[go: up one dir, main page]

JPS62203354A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS62203354A
JPS62203354A JP4590886A JP4590886A JPS62203354A JP S62203354 A JPS62203354 A JP S62203354A JP 4590886 A JP4590886 A JP 4590886A JP 4590886 A JP4590886 A JP 4590886A JP S62203354 A JPS62203354 A JP S62203354A
Authority
JP
Japan
Prior art keywords
ceramic substrate
semiconductor device
divided
metallized
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4590886A
Other languages
Japanese (ja)
Inventor
Shinobu Takahama
忍 高浜
Noriyoshi Arai
規由 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4590886A priority Critical patent/JPS62203354A/en
Publication of JPS62203354A publication Critical patent/JPS62203354A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Die Bonding (AREA)

Abstract

PURPOSE:To enable an excellent solder junction part without any cavities at all to be formed while relieving the thermal stress imposed on a substrate and preventing the substrate from being broken down by a method wherein the metallized region of a substrate of sandwich structured semiconductor device wherein both sides of ceramic substrate are soldered with metallic plates having different thermal expansion coefficient is divided into multiple regions. CONSTITUTION:Both sides of metallized regions of Mo-Mn on a ceramics 11 are divided into e.g. nine regions 12 to form a sandwich structured semiconductor device. Through these procedures, an excellent solder bonding part 8 is made smaller without any cavities at all by improving the flux relief from relief holes 14. In such a constitution, a block plate 6 and a base plate 7 for heat dissipation are connected to each other through the intermediary of the solder bonding part 8 to form a silicon chip on the block plate 6.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は絶縁用セラミックス基板を用いる半導体装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device using an insulating ceramic substrate.

〔従来の技術〕[Conventional technology]

第5図は絶縁用のセラミックス基板を用いり半導体装置
の断面構造を示すものである。図において、7はベース
板、5aは絶縁用のセラミックス基板で、ベース板7の
上に半田付けされている。
FIG. 5 shows a cross-sectional structure of a semiconductor device using an insulating ceramic substrate. In the figure, 7 is a base plate, and 5a is an insulating ceramic substrate, which is soldered onto the base plate 7.

その上部に熱拡散用鋼ブロツク板6が半田付けされてい
る。さらに、そのブロック板6の中央部にはモリブデン
板4を介してシリコンチップlが高温半田付けされ、一
方の側にはセラミックス基板5bを介して電極3が半田
付けされ、他方の側には、同じくセラミックス基板5o
を介して電極3が半田付けちれ、その電極3にシリコン
チップ1が半田付けされている。2はシリコンチップl
と電極3、およびシリコ/テンプ1同志を接合するアル
ミワイヤである。なお、上記半田付は部、すなわち半田
接合部は符号8で示しである。
A heat diffusion steel block plate 6 is soldered to its upper part. Further, a silicon chip 1 is soldered at high temperature to the center of the block plate 6 via a molybdenum plate 4, an electrode 3 is soldered to one side via a ceramic substrate 5b, and the other side is Similarly ceramic substrate 5o
An electrode 3 is soldered through the electrode 3, and a silicon chip 1 is soldered to the electrode 3. 2 is silicon chip l
This is an aluminum wire that connects the electrode 3 and the silico/temp 1 to each other. Note that the soldering part, that is, the solder joint part is indicated by the reference numeral 8.

第6図は上記セラミックス板5の細部構成を示したもの
である0すなわち、ブロック板6側は、同図(alに示
すように、絶縁沿面距離を取るために全面にはメタライ
ズを行なっていないQベース板1側は、同図(CIのよ
うに、全面メタライズを行なっている。メタライズ領域
9は、モリブデン−マンガンのそれで、図においては斜
線で示しである0〔発明が解決しようとする問題点〕 このような構造の半導体装置においては、セラミックス
基板5の熱膨張係数が、ベース板7と銅ブロック6のそ
れに比べて小感いために、アセンブリ工程において加熱
嘔れると、セラミックス基板5に引張応力が加わること
になる0すなわち、アセ/ブリ工程においては、セラミ
ックス基板5にベース板7と鋼ブロツク板6を半田付け
した後の工程で熱の加わる工程があるが、この工程でセ
ラミックス基板5に引張応力が加わることになる。
FIG. 6 shows the detailed structure of the ceramic plate 5. In other words, the block plate 6 side is not metallized on the entire surface in order to maintain an insulating creepage distance, as shown in FIG. 6 (al). The entire surface of the Q base plate 1 side is metalized as shown in the same figure (CI).The metallized region 9 is made of molybdenum-manganese and is indicated by diagonal lines in the figure. [Point] In a semiconductor device having such a structure, the coefficient of thermal expansion of the ceramic substrate 5 is smaller than that of the base plate 7 and the copper block 6. Therefore, when heated during the assembly process, the ceramic substrate 5 undergoes tensile stress. In other words, in the assembly process, there is a process in which heat is applied after the base plate 7 and steel block plate 6 are soldered to the ceramic substrate 5. tensile stress will be applied to the

ところが、セラミックス基板5の両面は、上述のように
、全面メタライズされているので、上記引張応力の逃げ
場がなく、これがセラミックス基板5の破壊を引き起こ
すことがあった。また、セラミックス基板5の面積が大
きくなるとともに、半田付は時に生ずるフラツクスが抜
けきれず、半田巣が発生しやすかった。
However, since both surfaces of the ceramic substrate 5 are completely metalized as described above, there is no place for the tensile stress to escape, which may cause the ceramic substrate 5 to break. Furthermore, as the area of the ceramic substrate 5 becomes larger, flux that sometimes occurs during soldering cannot be removed completely, and solder cavities are likely to occur.

この発明は上記のような問題点を解消するためになされ
たもので、セラミックス基板に加わる熱応力を緩和して
、セラミックス基板の破壊を防止することができるとと
もに、巣の少ない良好な半田接合部を有する半導体装置
を提供することを目的とする。
This invention was made in order to solve the above-mentioned problems, and can prevent the destruction of the ceramic substrate by alleviating the thermal stress applied to the ceramic substrate, and also create a good solder joint with few cavities. An object of the present invention is to provide a semiconductor device having the following features.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る半導体装置は、セラミックス基板の両面
に熱膨張係数の異なる金属板を半田付けしてなるす/ド
イツチ構造を持つ半導体装置において、前記セラミック
ス基板のメタライズ領域を両面とも複数の領域に分割し
たものである。
A semiconductor device according to the present invention is formed by soldering metal plates having different coefficients of thermal expansion to both sides of a ceramic substrate.In a semiconductor device having a German structure, the metallized area of the ceramic substrate is divided into a plurality of areas on both sides. This is what I did.

〔作用〕[Effect]

この発明におけるセラミックス基板は、そのメタライズ
領域が両面とも複数の領域に分割されているから、アセ
ンブリ工程における加熱によって熱応力が加わっても、
これを緩和することができ、したがって、破壊するおそ
れはない。
In the ceramic substrate of the present invention, the metallized region is divided into a plurality of regions on both sides, so even if thermal stress is applied due to heating during the assembly process,
This can be mitigated and therefore there is no risk of destruction.

また、上記セラミックス板は、分割されたメタライス領
域の間に非メタライズ領域が半田付は時のフラツクスの
逃げ道として機能するので、フラツクスの抜けが良くな
り、半田巣の発生が少なくなる。
Furthermore, in the ceramic plate, the non-metallized areas between the divided metallized areas function as an escape route for flux during soldering, which improves flux escape and reduces the occurrence of solder cavities.

〔発明の実施例〕[Embodiments of the invention]

以下この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図はセラミックス基板11のモリブデ/−マンガン
のメタライズ領域を両面とも9つの領域12に分割した
例であり、第2図はこのセラミックス基板11を拡大し
て示したもの、すなわち、第1図(blを拡大したもの
である。図中、斜線部がメタライズ領域12を示し、こ
の例では両面とも同じパターンで分割されているo13
は各メタライズ領域120間の非メタライズ領域である
0半導体装置としての構成は、第5図と同じである。
FIG. 1 shows an example in which the molybdenum/-manganese metallized region of a ceramic substrate 11 is divided into nine regions 12 on both sides, and FIG. 2 shows an enlarged view of this ceramic substrate 11, that is, FIG. (This is an enlarged view of bl. In the figure, the shaded area indicates the metallized area 12, and in this example, o13 is divided in the same pattern on both sides.
is a non-metallized region between each metallized region 120. The structure of the semiconductor device is the same as that shown in FIG.

次に、第3図と第4図により作用を説明する。Next, the operation will be explained with reference to FIGS. 3 and 4.

第3図は従来のセラミックス基板5を使用した第5図の
サンドイッチ構造のものがアセンブリ工程で加熱きれた
ときの変形状態を示す。すなわち、実線部が710熱前
の状態で破線部が加熱時の変形状態を示す。矢印は伸び
量を概念的に表わしている。
FIG. 3 shows the deformed state of the sandwich structure shown in FIG. 5 using the conventional ceramic substrate 5 when it is completely heated in the assembly process. That is, the solid line section shows the state before heating to 710 degrees, and the broken line section shows the deformed state during heating. The arrow conceptually represents the amount of elongation.

これよりセラミックス基板5に引張応力が加わっている
のが理解できる0ここで半田付は部8は破線で示すよう
に変形することで、引張応力を緩和する働きをしている
と考えられるoしかし、従来のセラミックス基板5は、
両面とも全面メタライズされているので、前述のように
、上記引張応力の逃げ場がなく、なお十分にこれを緩和
することができなかった。
From this, it can be understood that tensile stress is applied to the ceramic substrate 5.Here, the soldered portion 8 is deformed as shown by the broken line, and is thought to work to relieve the tensile stress. , the conventional ceramic substrate 5 is
Since both surfaces are fully metallized, there is no place for the tensile stress to escape, as described above, and it has not been possible to sufficiently alleviate this stress.

これに対し、実施例では、メタライズ領域を9つの領域
12に分割することで、第4図のように、半田付は部8
が小さくなるので、引張応力の緩和性が向上することが
考えられ、その結果としてセラミックス基板11全体に
がかる引張応力が軽減される。なお、第4図は第3図と
同じ態様で示しである。
On the other hand, in the embodiment, by dividing the metallized area into nine areas 12, as shown in FIG.
is reduced, it is thought that the relaxation of tensile stress is improved, and as a result, the tensile stress applied to the entire ceramic substrate 11 is reduced. Note that FIG. 4 is shown in the same manner as FIG. 3.

また、従来のセラミックス基板5の場合は、その面積が
大きくなるに従いメタライス領域9も大きくなるので、
半田付は時にフラツクスが残るoJ能性が大きい。しか
し、この実施例によれば、非メタライズ領域13にフラ
ックスの逃げ道I4が形成されるので、フラックスの逃
げが良くなり、巣のない良好な半田接合部8が得られる
In addition, in the case of the conventional ceramic substrate 5, as the area becomes larger, the metal rice region 9 also becomes larger.
Soldering has a high OJ ability, sometimes leaving flux behind. However, according to this embodiment, since the flux escape route I4 is formed in the non-metalized region 13, flux escape is improved and a good solder joint 8 without cavities can be obtained.

なお、上記実施例では、第1図のようにモリブデン−マ
ンガンのメタライズ領域を9つの領域12に分割したが
、さらに小さくあるいは大きく任意のパターンで分割し
てもよい。また、メタライズ領域12は直線的な非メタ
ライズ領域13で分割嘔れているが、曲線的な非メタラ
イズ領域で分割してもよいし、非メタライズ領域の幅は
任意でおる。さらに、実施例では、メタライズ領域を両
面とも同じパターンで複数の領域12に分割したが、両
面それぞれ異なるパターンで複数の領域に分割してもよ
い。
In the above embodiment, the molybdenum-manganese metallized region is divided into nine regions 12 as shown in FIG. 1, but it may be divided into smaller or larger regions in any desired pattern. Furthermore, although the metallized region 12 is divided into linear non-metalized regions 13, it may be divided into curved non-metalized regions, and the width of the non-metalized regions can be set arbitrarily. Further, in the embodiment, the metallized area is divided into a plurality of areas 12 with the same pattern on both sides, but it may be divided into a plurality of areas with different patterns on each side.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、セラミックス基板の
メタライズ領域を両面とも複数の領域に分割したから、
アセンブリ工程中にセラミックス基板に加わる熱応力を
緩和してセラミックス基板の破壊を防止することができ
るとともに、巣の少ない良好な半田接合部を有する半導
体装置を得ることができる。
As described above, according to the present invention, since the metallized region of the ceramic substrate is divided into a plurality of regions on both sides,
Thermal stress applied to the ceramic substrate during the assembly process can be alleviated to prevent destruction of the ceramic substrate, and a semiconductor device having good solder joints with few cavities can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例の半導体装置におけるセラき
ツクス基板を示し、同図talは正面図、同図(blは
側面図、同図(clは背面図、第2図は第1図tblの
拡大図、第3図は従来の半導体装置、第4図は実施例の
半導体装置のアセンブリ工程において熱が加わったとき
の変形状態を示す断面図、第5図は従来のセラミックス
基板を用いた半導体装置の断面図、第6図は第5図にお
けるセラミックス基板を示し、同図ta+は正面図、同
図(blは側面図、同図(clは背面図である。 図中、6は鋼ブロツク板、1はベース板、8は半田接合
部、11はセラ之ツクス基板、12はメタライズ領域、
+3Vi非メタライズ領域である。 なお、各図において、同符号は同一または相当部分を示
す。 何人大岩増雄 第1図 (a)  (b)   (c) 第2図 第3図 第4図 (a) 第6図 (b)   (c)
FIG. 1 shows a ceramic substrate in a semiconductor device according to an embodiment of the present invention, and tal in the same figure is a front view, BL is a side view, CL is a back view, and FIG. 3 is an enlarged view of tbl, FIG. 3 is a conventional semiconductor device, FIG. 4 is a sectional view showing the deformation state when heat is applied in the assembly process of the semiconductor device of the example, and FIG. 5 is a conventional ceramic substrate. FIG. 6 is a cross-sectional view of the semiconductor device shown in FIG. 5, showing the ceramic substrate in FIG. Steel block plate, 1 is a base plate, 8 is a solder joint, 11 is a ceramic substrate, 12 is a metallized area,
+3Vi non-metallized area. In each figure, the same reference numerals indicate the same or corresponding parts. Figure 1 (a) (b) (c) Figure 2 Figure 3 Figure 4 (a) Figure 6 (b) (c)

Claims (3)

【特許請求の範囲】[Claims] (1)セラミックス基板の両面に熱膨張係数の異なる金
属板を半田付けしてなるサンドイッチ構造を持つ半導体
装置において、前記セラミックス基板のメタライズ領域
を両面とも複数の領域に分割したことを特徴とする半導
体装置。
(1) A semiconductor device having a sandwich structure in which metal plates having different coefficients of thermal expansion are soldered to both sides of a ceramic substrate, characterized in that the metallized area of the ceramic substrate is divided into a plurality of areas on both sides. Device.
(2)セラミックス基板のメタライズ領域を両面とも同
じパターンで複数の領域に分割したことを特徴とする特
許請求の範囲第1項記載の半導体装置。
(2) The semiconductor device according to claim 1, wherein the metallized region of the ceramic substrate is divided into a plurality of regions with the same pattern on both surfaces.
(3)セラミックス基板のメタライズ領域を両面それぞ
れ異なるパターンで複数の領域に分割したことを特徴と
する特許請求の範囲第1項記載の半導体装置。
(3) The semiconductor device according to claim 1, wherein the metallized region of the ceramic substrate is divided into a plurality of regions with different patterns on each side.
JP4590886A 1986-03-03 1986-03-03 Semiconductor device Pending JPS62203354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4590886A JPS62203354A (en) 1986-03-03 1986-03-03 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4590886A JPS62203354A (en) 1986-03-03 1986-03-03 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS62203354A true JPS62203354A (en) 1987-09-08

Family

ID=12732342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4590886A Pending JPS62203354A (en) 1986-03-03 1986-03-03 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS62203354A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01106451A (en) * 1987-10-20 1989-04-24 Hitachi Ltd semiconductor equipment
JPH03276788A (en) * 1990-03-27 1991-12-06 Mitsubishi Materials Corp Ceramic substrate for integrated circuit mounting use
WO1994025983A1 (en) * 1993-04-26 1994-11-10 Harris Corporation Semiconductor chip packaging method and semiconductor chip having interdigitated gate runners with gate bonding pads
JP2009212367A (en) * 2008-03-05 2009-09-17 Stanley Electric Co Ltd Semiconductor light-emitting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01106451A (en) * 1987-10-20 1989-04-24 Hitachi Ltd semiconductor equipment
JPH03276788A (en) * 1990-03-27 1991-12-06 Mitsubishi Materials Corp Ceramic substrate for integrated circuit mounting use
WO1994025983A1 (en) * 1993-04-26 1994-11-10 Harris Corporation Semiconductor chip packaging method and semiconductor chip having interdigitated gate runners with gate bonding pads
JP2009212367A (en) * 2008-03-05 2009-09-17 Stanley Electric Co Ltd Semiconductor light-emitting device

Similar Documents

Publication Publication Date Title
CN110313064B (en) Ceramic-metal circuit board and semiconductor device using the same
JPH0777246B2 (en) Ceramics circuit board
JP6278516B2 (en) Power module substrate
JP2002343911A (en) Substrate
JPS62203354A (en) Semiconductor device
JP4124040B2 (en) Semiconductor device
CN111758302A (en) Insulated circuit board
JP3192911B2 (en) Ceramic circuit board
JPH04103150A (en) Ic mounting board
JP4427154B2 (en) Ceramic circuit board
JPH10247763A (en) Circuit board and manufacture thereof
JPH10242331A (en) Substrate for power module and manufacture thereof
JPH10242330A (en) Substrate for power module and manufacture thereof
JP2815504B2 (en) Ceramic-metal bonded substrate with excellent thermal shock resistance
JP4498966B2 (en) Metal-ceramic bonding substrate
JP4656126B2 (en) Semiconductor device
KR100260045B1 (en) Heat sink construction for power semiconductor module
JP2558574B2 (en) Semiconductor device
JP3003114B2 (en) Lead frame
JP7424145B2 (en) insulated circuit board
JPH06169037A (en) Semiconductor package
JPS63302528A (en) Semiconductor device
KR20230148113A (en) Semiconductor device assembly
JP2004014827A (en) Manufacturing method of package for high frequency
JPS5931091A (en) Hybrid integrated circuit device