JPS6220372B2 - - Google Patents
Info
- Publication number
- JPS6220372B2 JPS6220372B2 JP54034543A JP3454379A JPS6220372B2 JP S6220372 B2 JPS6220372 B2 JP S6220372B2 JP 54034543 A JP54034543 A JP 54034543A JP 3454379 A JP3454379 A JP 3454379A JP S6220372 B2 JPS6220372 B2 JP S6220372B2
- Authority
- JP
- Japan
- Prior art keywords
- combustion
- injection nozzle
- air
- fuel
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000002485 combustion reaction Methods 0.000 claims description 54
- 238000002347 injection Methods 0.000 claims description 36
- 239000007924 injection Substances 0.000 claims description 36
- 239000000446 fuel Substances 0.000 claims description 35
- 239000002245 particle Substances 0.000 description 9
- 239000000567 combustion gas Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 230000008016 vaporization Effects 0.000 description 5
- 238000000889 atomisation Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 238000009834 vaporization Methods 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 3
- 239000002828 fuel tank Substances 0.000 description 3
- 239000003502 gasoline Substances 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000002000 scavenging effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G1/00—Hot gas positive-displacement engine plants
- F02G1/04—Hot gas positive-displacement engine plants of closed-cycle type
- F02G1/043—Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
- F02G1/053—Component parts or details
- F02G1/055—Heaters or coolers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G2243/00—Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Pressure-Spray And Ultrasonic-Wave- Spray Burners (AREA)
- Feeding And Controlling Fuel (AREA)
Description
【発明の詳細な説明】
本発明は、スターリングエンジンの燃焼装置に
関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a combustion device for a Stirling engine.
スターリングエンジンの燃焼装置には、高い燃
焼室容積負荷(高負荷燃焼)と広い燃焼負荷の条
件を満足させる要求がある。高負荷燃焼とは、ス
ターリングエンジンの作動気体が封入されている
容積の中で、ピストンの掃気容積以外の無効容積
の増加が、エンジンの熱効率を低下させる直接の
原因となり、高温側の熱交換器(高温熱交)の内
容積はできるだけ小さくする必要があり、そこで
同筒状又は籠型状を呈す高温熱交組付体によつて
包まれる空間も当然狭く成り、したがつてその空
間を燃焼室とするには火炎を短くし、最も燃焼量
を多く要求される条件で燃焼を完全に完結するこ
とが要求され、燃焼室容積負荷1×107Kcal/
hr・m3を満足させる必要性のことである。 Stirling engine combustion devices are required to satisfy the conditions of high combustion chamber volume load (high load combustion) and wide combustion load. High-load combustion means that in the volume filled with the working gas of the Stirling engine, an increase in the dead volume other than the scavenging volume of the piston is a direct cause of reducing the thermal efficiency of the engine, and the heat exchanger on the high temperature side The internal volume of the high-temperature heat exchanger (high-temperature heat exchanger) needs to be as small as possible, so the space enclosed by the cylindrical or cage-shaped high-temperature heat exchanger assembly naturally becomes narrower, and therefore, that space must be burned out. In order to create a combustion chamber, it is necessary to shorten the flame and complete combustion under the conditions that require the largest amount of combustion, and the combustion chamber volume load is 1×10 7 Kcal/
This refers to the need to satisfy hr・m 3 .
次に、広い燃焼負荷とは、スターリングエンジ
ンが実際に動力機関として使用される場合、それ
らの機関に要求される負荷状態に合わせて、素早
く燃焼負荷を変化させる必要があり、その最小燃
焼量/最大燃焼量(ターンダウン比)1/20を満
足させる必要性のことである。 Next, a wide combustion load means that when a Stirling engine is actually used as a power engine, it is necessary to quickly change the combustion load according to the load condition required of the engine, and the minimum combustion amount / This refers to the need to satisfy the maximum combustion amount (turndown ratio) of 1/20.
以上の二つの条件を同時に満たし、燃料として
利点の多い、ガソリンより揮発度が低く添加剤の
混入しない軽質油をスターリングエンジンに使用
するための燃焼装置が要求されている。 There is a need for a combustion device that satisfies the above two conditions at the same time and uses light oil, which has many advantages as a fuel and has lower volatility than gasoline and does not contain additives, in a Stirling engine.
従来の圧力噴霧式ノズル、二流体式ノズルと燃
焼器の組合わせでは上記の条件を満たすことはで
きない。最大の理由は、ガソリンより揮発度の低
い軽質油などの燃料においては、油粒子を微細化
して燃焼させるだけでは、燃焼速度も遅く、短炎
で高負荷の燃焼はできない。つまり燃焼室容積負
荷1×107Kcal/hr・m3を満足させる燃焼はでき
ない。次の理由は、圧力噴霧式ノズルは、原理的
に油粒子を微細化するのに必要な最低圧は5Kg/
cm2(G)必要であり、さらに圧力の二乗に比例して流
量を変化させるため、ターンダウン比1/20を得
るには1:400の圧力比を必要とし、実際に単一
ノズルでは不可能である。又、二流体噴霧式ノズ
ルは霧化性能はほゞ空気流速によつて決まり、平
均油粒径は空気流速に逆比例し、燃焼に必要な微
細粒子にするには、200m/g以上の速度を必要
とし、さらに容積流量比(空気/軽質油)が5000
以上必要であり、この量は全燃焼用空気量の30%
にも相当し、高圧の空気を多量に消費する上に、
ターンダウン比1/20を得るには空気量も対応し
て変化させる必要があり、極めて複雑で消費動力
も大きく実際には適用が不可能である。従来の他
の方式として軽質油をあらかじめ気化させた後ガ
スバーナと燃焼器の組合せで燃焼させれば、高負
荷燃焼と広範囲の燃焼負荷を満足させることは出
来る。しかし、気化させる熱源が他に必要なこと
と着火以単に、軽質油を気化させるのに時間がか
かり、エンジン始動性を悪くすることと、ガソリ
ンより揮発度の低い軽質油を気化させるには、気
化時の温度コントロールが必要でありさらにその
温度も170〜200℃と高く、さらにターンダウン比
1/20に対応する気化能力を持たすことは難し
い。つまり、装置が複雑に成り、始動性が悪く且
つ炉外の気化部は危険度が高い。 The above conditions cannot be met with the combination of conventional pressure spray nozzles, two-fluid nozzles, and combustors. The biggest reason is that with fuels such as light oil, which have lower volatility than gasoline, simply burning the oil particles by making them finer will result in a slow combustion rate, making it impossible to achieve high-load combustion with a short flame. In other words, combustion that satisfies the combustion chamber volume load of 1×10 7 Kcal/hr·m 3 cannot be achieved. The next reason is that with a pressure spray nozzle, in principle the minimum pressure required to make oil particles fine is 5 kg/
cm 2 (G), and since the flow rate changes in proportion to the square of the pressure, a pressure ratio of 1:400 is required to obtain a turndown ratio of 1/20, which is actually impossible with a single nozzle. It is possible. In addition, the atomization performance of a two-fluid atomizing nozzle is determined by the air flow velocity, and the average oil droplet diameter is inversely proportional to the air flow velocity, so a speed of 200 m/g or more is required to produce the fine particles necessary for combustion. is required, and the volumetric flow rate ratio (air/light oil) is 5000.
This amount is 30% of the total amount of combustion air.
It is equivalent to consuming a large amount of high-pressure air, and
In order to obtain a turndown ratio of 1/20, it is necessary to change the amount of air accordingly, which is extremely complicated and consumes a large amount of power, making it practically impossible to apply. As another conventional method, if light oil is vaporized in advance and then combusted using a combination of a gas burner and a combustor, it is possible to satisfy high-load combustion and a wide range of combustion loads. However, it requires another heat source for vaporization, it takes time to vaporize light oil beyond ignition, which makes engine starting difficult, and it is difficult to vaporize light oil, which has lower volatility than gasoline. Temperature control is required during vaporization, and the temperature is as high as 170 to 200°C, and furthermore, it is difficult to provide vaporization capacity that corresponds to a turndown ratio of 1/20. In other words, the equipment is complicated, the startability is poor, and the vaporization section outside the furnace is highly dangerous.
そこで本発明は、以上の従来技術の不具合点を
全て解決し、極めて簡単な構造で、スターリング
エンジンに要求される仕様の(1)高負荷燃焼(2)広範
囲の燃焼負荷の両条件を満足させたスターリング
エンジンの燃焼装置を提供することをその目的と
するものである。 Therefore, the present invention solves all of the above-mentioned problems of the conventional technology, and satisfies both of the specifications required for the Stirling engine: (1) high load combustion, and (2) wide range of combustion loads, with an extremely simple structure. The object of the present invention is to provide a combustion device for a Stirling engine.
以下本発明の一実施例並びに他の変形実施例を
添付図面に基づいて説明する。先ず、本発明の一
実施例の構成を第1図と第2図に基づいて説明す
ると、1は噴射ノズルで、第2図で詳細に示した
如く、ノズルホールダの中心軸部2に霧化用空気
の通路3を、また、その外周部4に液体燃料の通
路5を有し、下流先端部6には霧化用空気を加速
するノズルスロート部7と液体燃料が霧化用空気
に混入される細孔部8を持ち、さらに液体燃料を
混入し、加速された霧化用空気が激突する位置
に、内側に凹部を持つ共鳴函9を備えている。更
に、10は前記外周部4に設けられた支持棒で、
先端に前記共鳴函を持ち、またその内部に音波場
11を形成する。 One embodiment and other modified embodiments of the present invention will be described below with reference to the accompanying drawings. First, the configuration of an embodiment of the present invention will be explained based on FIGS. 1 and 2. Reference numeral 1 denotes an injection nozzle, and as shown in detail in FIG. It has a nozzle throat section 7 for accelerating the atomizing air and a nozzle throat section 7 for accelerating the atomizing air at the downstream end 6, and a nozzle throat section 7 for accelerating the atomizing air. The resonant box 9 has a concave portion inside at a position where the atomizing air mixed with liquid fuel and accelerated collides with the resonant box 9. Furthermore, 10 is a support rod provided on the outer peripheral part 4,
It has the resonance box at its tip and forms a sound wave field 11 inside it.
前記噴射ノズル1は、第1図で詳細に示す如
く、コンプレツサ12及び管13から成る霧化用
空気供給系と、燃料タンク14、燃料ポンプ1
5、調整弁16及び管17から成る燃料供給系と
を付帯している。前記噴射ノズル1の通路3は管
13と、また該噴射ノズル1の通路5は管17と
夫々連通している。 As shown in detail in FIG. 1, the injection nozzle 1 includes an atomizing air supply system consisting of a compressor 12 and a pipe 13, a fuel tank 14, and a fuel pump 1.
5, a fuel supply system consisting of a regulating valve 16 and a pipe 17. The passage 3 of the injection nozzle 1 communicates with a tube 13, and the passage 5 of the injection nozzle 1 communicates with a tube 17.
更に、ブロア18、調整弁19及びダクト20
から成る燃焼用空気供給系が、予熱器21の入口
22に接続されている。前記噴射ノズル1は、こ
の予熱器21に取付けられている。前記予熱器2
1内には、流路23,24が設けられている。更
に、前記予熱器21は、空気出口25から出た空
気が前記噴射ノズル1の周囲回れる空間26を有
する。また、燃焼器27は、空気吹込み口28,
29と点火プラグ30を持つ。燃焼室31は、複
数の膨張シリンダ32と、該膨張シリンダ32と
連結し且つ円筒状に配列された複数のヒータパイ
プ33とによつて囲まれる空間である。更に、断
熱材34により窯35が作られており、燃焼ガス
は、複数の燃焼ガス排出パイプ36から外部へ放
出される。37は入口、そして38は出口であ
る。 Furthermore, a blower 18, a regulating valve 19 and a duct 20
A combustion air supply system consisting of a combustion air supply system is connected to the inlet 22 of the preheater 21. The injection nozzle 1 is attached to this preheater 21. The preheater 2
1, flow paths 23 and 24 are provided. Furthermore, the preheater 21 has a space 26 in which the air coming out of the air outlet 25 can circulate around the injection nozzle 1 . The combustor 27 also includes an air inlet 28,
29 and a spark plug 30. The combustion chamber 31 is a space surrounded by a plurality of expansion cylinders 32 and a plurality of heater pipes 33 connected to the expansion cylinders 32 and arranged in a cylindrical shape. Further, a furnace 35 is made of a heat insulating material 34, and combustion gas is discharged to the outside from a plurality of combustion gas exhaust pipes 36. 37 is an inlet, and 38 is an outlet.
次に、前述した噴射ノズル1の他の変形実施例
を第3図に基づいて説明する。この噴射ノズル1
は、その外周部4にフイン4aが設けてある。こ
のフイン4aは、前記予熱器21内にのみ設けれ
ばよい。その他の点は、前述した噴射ノズルの構
成と全く同じであるので、その説明は省略する。 Next, another modified embodiment of the above-described injection nozzle 1 will be described based on FIG. 3. This injection nozzle 1
is provided with fins 4a on its outer peripheral portion 4. This fin 4a may be provided only within the preheater 21. The other points are exactly the same as the configuration of the injection nozzle described above, so the explanation thereof will be omitted.
また、前述した霧化用空気供給系と燃料供給系
との他の変形実施例を第4図に基づいて説明す
る。管13と17との途中に切換弁39を設け
る。この切換弁39は、燃焼の開始及び燃焼時に
は、前記管17と後方の管17とを連通せしめ、
燃焼停止時には、前記管13と後方の管17と
が、連通する様に設計してある。また、前記コン
プレツサ12は、燃焼停止後一定時間運転するよ
うにしてある。その他の構成は、前述した各系の
構成と全く同じであるので、その説明は省略す
る。 Further, another modified embodiment of the atomizing air supply system and fuel supply system described above will be described based on FIG. 4. A switching valve 39 is provided between the pipes 13 and 17. This switching valve 39 allows communication between the pipe 17 and the rear pipe 17 at the start of combustion and at the time of combustion,
When combustion is stopped, the pipe 13 and the rear pipe 17 are designed to communicate with each other. Further, the compressor 12 is configured to operate for a certain period of time after combustion is stopped. The rest of the configuration is exactly the same as the configuration of each system described above, so the explanation thereof will be omitted.
以上の如き構成において、燃焼用空気は、ブロ
ア18、調整弁19およびダクト20より供給さ
れ、予熱器21の入口22から流路23,24を
通り空気出口25に吹出される。一方、噴射ノズ
ル1には霧化用の空気がコンプレツサ12管13
により供給され、燃料である軽質油が燃料タンク
14、燃料ポンプ15、調整弁16、管17によ
り供給される。エンジンの始動時には燃料である
軽質油は加熱されることなく、単一の噴射ノズル
1により微粒子化した油粒子が燃焼器27内に噴
出され、空気吹込み口28,29から吹き出す燃
焼用空気と混合され、点火プラグ30により着火
される。以後、エンジンの要求出力(負荷)に応
じて燃料と燃焼用空気は手動又は自動で調整弁1
6,19により調整される。霧化用空気は燃料の
流量が変化しても変える必要はない。火炎は窯3
5内の燃焼室31に形成され、主として輻射伝熱
と対流伝熱によりヒータパイプ33と膨張シリン
ダ32内の作動ガスに熱エネルギーを供給する。
更に、燃焼ガスは、作動ガスに熱を供給した後で
も、800〜900℃の温度を保つた状態で、燃焼ガス
排出パイプ36を入口37から出口38に抜け
る。この時、燃焼用の空気は、排出パイプ36の
外側を通り、燃焼ガスから受熱し、600〜700℃に
加熱された空気が、予熱器出口25から空間26
に廻り、噴射ノズル1を加熱する。 In the above configuration, combustion air is supplied from the blower 18, the regulating valve 19, and the duct 20, and is blown out from the inlet 22 of the preheater 21 through the flow paths 23 and 24 to the air outlet 25. On the other hand, air for atomization is supplied to the injection nozzle 1 through the compressor 12 pipe 13.
Light oil, which is fuel, is supplied through a fuel tank 14, a fuel pump 15, a regulating valve 16, and a pipe 17. When the engine starts, the light oil that is the fuel is not heated, and the atomized oil particles are injected into the combustor 27 by the single injection nozzle 1, and the combustion air is blown out from the air inlets 28 and 29. The mixture is mixed and ignited by the spark plug 30. From then on, fuel and combustion air are adjusted manually or automatically by adjusting valve 1 depending on the required output (load) of the engine.
6, 19. There is no need to change the atomizing air even if the fuel flow rate changes. The flame is in kiln 3
The combustion chamber 31 is formed in the combustion chamber 31 in the heater pipe 33 and the expansion cylinder 32 and supplies thermal energy to the working gas in the heater pipe 33 and the expansion cylinder 32 mainly by radiation heat transfer and convection heat transfer.
Furthermore, even after supplying heat to the working gas, the combustion gas passes through the combustion gas discharge pipe 36 from the inlet 37 to the outlet 38 while maintaining a temperature of 800 to 900°C. At this time, the combustion air passes through the outside of the exhaust pipe 36, receives heat from the combustion gas, and the air heated to 600 to 700°C flows from the preheater outlet 25 into the space 26.
The injection nozzle 1 is heated.
前記噴射ノズル1の役割を第1図に基づいて説
明する。始動時、霧化用空気は、ノズルスロート
部7で加速され、共鳴函9にぶつけられ、音波場
11を作り出し、更に燃料である軽質油は、ここ
で微細粒子化して前記霧化用空気と混合される。
これらの微細粒子は、粒子径が小さく、上述した
如く、簡単に着火し、ミスすることはない。次
に、着火後は、燃焼の軽質油が管17から入り、
通路5に至る時、この噴射ノズル1の外周部4
は、上述の如く600〜700℃の予熱空気にさらされ
ており、通路5を通過し細孔部8に至るまでに燃
料の一部又は全部が気化する。この気化した燃料
は、燃焼器27内につき出した音波場11で燃焼
用空気と早い速度で、しかも極めて均一に混合さ
れ、その結果、燃焼室31内の火炎は短かく成
り、液体燃料の燃焼では到達できない早さの燃焼
速度を持ち、窯35内で完全燃焼が行なわれる。
上記の作用は、エンジンの最高出力時点で燃料が
多量に供給された時でも満足するし、エンジンの
要求出力範囲全域において、充分に満足できる状
態で行なわれる。 The role of the injection nozzle 1 will be explained based on FIG. 1. At the time of startup, the atomizing air is accelerated by the nozzle throat section 7 and collides with the resonance box 9, creating a sonic field 11, and the light oil that is the fuel is made into fine particles here and is combined with the atomizing air. mixed.
These fine particles have a small particle size and, as mentioned above, are easily ignited and do not cause mistakes. Next, after ignition, light oil for combustion enters from the pipe 17,
When reaching the passage 5, the outer circumference 4 of this injection nozzle 1
As described above, the fuel is exposed to preheated air at 600 to 700°C, and part or all of the fuel is vaporized before passing through the passage 5 and reaching the pores 8. This vaporized fuel is mixed with the combustion air at a high speed and extremely uniformly in the sonic field 11 ejected into the combustor 27, and as a result, the flame in the combustion chamber 31 becomes short and the liquid fuel is combusted. It has a combustion speed that cannot be reached by other methods, and complete combustion takes place in the furnace 35.
The above operation is satisfied even when a large amount of fuel is supplied at the maximum output of the engine, and is performed satisfactorily over the entire required output range of the engine.
次に、本発明の噴射ノズル1の他の変形実施例
の作動を説明する。この噴射ノズル1の外周部4
につけられたフイン4aは、予熱器21内につけ
られており、予熱空気からの熱は、このフイン4
aを通して、燃料の軽質油に伝わり、その一部又
は全部を気化する。 Next, the operation of another modified embodiment of the injection nozzle 1 of the present invention will be explained. The outer peripheral part 4 of this injection nozzle 1
The fins 4a attached to the fins 4a are attached inside the preheater 21, and the heat from the preheated air is transferred to the fins 4a.
It is transmitted to the light oil of fuel through a, and vaporizes some or all of it.
さらに、空気供給系と燃料供給系の他の変形実
施例の作動を第4図に基づいて説明する。燃焼さ
せる場合、切換弁39は、管17が連通する様に
して、上述した作動を噴射ノズル1にもたせる。
燃焼の停止時には切換弁39は、後方の管17と
管13が連通し、噴射ノズル1と燃料ポンプ15
を結ぶ管17による燃料回路は遮断される。そこ
で、噴射ノズル1内に残つた燃料は、燃焼停止後
も一定時間駆動しているコンプレツサ12により
送られる霧化用空気により吹き飛ばされる。 Furthermore, the operation of another modified embodiment of the air supply system and fuel supply system will be explained based on FIG. In the case of combustion, the switching valve 39 allows the pipe 17 to communicate with the injection nozzle 1 to perform the above-described operation.
When combustion is stopped, the switching valve 39 allows the rear pipe 17 and the pipe 13 to communicate, and the injection nozzle 1 and the fuel pump 15 to communicate with each other.
The fuel circuit by the pipe 17 connecting the two is cut off. Therefore, the fuel remaining in the injection nozzle 1 is blown away by the atomizing air sent by the compressor 12, which continues to operate for a certain period of time even after combustion has stopped.
以上の如く本発明によれば、噴射ノズルの周囲
に予熱空気が回る空気を設けたことと、該噴射ノ
ズルの外周部に液体燃料の通路を有し、且つ燃料
を混入した霧化用空気が激突する位置に、内側に
音波場を持つ共鳴函を設けたため、液体燃料であ
る軽質油は、噴射ノズル内で予熱空気から受熱
し、一部又は全部が蒸発する。このため、液体粒
子の蒸発過程を必要としない。さらに、前記共鳴
函によつて生じる音波場で蒸発の拡散、空気との
混合が行なわれ、その速度は極めて早いものであ
る。更に、このため、燃焼の全過程を非常に短か
くでき、火炎の長さも極めて短かくできる。その
結果1×107Kcal/hr・m3の燃焼容積熱負荷をも
つ燃焼ができるようになり、そのことにより燃焼
室を従来の1/10にまで小さくできる。 As described above, according to the present invention, air for circulating preheated air is provided around the injection nozzle, a passage for liquid fuel is provided on the outer periphery of the injection nozzle, and atomizing air mixed with fuel is provided. Since a resonant box with a sonic field inside is provided at the collision position, the light oil, which is liquid fuel, receives heat from the preheated air within the injection nozzle, and part or all of it evaporates. Therefore, no evaporation process of liquid particles is required. Furthermore, the sonic field generated by the resonance box causes the evaporation to diffuse and mix with air, and the speed of this is extremely high. Furthermore, this allows the entire combustion process to be very short and the length of the flame to be very short. As a result, combustion with a combustion volumetric heat load of 1×10 7 Kcal/hr·m 3 can be performed, which allows the combustion chamber to be reduced to 1/10 of the conventional size.
本発明の構成から、粒子の微細化は、最初の着
火時だけでよい、その場合にも、音波場で微粒子
化することから、噴射ノズルの細孔部の径も小さ
くする必要はなく、霧化用空気も低圧・小量で済
む。さらにその后は上述の如く、噴射ノズルより
流出する燃料はすでに気化されていることによ
り、粒子の微細化のために燃料供給圧、霧化用空
気圧を調整する必要はない、そこでターンダウン
比1/20を容易に達成することができる。 Due to the structure of the present invention, it is only necessary to make the particles fine at the time of initial ignition. Even in that case, since the particles are made fine by the sonic field, there is no need to make the diameter of the pores of the injection nozzle small, and the atomization of the particles becomes fine. Low pressure and small amounts of air are required for chemical conversion. Furthermore, as mentioned above, since the fuel flowing out from the injection nozzle has already been vaporized, there is no need to adjust the fuel supply pressure and atomization air pressure to make the particles finer, so the turndown ratio is 1. /20 can be easily achieved.
加えて、本発明によれば、噴射ノズルの外周部
にフインを設けたことにより、予熱空気からの受
熱面積が増し、予熱空気温度の比較的低い場合に
も、そしてノズルホールダ部の短かい場合にも、
燃料を気化させる効果を充分にもたせることがで
きる。 In addition, according to the present invention, by providing the fins on the outer periphery of the injection nozzle, the heat receiving area from the preheated air is increased, so that it can be used even when the preheated air temperature is relatively low and when the nozzle holder part is short. Also,
It is possible to have a sufficient effect of vaporizing the fuel.
更に、本発明によれば、燃料の停止時には噴射
ノズルと燃料ポンプを結ぶ燃料回路がしや断さ
れ、同時に噴射ノズル内に残つた燃料が霧化用空
気により吹き飛ばされるように回路を切換えるた
めの切換弁を設けたことにより、燃焼の停止時に
燃料が噴射ノズル内に蓄積したまゝ、除々に冷や
されることによつて生じるタール分により、噴射
ノズルの細孔部をつまらせるおそれがなくなつ
た。 Further, according to the present invention, when the fuel is stopped, the fuel circuit connecting the injection nozzle and the fuel pump is cut off, and at the same time, the circuit is switched so that the fuel remaining in the injection nozzle is blown away by the atomizing air. By installing a switching valve, there is no risk that the pores of the injection nozzle will be clogged by tar generated when the fuel accumulates in the injection nozzle and gradually cools down when combustion stops. .
第1図は本発明スターリングエンジンの燃焼装
置の一実施例を示すシステム図、第2図は第1図
における噴射ノズルの拡大中央縦断面図、第3図
は噴射ノズルの他の変形実施例を示す断面図、そ
して第4図は第1図における霧化用空気供給系と
燃料供給系の他の変形実施例を示す管路図であ
る。
1:噴射ノズル、2:中心軸部、3,5:通
路、4:外周部、9:共鳴函、11:音波場、1
2:コンプレツサ、13,17:管、14:燃料
タンク、21:予熱器、26:空間、27:燃焼
器、35:窯。
Fig. 1 is a system diagram showing one embodiment of the combustion device of the Stirling engine of the present invention, Fig. 2 is an enlarged central vertical sectional view of the injection nozzle in Fig. 1, and Fig. 3 shows another modified embodiment of the injection nozzle. FIG. 4 is a pipe diagram showing another modification of the atomizing air supply system and fuel supply system in FIG. 1. 1: Injection nozzle, 2: Central axis, 3, 5: Passage, 4: Outer periphery, 9: Resonance box, 11: Sound wave field, 1
2: compressor, 13, 17: pipe, 14: fuel tank, 21: preheater, 26: space, 27: combustor, 35: kiln.
Claims (1)
熱器の空気通路中に噴射ノズルを延在せしめるよ
うにしたスターリングエンジンの燃焼装置におい
て、前記噴射ノズルの周囲に予熱空気が旋回する
空間を設けると共に、前記噴射ノズルの中心軸部
および外周部に夫々霧化用空気および燃料が通る
通路を配設し、前記噴射ノズルの先端内部に音波
場を持つ共鳴函を設けてなる、スターリングエン
ジンの燃焼装置。1. In a Stirling engine combustion device in which an air preheater is attached to the upper part of the kiln and an injection nozzle extends into the air passage of the air preheater, a space is provided around the injection nozzle for preheated air to swirl. In addition, passages for atomizing air and fuel are provided in the central axis and outer circumference of the injection nozzle, respectively, and a resonant box having a sound wave field is provided inside the tip of the injection nozzle. Device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3454379A JPS55128643A (en) | 1979-03-23 | 1979-03-23 | Combustion device of stirling engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3454379A JPS55128643A (en) | 1979-03-23 | 1979-03-23 | Combustion device of stirling engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS55128643A JPS55128643A (en) | 1980-10-04 |
JPS6220372B2 true JPS6220372B2 (en) | 1987-05-07 |
Family
ID=12417207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3454379A Granted JPS55128643A (en) | 1979-03-23 | 1979-03-23 | Combustion device of stirling engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS55128643A (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6458905A (en) * | 1987-08-29 | 1989-03-06 | Kaname Imagawa | Ultrasonic gasified oil burner |
WO2008121946A1 (en) * | 2007-03-29 | 2008-10-09 | Adaptive Materials, Inc. | Integrated fuel-air delivery system |
CN110105996B (en) * | 2019-03-28 | 2023-07-11 | 万荣金坦能源科技有限公司 | Liquid fuel puffing fission device capable of refrigerating and fission method thereof |
CN110105998B (en) * | 2019-03-28 | 2023-07-14 | 万荣金坦能源科技有限公司 | Liquid fuel puffing fission device and fission method thereof |
CN110105999B (en) * | 2019-03-28 | 2023-07-07 | 万荣金坦能源科技有限公司 | Liquid fuel puffing fission device capable of refrigerating and fission method |
CN110105997B (en) * | 2019-03-28 | 2023-07-14 | 万荣金坦能源科技有限公司 | Liquid fuel puffing fission terminal and fission method thereof |
CN110102243B (en) * | 2019-03-28 | 2023-05-23 | 万荣金坦能源科技有限公司 | Liquid fuel puffing fission gas-liquid conversion system and fission method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52148804A (en) * | 1976-05-10 | 1977-12-10 | Ford Motor Co | Centrifugal fan controls for stirling cycle engines |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3669746A (en) * | 1970-08-03 | 1972-06-13 | Gates Rubber Co | Separators for secondary alkaline batteries having a zinc-containing electrode |
-
1979
- 1979-03-23 JP JP3454379A patent/JPS55128643A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52148804A (en) * | 1976-05-10 | 1977-12-10 | Ford Motor Co | Centrifugal fan controls for stirling cycle engines |
Also Published As
Publication number | Publication date |
---|---|
JPS55128643A (en) | 1980-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4013396A (en) | Fuel aerosolization apparatus and method | |
US4012904A (en) | Gas turbine burner | |
US2385833A (en) | Fuel vaporizer for jet propulsion units | |
US3890088A (en) | Apparatus for reducing formation of oxides of nitrogen in combustion processes | |
US5617716A (en) | Method for supplying vaporized fuel oil to a gas turbine combustor and system for same | |
US4240784A (en) | Three-stage liquid fuel burner | |
JPH04320711A (en) | Burner for mixed fuel of liquefied fuel and/or gaseous fuel and method for operating said burner | |
US6916172B2 (en) | Burner apparatus | |
CN113983458A (en) | An air/alcohol torch igniter based on a bubble atomizing nozzle | |
PL187189B1 (en) | Liquid fuel fired burner with pre-evaporation and premixing features | |
US6971235B2 (en) | Evaporative burner | |
JPS6220372B2 (en) | ||
US3914096A (en) | Device for vaporizing fuel oil | |
US3407596A (en) | Prevaporizing burner can | |
US4052144A (en) | Fuel combustor | |
JPS6179864A (en) | Engine warming up device | |
CN216897281U (en) | Air/alcohol torch igniter based on bubble atomizing nozzle | |
JPS58124046A (en) | Structure of burner for stirling engine | |
US5092128A (en) | Stored energy combustor | |
JPH0232979Y2 (en) | ||
JP2683249B2 (en) | Spray combustion device | |
JP2000274608A (en) | Burner | |
SU1703934A1 (en) | Heat generator | |
KR200273936Y1 (en) | system for burning emulsion oil of water-in-oil type | |
JPH04155107A (en) | Low nox burner |