattered light intensity at trace moisture interfaces I can do it.
(5) セラミック・感湿樹脂等の感湿素子の吸湿に
よる特性変化を利用して湿度を検出するのにではなく、
石英コア表面に低湿度ffi域で石英コアよりも高屈折
率な微細吸湿性物質を散在付着さけた表面処理光ファイ
バコアの外周に被測定気体を直接接触さUて検出するよ
うにしているため、応答性がよく湿度変化を迅速に検出
できる。(5) Rather than detecting humidity by using the change in characteristics due to moisture absorption of a moisture-sensitive element such as a ceramic or moisture-sensitive resin,
The surface of the quartz core is treated with a fine hygroscopic material that has a higher refractive index than the quartz core in the low humidity ffi range to avoid adhesion.The gas to be measured is detected by directly contacting the outer periphery of the optical fiber core. , has good responsiveness and can quickly detect humidity changes.
第1図、第2図は本発明に係る湿度測定を実施するため
の装置をそれぞれ示す概略構成図、第3図はこれらの装
置に組込む光ファイバ型湿度センサの表面処理光ファイ
バコアの屈折率分布図、第4図は屈折率の変化と透過光
強度の関係を示す特性図、第5図は第2図の装置による
後方散乱光−湿度依存性の測定結果を示す線図、第6図
は従来の湿度測定装置を示す概略構成図である。
1・・・送光用光ファイバ。
2・・・受光用光ファイバ。
3・・・空 間。
4・・・光 源。
5・・・受 光 器。
6・・・光学レンズ。
7・・・表面処理光ファイバコア。
8・・・測 定 域。
9・・・光 源。
10・・・受 光 器。
11・・・パルス発生器。
12・・・方向性結合器。
13・・・タイミング発生器。
14・・・信号処理回路。
15・・・ディスプレイ装置。
代理人 弁理士 佐 藤 不二雄
第 3 n
AJしい矛乳カゲノぐ′コアのT針り方ル)ゑ町仝
第6図
′4grp
躇鱗[ml
手続補正書(自発)
61.7.03
昭和 年 月 日Figures 1 and 2 are schematic configuration diagrams showing devices for measuring humidity according to the present invention, and Figure 3 shows the refractive index of a surface-treated optical fiber core of an optical fiber type humidity sensor to be incorporated into these devices. Distribution diagram, Figure 4 is a characteristic diagram showing the relationship between changes in refractive index and transmitted light intensity, Figure 5 is a diagram showing the measurement results of backscattered light-humidity dependence using the device in Figure 2, and Figure 6 1 is a schematic configuration diagram showing a conventional humidity measuring device. 1... Optical fiber for light transmission. 2...Optical fiber for light reception. 3...Space. 4...Light source. 5... Light receiver. 6...Optical lens. 7...Surface treated optical fiber core. 8...Measurement area. 9...Light source. 10... Light receiver. 11...Pulse generator. 12... Directional coupler. 13...Timing generator. 14...Signal processing circuit. 15...Display device. Agent Patent Attorney Fujio Sato No. 3 n AJ Shiiyakuchikagenogu'Core T Guide) Emachi 廝Fig. time
Claims (6)
石英コアよりも高屈折率な微細吸湿性物質を散在付着さ
せて表面処理光ファイバコアと成し、前記表面処理光フ
ァイバコアの外周がその温度を測定する被測定気体によ
って包囲されるよう配置し、前記表面処理光ファイバコ
アに光を入射したときの光の強度変化から前記被測定気
体の湿度を求める如く構成したことを特徴とする光ファ
イバ型湿度センサ。(1) A fine hygroscopic substance having a higher refractive index than the quartz core in a low humidity region is scattered and adhered to the surface of the quartz core of the optical fiber to form a surface-treated optical fiber core, and the outer periphery of the surface-treated optical fiber core is formed. is arranged so that it is surrounded by the gas to be measured whose temperature is to be measured, and the humidity of the gas to be measured is determined from the change in the intensity of light when the light is incident on the surface-treated optical fiber core. Optical fiber type humidity sensor.
軸方向に沿って適宜間隔を隔てて、前記石英コア表面に
前記微細吸湿性物質を散在付着して成ることを特徴とす
る特許請求の範囲第1項記載の光ファイバ型温度センサ
。(2) The surface-treated optical fiber core has the fine hygroscopic substance scattered and adhered to the surface of the quartz core at appropriate intervals along the axial direction of the quartz core. Optical fiber type temperature sensor according to scope 1.
炭化物を用いたことを特徴とする特許請求の範囲第1項
ないし第2項記載の光ファイバ型湿度センサ。(3) The optical fiber type humidity sensor according to any one of claims 1 to 2, wherein a carbide of a silicone polymer is used as the fine hygroscopic substance.
の透過光の強度から前記被測定気体の湿度を求める如く
構成したことを特徴とする特許請求の範囲第1項ないし
第3項記載の光ファイバ型湿度センサ。(4) The humidity of the gas to be measured is determined from the intensity of transmitted light when the light is incident on the surface-treated optical fiber core. Optical fiber type humidity sensor.
の後方散乱光の強度から前記被測定気体の湿度を求める
如く構成したことを特徴とする特許請求の範囲第1項な
いし第3項記載の光ファイバ型湿度センサ。(5) Claims 1 to 3 are characterized in that the humidity of the gas to be measured is determined from the intensity of backscattered light when light is incident on the surface-treated optical fiber core. Optical fiber type humidity sensor.
たときの後方散乱光の時間的変化から前記表面処理光フ
ァイバコアの軸方向に沿う前記被測定気体の湿度分布を
求める如く構成したことを特徴とする特許請求の範囲第
1項ないし第3項記載の光ファイバ型温度センサ。(6) The humidity distribution of the gas to be measured along the axial direction of the surface-treated optical fiber core is determined from the temporal change in backscattered light when pulsed light is incident on the surface-treated optical fiber core. An optical fiber type temperature sensor according to any one of claims 1 to 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4808386A JPS62204143A (en) | 1986-03-05 | 1986-03-05 | Optical fiber type humidity sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4808386A JPS62204143A (en) | 1986-03-05 | 1986-03-05 | Optical fiber type humidity sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62204143A true JPS62204143A (en) | 1987-09-08 |
Family
ID=12793431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4808386A Pending JPS62204143A (en) | 1986-03-05 | 1986-03-05 | Optical fiber type humidity sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62204143A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01292237A (en) * | 1988-03-28 | 1989-11-24 | Westinghouse Electric Corp <We> | Optical fiber moisture sensor |
CN106053350A (en) * | 2016-05-09 | 2016-10-26 | 暨南大学 | A micro-nanofiber humidity sensor based on tungsten disulfide and a preparing method thereof |
US9861248B2 (en) | 2015-01-30 | 2018-01-09 | Emz-Hanauer Gmbh & Co. Kgaa | Optical sensor for water-air detection |
-
1986
- 1986-03-05 JP JP4808386A patent/JPS62204143A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01292237A (en) * | 1988-03-28 | 1989-11-24 | Westinghouse Electric Corp <We> | Optical fiber moisture sensor |
US9861248B2 (en) | 2015-01-30 | 2018-01-09 | Emz-Hanauer Gmbh & Co. Kgaa | Optical sensor for water-air detection |
CN106053350A (en) * | 2016-05-09 | 2016-10-26 | 暨南大学 | A micro-nanofiber humidity sensor based on tungsten disulfide and a preparing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hartog | A distributed temperature sensor based on liquid-core optical fibers | |
US5321257A (en) | Fiber optic bending and positioning sensor including a light emission surface formed on a portion of a light guide | |
US6205263B1 (en) | Distributed optical fiber sensor with controlled response | |
US4713538A (en) | Optical fiber apparatus and method for remotely measuring an external parameter from a monitoring position | |
US5627934A (en) | Concentric core optical fiber with multiple-mode signal transmission | |
US5903685A (en) | Sensor arrangement | |
CN103051378A (en) | Optical fiber fault detecting system based on optical fiber laser chaotic signal | |
US20070262248A1 (en) | Optical Moisture Sensor And Method Of Making The Same | |
US5062686A (en) | Optical sensors and optical fibre networks for such sensors | |
US5303586A (en) | Pressure or fluid level sensor | |
JP2002098763A (en) | Optoelectronic device for detecting object | |
US4624570A (en) | Fiber optic displacement sensor | |
JPS62204143A (en) | Optical fiber type humidity sensor | |
FI95081B (en) | A method and apparatus for detecting a liquid on the surface of a solid | |
JPS63311147A (en) | Optical fiber type humidity sensor | |
JPS63265140A (en) | Fiber optic humidity sensor | |
JPH0234582Y2 (en) | ||
JPH01193628A (en) | Measurement of average humidity | |
JPH0449905B2 (en) | ||
JPS63311307A (en) | Optical fiber temperature sensor | |
CN111238406B (en) | Liquid core angle sensor | |
JPH0260259B2 (en) | ||
CN210322074U (en) | Surface-mounted fluorescent optical fiber temperature probe | |
GB2184829A (en) | Apparatus for measuring an external parameter | |
KR20230018560A (en) | Temperature monitoring system with OTDR applied |