JPS62203011A - Wide visual field type distance measuring apparatus - Google Patents
Wide visual field type distance measuring apparatusInfo
- Publication number
- JPS62203011A JPS62203011A JP4568286A JP4568286A JPS62203011A JP S62203011 A JPS62203011 A JP S62203011A JP 4568286 A JP4568286 A JP 4568286A JP 4568286 A JP4568286 A JP 4568286A JP S62203011 A JPS62203011 A JP S62203011A
- Authority
- JP
- Japan
- Prior art keywords
- light
- center
- light projecting
- base line
- distance measuring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000000007 visual effect Effects 0.000 title 1
- 238000005259 measurement Methods 0.000 claims description 17
- 230000002093 peripheral effect Effects 0.000 abstract description 4
- 239000004065 semiconductor Substances 0.000 description 21
- 230000005484 gravity Effects 0.000 description 16
- 238000010586 diagram Methods 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 3
- 241001417527 Pempheridae Species 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Landscapes
- Measurement Of Optical Distance (AREA)
- Focusing (AREA)
- Automatic Focus Adjustment (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
(発明の利用分野)
本発明は、測距対象に向けて光を投射し、その反射光を
受光することによって測距情報を得る光アクティブ方式
の広視野型測距装置の改良に関するものである。Detailed Description of the Invention (Field of Application of the Invention) The present invention is an optically active wide-field distance measuring method that obtains ranging information by projecting light toward a distance measuring target and receiving the reflected light. This relates to improvements in equipment.
(発明の背景)
従来のこの種の装置は、−次元の半導体装置検出器(P
S D)を用い、中心部のみならず基線長と直交方向
にも光を投射し、前記半導体装置検出器のもつ信号光の
重心位置を検出するという特性を生かして、左右又は上
下方向の周辺部分をも測距していた。これは−次元の半
導体装置検出器を用いた場合、もし周辺部分に投射する
光を基線長と直交方向以外に中心よりずらして投射する
(例えば基線長方向に周辺部分の光を投射したような場
合)と測距ができなくなるためで、このことが撮影時の
カメラの姿勢によりその測距範囲が左右か上下かで大き
く変化するといった問題点を生んでいた。すなわち、広
視野型測距装置が解決しようとしていた、例えば2人が
並んでいて中央に背景がくるような撮影シーンであって
も良好な測距を行うと言う目的は、カメラの姿勢によっ
てその能力に大きな差をもたらしていた。(Background of the Invention) Conventional devices of this type include -dimensional semiconductor device detectors (P
SD) is used to project light not only at the center but also in a direction orthogonal to the base line length, and by utilizing the characteristics of the semiconductor device detector to detect the center of gravity position of the signal light, the periphery in the horizontal or vertical direction They also measured the distance. This means that when using a -dimensional semiconductor device detector, if the light to be projected onto the peripheral area is shifted from the center in a direction other than perpendicular to the baseline length (for example, if the light from the peripheral area is projected in the direction of the baseline length). This created a problem in that the distance measurement range varied greatly depending on whether the camera was positioned horizontally or vertically when shooting. In other words, the objective that wide-field distance measuring devices were trying to solve, which was to obtain good distance measurement even in shooting scenes where two people are lined up and the background is in the center, was achieved by changing the camera's posture. It made a huge difference in ability.
(発明の目的)
本発明の目的は、上述した問題を解決し、カメラの姿勢
に拘らず、周辺部の距離情報をより的確に検出すること
ができる広視野型測距装置を提供することである。(Objective of the Invention) An object of the present invention is to solve the above-mentioned problems and provide a wide-field distance measuring device that can more accurately detect distance information in the periphery regardless of the posture of the camera. be.
(発明の特徴)
上記目的を達成するために、本発明は、撮影画面の中心
より基線長方向とそれに垂直な方向の両成分をもつ方向
にずらして被写体に向けて光を投射する投光手段と、撮
影画面の中心にX軸、Y軸の交点を対応させ、基線長方
向とX軸方向を平行にして、前記被写体から反射された
光による前記投光手段の二次像を結像する二次元受光手
段と、該二次元受光手段のX軸出力とY軸出力から前記
二次像のX軸方向及びY軸方向の位置を演算する演算手
段と、前記二次像のX軸方向の位置の演算値を、前記二
次像のY軸方向の位置の演算値、及び前記投光手段の光
が撮影画面の中心よりずれる方向と基線長方向の成す角
度によって補正し、測距情報を算出する測距情報算出手
段とを備え、以って、投光手段の光の基線長方向ずれ成
分による誤差を補正するようにしたことを特徴とする。(Characteristics of the Invention) In order to achieve the above object, the present invention provides a light projecting means for projecting light toward a subject by shifting the light from the center of the photographing screen in a direction having both components in the base line length direction and in a direction perpendicular to the base line length direction. The intersection point of the X-axis and Y-axis corresponds to the center of the photographing screen, and the base line length direction and the X-axis direction are made parallel, and a secondary image of the light projecting means is formed by the light reflected from the subject. a two-dimensional light receiving means; a calculating means for calculating the position of the secondary image in the X-axis direction and the Y-axis direction from the X-axis output and Y-axis output of the two-dimensional light receiving means; The calculated value of the position is corrected by the calculated value of the position of the secondary image in the Y-axis direction, and the angle formed by the direction in which the light of the light projecting means deviates from the center of the photographing screen and the baseline length direction, and the distance measurement information is obtained. The present invention is characterized in that it comprises distance measurement information calculating means for calculating distance information, thereby correcting an error due to a deviation component in the base line length direction of the light of the light projecting means.
(発明の実施例)
以下、本発明を図示の実施例に基づいて詳細に説明する
。(Embodiments of the Invention) Hereinafter, the present invention will be described in detail based on illustrated embodiments.
第2図(a) 、 (b)は本発明に使用される二次元
の半導体装置検出器lの平面及び側面図であり、出力端
子1a、lbより出力される光電流XA、XBの比によ
ってX方向の信号光の重心の位置を、出力端子tc、t
ciより出力される光電流YA。FIGS. 2(a) and 2(b) are plan and side views of a two-dimensional semiconductor device detector l used in the present invention. The position of the center of gravity of the signal light in the X direction is determined by output terminals tc and t.
Photocurrent YA output from ci.
YBの比によってY方向の信号光の重心の位置を、それ
ぞれ知ることができる。The position of the center of gravity of the signal light in the Y direction can be determined by the ratio of YB.
第3図は前記半導体装置検出器1を用いた測距光学系を
説明する図である。半導体装置検出器1と4つの投光素
子2a〜2d(第3図では投光素子2c 、2dは不図
示)を結ぶ方向が基線長方向であり、前記投光素子2a
〜2dより投光レンズ3を介して投射された、基線長方
向に対してずれた成分を持つ信号光は被写体面にて反射
され、受光レンズ4を介して前記半導体装置検出器l上
に入射する。FIG. 3 is a diagram illustrating a distance measuring optical system using the semiconductor device detector 1. The direction connecting the semiconductor device detector 1 and the four light emitting elements 2a to 2d (light emitting elements 2c and 2d are not shown in FIG. 3) is the base line length direction, and the light emitting element 2a
The signal light having a component shifted with respect to the base line length direction, which is projected from ~2d through the light projection lens 3, is reflected at the object surface and enters the semiconductor device detector l through the light reception lens 4. do.
第4図(a)、(b)は前記投光素子2a〜2dの配置
関係を示す平面及び正面図で、撮影画面の中心に対して
点対称に投光素子2aと2d及び投光素子2bと20は
配置されている。FIGS. 4(a) and 4(b) are plan and front views showing the arrangement of the light projecting elements 2a to 2d, and the light projecting elements 2a and 2d and the light projecting element 2b are symmetrically arranged with respect to the center of the photographing screen. and 20 are placed.
第5図は前記投光素子2a〜2dを駆動する駆動系の一
例を示すもので、後述する演算制御回路より入力する投
光制御信号SiDに従って駆動回路5は投光素子2a、
2d又は投光素子2b。FIG. 5 shows an example of a drive system for driving the light projecting elements 2a to 2d, in which the drive circuit 5 drives the light projecting elements 2a,
2d or light projecting element 2b.
2Cを駆動する。二連スイッチ6はカメラの姿勢や手動
入力に従って不図示の制御回路により切り替えられ、投
光素子2a、2d又は投光素子2c、2bのいずれを駆
動するかを決定すると同時に、どちらの対が選択された
かを示す対選択信号SMDを出力する。Drives 2C. The dual switch 6 is switched by a control circuit (not shown) according to the camera's posture and manual input, and determines which of the light emitting elements 2a, 2d or the light emitting elements 2c, 2b is to be driven, and at the same time, which pair is selected. outputs a pair selection signal SMD indicating whether the selected pair has been selected.
第6図は例えば前記投光素子2a、2dより投射された
光がある距離に位置する大きな平面状の被写体にて反射
し、前記半導体装置検出器1に入射した時の該半導体装
置検出器l上での二次像P、、P4の様子を示す図であ
る。FIG. 6 shows, for example, the semiconductor device detector l when the light projected from the light projecting elements 2a and 2d is reflected by a large planar object located at a certain distance and enters the semiconductor device detector 1. It is a figure which shows the state of the secondary image P,, P4 above.
第1図は前述のような測距光学系を備えた広視野型測距
装置の信号処理系の一例を示すブロック図である。7は
後述する演算処理回路よリハイレベルの演算モード切換
信号に1が入力することによって接点7a側に、ローレ
ベルの演算モード切換信号に、が入力することによって
接点7b側に、その接触子が切り替わる演算モードスイ
ッチ、8は後述する演算処理回路よりハイレベルの演算
モード切換信号に2が入力することによって接点8a側
に、ローレベルの演算モード切換信号に2が入力するこ
とによって接点8b側に、その接触子が切り替わる演算
モードスイッチ、9は半導体装置検出器1より入力する
光電流XA又は(XA+XB)を信号電圧VX&又は(
Vxa’)−Vx b)として出力するセンサアンプで
、その非反転入力端には定電圧Vr、が印加されている
。FIG. 1 is a block diagram showing an example of a signal processing system of a wide-field distance measuring device equipped with the above-mentioned distance measuring optical system. 7 is a contact that is switched to the contact 7a side by inputting 1 to a high level calculation mode switching signal from an arithmetic processing circuit to be described later, and to the contact 7b side by inputting a low level calculation mode switching signal. The arithmetic mode switch 8 is switched to the contact 8a side when 2 is input to a high level arithmetic mode switching signal from an arithmetic processing circuit to be described later, and to the contact 8b side when 2 is input to a low level arithmetic mode switching signal. A calculation mode switch 9 whose contactor switches is a signal voltage VX & or (
The sensor amplifier outputs Vxa')-Vxb), and a constant voltage Vr is applied to its non-inverting input terminal.
lOは半導体装置検出器lより入力する光電流YA又は
(YA+YB)を信号電圧vya又は(Vya+Vyb
)として出力するセンサアンプで、その非反転入力端に
は定電圧vr2が印加されている。11.12は半導体
装置検出器1からの光電流を電圧に変換する時の変換定
数を決定するフィードバック回路、13は前記第5図に
て示した駆動回路5及び二連スイー2千6等を備えた投
光駆動制御回路、14は後述するマイクロコンピュータ
よりの指示信号SSに従って、前記駆動1lIiII御
回路13へ投光ffJVB信号SiDを出力し、半導体
装置検出器l上に入射するX軸方向の二次像の重心位置
を検出する演算制御回路で、検出したデータD1が有効
の場合には、有効であることを示すデータ状態信号El
と共に前記データを出力する。15は後述するマイクロ
コンピュータよりの指示信号SSに従って半導体装置検
出器1上のY軸方向の二次像の重心位置を検出する演算
制御回路で、検出したデータD2が有効の場合には、有
効であることを示すデータ状態信号E2と共に前記デー
タを出力する。16は前記演算制御回路14及び15よ
り入力するデータD、、D2と投光駆動制御回路13よ
りの対選択信号SMDに基づいて被写体までの距離を演
算するマイクロコンピュータである。lO is the photocurrent YA or (YA+YB) input from the semiconductor device detector l, and the signal voltage vya or (Vya+Vyb
), and a constant voltage vr2 is applied to its non-inverting input terminal. 11.12 is a feedback circuit that determines the conversion constant when converting the photocurrent from the semiconductor device detector 1 into voltage; 13 is the drive circuit 5 and the double sweeper 2,66 shown in FIG. A light projection drive control circuit 14 outputs a light projection ffJVB signal SiD to the drive 1lIiII control circuit 13 in accordance with an instruction signal SS from a microcomputer to be described later, and outputs a light projection ffJVB signal SiD to the semiconductor device detector l in the X-axis direction. If the detected data D1 is valid in the arithmetic control circuit that detects the position of the center of gravity of the secondary image, a data status signal El indicating that the detected data D1 is valid.
and output the data. 15 is an arithmetic control circuit that detects the center of gravity position of a secondary image in the Y-axis direction on the semiconductor device detector 1 according to an instruction signal SS from a microcomputer, which will be described later. The data is output together with a data status signal E2 indicating that the data is present. Reference numeral 16 denotes a microcomputer that calculates the distance to the object based on the data D, .
次に動作について説明する。不図示の電源が投入され、
PUC回路(不図示)にPUC信号が発生すると、演算
制御回路14はマイクロコンピュータ16からの指示信
号SSに従った動作を開始するため、まず駆動制御回路
13へ投光制御信号SiDを出力し、例えば投光素子2
a、2dより信号光を投射させると同時に、演算制御回
路15へ動作開始信号を出力する0次に演算モードスイ
ッチ7へ演算モード切換信号に1を出力して該スイッチ
の切り換え制御を行い、前記投光素子2a、2dより投
射された信号光が被写体面で反射し、半導体装置検出器
1上に入射して形成される二次像のX軸方向の重心位置
を、センサアンプ9より時系列に入力する信号電圧Vx
aと信号電圧(Vxa+Vxb)とにより検出する。す
なわち、センサアンプ9より入力する信号電圧Vxaを
一定時間積分し、次に時間遅れをもって入力する信号電
圧(Vxa+Vxb)により前記信号電圧Vxaの積分
値が初期レベルに達するまで逆積分し、この逆積分に要
した時間と前記一定時間との比、即ちVxa/ (Vx
a+Vxb)なる演算を行うことにより求める。そして
このようにして検出したデータD1が有効の場合には、
有効であることを示すデータ状態信号E、と共に該デー
タをマイクロコンピュータ16へ出力する。Next, the operation will be explained. The power (not shown) is turned on, and
When a PUC signal is generated in a PUC circuit (not shown), the arithmetic control circuit 14 first outputs a light projection control signal SiD to the drive control circuit 13 in order to start operation according to the instruction signal SS from the microcomputer 16. For example, light emitting element 2
At the same time, a signal light is projected from a and 2d, and an operation start signal is output to the arithmetic control circuit 15.Next, 1 is output as the arithmetic mode switching signal to the arithmetic mode switch 7 to control switching of the switch. The position of the center of gravity in the X-axis direction of the secondary image formed when the signal light projected from the light projecting elements 2a and 2d is reflected from the object surface and is incident on the semiconductor device detector 1 is detected in time series by the sensor amplifier 9. Signal voltage Vx input to
a and the signal voltage (Vxa+Vxb). That is, the signal voltage Vxa inputted from the sensor amplifier 9 is integrated for a certain period of time, and then inversely integrated until the integrated value of the signal voltage Vxa reaches the initial level by the signal voltage (Vxa+Vxb) inputted with a time delay. The ratio of the time required for Vxa/(Vx
a+Vxb). If the data D1 detected in this way is valid,
The data is output to the microcomputer 16 together with a data status signal E indicating that it is valid.
一方、演算制御回路15は前記演算制御回路14より動
作開始信号が入力すると同時に、マイクロコンピュータ
16からの指示信号SSに従った動作を開始するため、
演算モードスイッチ8へ演算モード切換信号に2を出力
して該スイッチの切り換え制御を行い、前記投光素子2
a、2dより投射された信号光が被写体面で反射し、半
導体装置検出器1上に入射して形成される二次像のY軸
方向の重心位置を、センサアンプ10より時系列に入力
する信号電圧Vyaと信号電圧(Vya+vyb)とに
より検出する。すなわち、センサアンプ10より入力す
る信号電圧Vyaを一定時間積分し、次に時間遅れをも
って入力する信号電圧(Vya+Vyb)により前記信
号電圧Vyaの積分値が初期レベルに達するまで逆積分
し、この逆積分に要した時間と前記−0定時間との比、
即ちVy a/ (Vya+Vy b)A”る演算を行
うコトにより求める。そして前記演算制御回路14と同
様、このようにして検出したデータD2が有効の場合に
は、有効であることを示すデータ状態信号E2と共に該
データをマイクロコンピュータ16へ出力する
次にマイクロコンピュータ16での動作を第7図を用い
て説明する。尚X軸と基線長方向は平行である。例えば
ある距離に均一な反射率を持った十分大きな平面の被写
体があった場合、半導体装置検出器1上での投光素子2
aの二次像P1の中心がa、投光素子2dの二次像P4
の中心がdであり、その重心がO(x軸とY軸の交点)
であったとする、この被写体が移動して距離が変化した
ことにより、aであった二次像P1の中心がa′に、同
様にdであった二次像P4の中心がd′に、それぞれ移
動したとすると、この場合の重心はeとなり、重心自体
はX軸方向の成分だけの変化しかないため、重心のX軸
成分だけを知れば、つまり前記演算制御回路14より入
力するデータD1の情報をそのままこの時の測距情報と
することが可能となる。しかしながら、一般的に反射率
の均一な被写体のみを想定したのでは測距装置としだは
実用にならないため、P、とP4のそれぞれの二次像の
反射率が異なる場合について考えてみる。On the other hand, since the arithmetic control circuit 15 starts operating according to the instruction signal SS from the microcomputer 16 at the same time as the operation start signal is input from the arithmetic control circuit 14,
A calculation mode switching signal of 2 is output to the calculation mode switch 8 to control switching of the switch, and the light emitting element 2
The position of the center of gravity in the Y-axis direction of the secondary image formed when the signal light projected from a and 2d is reflected on the object surface and is incident on the semiconductor device detector 1 is input in time series from the sensor amplifier 10. Detection is performed using the signal voltage Vya and the signal voltage (Vya+vyb). That is, the signal voltage Vya inputted from the sensor amplifier 10 is integrated for a certain period of time, and then inversely integrated until the integrated value of the signal voltage Vya reaches the initial level by the signal voltage (Vya+Vyb) inputted with a time delay. The ratio of the time required to the -0 constant time,
That is, it is determined by performing the calculation Vy a/(Vya+Vy b)A''. Then, similarly to the calculation control circuit 14, if the data D2 detected in this way is valid, the data state indicating that it is valid is determined. The data is output to the microcomputer 16 along with the signal E2. Next, the operation of the microcomputer 16 will be explained using FIG. If there is a sufficiently large flat object with
The center of the secondary image P1 of a is a, and the secondary image P4 of the light projecting element 2d
The center of is d, and its center of gravity is O (intersection of x-axis and y-axis)
Assuming that the object was moved and the distance changed, the center of the secondary image P1, which was at a, became a', and the center of the secondary image P4, which was also d, became d'. If each of them moves, the center of gravity in this case becomes e, and since the center of gravity itself changes only by the component in the X-axis direction, if only the X-axis component of the center of gravity is known, that is, the data D1 input from the arithmetic control circuit 14 It becomes possible to use the information as it is as the distance measurement information at this time. However, generally speaking, assuming only objects with uniform reflectance, the distance measuring device is not practical, so let us consider a case where the reflectances of the secondary images P and P4 are different.
このような場合1重心−反射率の変化のよって前述の重
心eを含む線分a −d上を移動する。この移動により
重心のX軸方向成分及びY軸方向成分はいずれも変化す
るが、線分a −dとX軸との成す角度をθ、重心の位
置を(Xg 、Yg)、前記重心eの位置を(Xe 、
O)と行くと、Xe =Xg−Y g/’t a nθ
なる関係式が成り立ち、またθは設計により定められる
定数であることから、xg及びYgを検出することがで
きれば反射率に拘わらず、正確な測距が可能となる。
゛
以上のことからマイクロコンピュータ16は上記式に基
づいた演算を行い、測距情報を算出する。すなわち前述
したように演算制御回路14より入力するデータD1に
対し、演算制御回路15より入力する、二次像P、とP
2の輝度差に対応するデータD2と角度θとによって補
正を加えた値を測距情報とし、該情報に基づいてレンズ
の繰り出し量を求めて不図示の手段によってレンズを制
御する。また二次像PlとP4に対応する被写体までの
距離が異った場合でも、その輝度による加重平均をとっ
た距離が上記式によって演算される。In such a case, it moves on the line segment a-d including the above-mentioned center of gravity e due to one change in the center of gravity-reflectance. Due to this movement, both the X-axis direction component and the Y-axis direction component of the center of gravity change, but if the angle formed by the line segment a - d and the X-axis is θ, and the position of the center of gravity is (Xg, Yg), then the center of gravity e position (Xe,
O), then Xe = Xg - Y g/'t a nθ
Since the following relational expression holds true and θ is a constant determined by design, accurate distance measurement is possible regardless of the reflectance if xg and Yg can be detected.
From the above, the microcomputer 16 performs calculations based on the above formula to calculate distance measurement information. That is, as described above, for the data D1 input from the arithmetic control circuit 14, the secondary images P and P input from the arithmetic control circuit 15 are
A value corrected by data D2 corresponding to the brightness difference of 2 and the angle θ is used as distance measurement information, and based on this information, the amount of lens extension is determined and the lens is controlled by means not shown. Furthermore, even if the distances to the objects corresponding to the secondary images Pl and P4 are different, the weighted average distance based on the luminance is calculated using the above formula.
尚カメラの姿勢等によっては投光手段として投光素子2
b 、’2 cが使用される場合もあるわけで、マイ
クロコンピュータ16は対選択信号SMDよりどちらの
対が選択されたかを判断し、前記投光素子2b、2cが
使用されたと判断した場合には、予め設定されている二
次像P2とP3の中心すとCを結ぶ線分b −cとX軸
との成す角度θ′を使用してこの時の重心Xe(測距情
報)を算出する。Depending on the posture of the camera, the light emitting element 2 may be used as a light emitting means.
b, '2c may be used, so the microcomputer 16 determines which pair has been selected from the pair selection signal SMD, and when it is determined that the light projecting elements 2b and 2c have been used, calculates the center of gravity Xe (distance measurement information) using the angle θ' formed by the X-axis and the line segment b-c connecting the centers of the secondary images P2 and P3 that have been set in advance. do.
(発明と実施例の対応)
本実施例において、投光素子2a〜2dが本発明の投光
手段に、半導体装置検出器1が二次元受光手段に、演算
制御回路14.15が演算手段に、マイクロコンピュー
タ16が測距情報算出手段に、それぞれ相当する。(Correspondence between the invention and the embodiments) In this embodiment, the light projecting elements 2a to 2d serve as the light projecting means of the present invention, the semiconductor device detector 1 serves as the two-dimensional light receiving means, and the calculation control circuits 14 and 15 serve as the calculation means. , and the microcomputer 16 respectively correspond to distance measurement information calculation means.
(変形例)
本実施例では、画面中心に対して対称に配置された投光
素子の対を考えてきたが、1つの投光素子を画面周辺に
配置した場合でも基線長方向と垂直な方向の両成分、す
なわちX軸及びY軸方向の両成分をもって画面中心より
ずれていれば、本発明を適用できる(第7図において、
二次像P4の反射率がO(零)と考える)。但し、この
ような構成の場合、被写体反射率の差は考慮することは
できない。また2つの投光素子の対はいずれか一つが選
択されるだけであるので、それぞれの対を時分割に選択
して測距させることもできるし、又4つの投光素子2a
〜2dをそれぞれについて独立に時分割に選択して測距
させることもできる。(Modification) In this example, a pair of light projecting elements arranged symmetrically with respect to the center of the screen has been considered, but even if one light projecting element is arranged around the screen, the direction perpendicular to the baseline length direction The present invention can be applied if both components of
It is assumed that the reflectance of the secondary image P4 is O (zero). However, in such a configuration, differences in object reflectance cannot be taken into account. Further, since only one of the two pairs of light emitting elements is selected, each pair can be selected in a time-sharing manner for distance measurement, or the four light emitting elements 2a
~2d can be selected independently and time-divisionally for distance measurement.
もちろん4つ以上の点について1つ1つ又は画面中心に
対して対称な対何に、さらにはそれらの組み合わせにて
行うことも可能である。更に、画面中心部分を測距する
ための投光素子をさらに配置することも可能であり、こ
の場合はYg=Oとなるだけで、第1図に示した回路に
より測距することができる。Of course, it is also possible to perform the scanning on four or more points one by one, on any pair symmetrical to the center of the screen, or even on a combination thereof. Furthermore, it is also possible to further arrange a light emitting element for distance measuring the center part of the screen, and in this case, just by setting Yg=O, distance can be measured by the circuit shown in FIG.
また、演算制御回路14と15とで二次元の情報(デー
タDI、D2)を同時に処理するようにしたが、センサ
アンプ9と10の出力をスイッチにより選択し、演算制
御回路14へ時分割にて各信号電圧が入力するような構
成にすれば、前記演算制御回路15を省くことが可能で
ある。In addition, although the two-dimensional information (data DI, D2) is processed simultaneously by the arithmetic and control circuits 14 and 15, the outputs of the sensor amplifiers 9 and 10 are selected by switches and sent to the arithmetic and control circuit 14 in a time-sharing manner. If the configuration is such that each signal voltage is inputted, the arithmetic control circuit 15 can be omitted.
(発明の効果)
以上説明したように5本発明によれば、撮影画面の中心
より基線長方向とそれに垂直な方向の両成分をもつ方向
にずらして被写体に向けて光を投射する投光手段と、撮
影画面の中心にX軸、Y軸の交点を対応させ、基線長方
向とX軸方向を平行にして、前記被写体から反射された
光による前記投光手段の二次像を結像する二次元受光手
段と、該二次元受光手段のX軸出力とY軸出力から前記
二次像のX軸方向及びY軸方向の位置を演算する演算手
段と、前記二次像のX軸方向の位置の演算値を、前記二
次像のY軸方向の位置の演算値、及び前記投光手段の光
が撮影画面の中心よりずれる方向と基線長方向の成す角
度によって補正し、測距情報を算出する測距情報算出手
段とを備え、以って、投光手段の光の基線長方向ずれ成
分による誤差を補正するようにしたから、カメラの姿勢
に拘らず、周辺部の距離情報をより的確に検出すること
ができる。(Effects of the Invention) As explained above, according to the present invention, the light projecting means projects light toward the subject while being shifted from the center of the photographic screen in a direction having both components in the base line length direction and in a direction perpendicular to the base line length direction. The intersection point of the X-axis and Y-axis corresponds to the center of the photographing screen, and the base line length direction and the X-axis direction are made parallel, and a secondary image of the light projecting means is formed by the light reflected from the subject. a two-dimensional light receiving means; a calculating means for calculating the position of the secondary image in the X-axis direction and the Y-axis direction from the X-axis output and Y-axis output of the two-dimensional light receiving means; The calculated value of the position is corrected by the calculated value of the position of the secondary image in the Y-axis direction, and the angle formed by the direction in which the light of the light projecting means deviates from the center of the photographing screen and the baseline length direction, and the distance measurement information is obtained. Since the present invention is equipped with distance measurement information calculation means to calculate distance information, and thereby corrects the error caused by the deviation component in the base line length direction of the light of the light projecting means, it is possible to obtain more distance information in the peripheral area regardless of the camera posture. It can be detected accurately.
第1図は本発明の一実施例を示すブロック図、第2図は
本発明に使用される二次元の半導体装置検出器の平面及
び側面図、第3図は第2図の半導体装置検出器を用いた
本発明の一実施例である測距光学系を説明する図、第4
図は同じくある投光光学系の配置関係を示す平面及び正
面図、第5図は同じく投光素子を駆動する駆動系を示す
図、第6図は同じく半導体装置検出器上の二次像を説明
する図、第7図は同じく半導体装置検出器上での二次像
が移動した場合を説明する図である。
l・・・・・・半導体装置検出器、2・・・・・・投光
素子、7.8・・・・・・演算モード切換スイッチ、9
,10・・・・・・センサアンプ、14.15・旧・・
演算制御回路、16・・・・・・マイクロコンピュータ
、SMD・・・用対選択信号、D、、D2・・・・・・
データ信号、P1〜P4・・・・・・反射像。
特許出願人 キャノン株式会社
代 理 人 中 村 稔第1図FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a plan and side view of a two-dimensional semiconductor device detector used in the present invention, and FIG. 3 is the semiconductor device detector of FIG. 2. A fourth diagram illustrating a distance measuring optical system which is an embodiment of the present invention using
The figure also shows a plan view and a front view showing the arrangement of a light projecting optical system, FIG. 5 shows a drive system for driving a light projecting element, and FIG. 6 shows a secondary image on a semiconductor device detector. The explanatory diagram, FIG. 7, is a diagram similarly explanatory of the case where the secondary image on the semiconductor device detector moves. l...Semiconductor device detector, 2...Light emitter, 7.8...Calculation mode changeover switch, 9
, 10...Sensor amplifier, 14.15 Old...
Arithmetic control circuit, 16... Microcomputer, SMD... pair selection signal, D, , D2...
Data signal, P1 to P4...Reflection image. Patent Applicant Canon Co., Ltd. Agent Minoru Nakamura Figure 1
Claims (1)
の両成分をもつ方向にずらして被写体に向けて光を投射
する投光手段と、撮影画面の中心にX軸、Y軸の交点を
対応させ、基線長方向とX軸方向を平行にして、前記被
写体から反射された光による前記投光手段の二次像を結
像する二次元受光手段と、該二次元受光手段のX軸出力
とY軸出力から前記二次像のX軸方向及びY軸方向の位
置を演算する演算手段と、前記二次像のX軸方向の位置
の演算値を、前記二次像のY軸方向の位置の演算値、及
び前記投光手段の光が撮影画面の中心よりずれる方向と
基線長方向の成す角度によって補正し、測距情報を算出
する測距情報算出手段とを備えた広視野型測距装置。1. A light projection means that projects light toward the subject in a direction that is shifted from the center of the photographic screen in a direction that has both components in the base line length direction and a direction perpendicular thereto, and a light projection means that projects light toward the subject in a direction that has both components in the base line length direction and a direction perpendicular to the base line length direction, and a point of intersection of the X and Y axes at the center of the photographic screen. a two-dimensional light receiving means that forms a secondary image of the light projecting means by light reflected from the subject with the base line length direction and the X-axis direction parallel to each other; and an X-axis output of the two-dimensional light receiving means. and a calculation means for calculating the position of the secondary image in the X-axis direction and the Y-axis direction from the Y-axis output; A wide field of view type measurement device comprising a distance measurement information calculation means for calculating distance measurement information by correcting the calculated value of the position and the angle formed by the direction in which the light of the light projecting means deviates from the center of the photographing screen and the base line length direction. range device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4568286A JPS62203011A (en) | 1986-03-03 | 1986-03-03 | Wide visual field type distance measuring apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4568286A JPS62203011A (en) | 1986-03-03 | 1986-03-03 | Wide visual field type distance measuring apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62203011A true JPS62203011A (en) | 1987-09-07 |
Family
ID=12726162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4568286A Pending JPS62203011A (en) | 1986-03-03 | 1986-03-03 | Wide visual field type distance measuring apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62203011A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63302315A (en) * | 1987-01-27 | 1988-12-09 | Chinon Kk | Distance measuring apparatus |
-
1986
- 1986-03-03 JP JP4568286A patent/JPS62203011A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63302315A (en) * | 1987-01-27 | 1988-12-09 | Chinon Kk | Distance measuring apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7131732B2 (en) | Projector apparatus, inclination angle obtaining method, and projection image correction method | |
CN112888913B (en) | Three-dimensional sensor with column-to-column channels | |
EP1517550B1 (en) | Projector with tilt angle measuring device | |
US7042560B2 (en) | Angle detecting apparatus and projector having the same | |
JP2005331585A (en) | Projector having device for measuring distance and tilt angle | |
JPS62203011A (en) | Wide visual field type distance measuring apparatus | |
JPS6214015A (en) | Ranging instrument | |
JPS626115A (en) | distance measuring device | |
JP2614446B2 (en) | Distance measuring device | |
US20060139582A1 (en) | Projection display apparatus and focus adjustment method for the same | |
JPH1047940A (en) | Measuring plate, wheel alignment measuring device and wheel alignment measuring method | |
JP2005354232A (en) | Image projection apparatus | |
JP3031929B2 (en) | Distance measuring method and auxiliary light emitting device | |
JP3644726B2 (en) | camera | |
JPH1096851A (en) | Range finder for camera | |
JP3442472B2 (en) | Camera ranging device | |
JP2005070412A (en) | Image projector and its focus adjustment method | |
JPS6238311A (en) | Distance measuring instrument | |
JP3709405B2 (en) | Projector having tilt angle measuring device | |
JP3494576B2 (en) | Optical declination measuring device | |
JP3504698B2 (en) | Distance measuring device | |
JP2885703B2 (en) | Optical distance measuring device | |
JPS6214016A (en) | Ranging instrument | |
JPH06148514A (en) | Range finder | |
JP3233435B2 (en) | Distance measuring device |