[go: up one dir, main page]

JPS62202756A - Thin film type thermal head - Google Patents

Thin film type thermal head

Info

Publication number
JPS62202756A
JPS62202756A JP61044254A JP4425486A JPS62202756A JP S62202756 A JPS62202756 A JP S62202756A JP 61044254 A JP61044254 A JP 61044254A JP 4425486 A JP4425486 A JP 4425486A JP S62202756 A JPS62202756 A JP S62202756A
Authority
JP
Japan
Prior art keywords
thermal head
resistance
thin film
boron
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61044254A
Other languages
Japanese (ja)
Other versions
JPH0712692B2 (en
Inventor
Naotoshi Yasuhara
安原 直俊
Michio Arai
三千男 荒井
Takeshi Nakada
剛 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP61044254A priority Critical patent/JPH0712692B2/en
Publication of JPS62202756A publication Critical patent/JPS62202756A/en
Publication of JPH0712692B2 publication Critical patent/JPH0712692B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N97/00Electric solid-state thin-film or thick-film devices, not otherwise provided for

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electronic Switches (AREA)

Abstract

PURPOSE:To obtain a thin film type thermal head of high heat resistance and resistivity having a long life and an adjustable temperature coefficient, by using a heat resistor containing a high-melting metal, a silicon, a boron, an oxygen, and a nitrogen, as main ingredients. CONSTITUTION:A glaze layer 2 is formed on the surface of a glazed ceramic substrate 1. On the glaze layer 2 a thin film resistance heating element 3 is formed by a sputtering process, and thereon an electric power supplying electrode 4 (Ni, Cr, and Al, etc., especially Al) is formed by deposition or sputtering, and finally thereon a wear resistant protective film 6 (e.g. BP series, Si-O series, Al-Si-O series, etc.) is formed by a sputtering process, etc. The heating resistor 3 is a nitrogen-oxide containing a silicon, a boron, and a high- melting metal M (at east one from among Ti, Mo, W, Hf, Ni, V, Zr, La, Cr, Ta, Fe, and Co). In a thermal head using the above heating resistor, the value of resistance is not varied even with the application of many heat pulses, the heat resistance is enhanced, and, additionally, the values of resistivity and resistance temperature coefficient can be desirably obtained because of the variation to a great extent according to the content of the high-melting metal.

Description

【発明の詳細な説明】 [技術分野] 本発明は薄膜型サーマルヘッドに関し、特に改良された
薄膜発熱抵抗体を有する薄膜型サーマルヘッドに関する
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a thin film thermal head, and more particularly to a thin film thermal head having an improved thin film heating resistor.

[従来技術とその問題点] 薄膜発熱抵抗体を用いる薄膜型サーマルヘッドはコンピ
ュータ、ワードプロセッサ、ファクシミリ等における印
字ヘッドとして広く用いられている。サーマルヘッドは
抵抗発熱体のドツトを多数配列し、それらを選択的に通
電することにより所望のパターンないし文字の形に発熱
させ、印字リボンの色材を用紙面へ熱転写させるように
なっている。抵抗発熱体には種々のものが知られ、或い
は使用されているが、良く用いられる材料としてはNi
−Cr 1丁a2N 、丁a−5i02、Cr−3i等
がある。
[Prior Art and its Problems] Thin-film thermal heads using thin-film heating resistors are widely used as print heads in computers, word processors, facsimile machines, and the like. The thermal head has a large number of resistive heating element dots arranged, and selectively energizes them to generate heat in a desired pattern or character shape, thereby thermally transferring the color material of the printing ribbon to the paper surface. Various resistance heating elements are known or used, but the most commonly used material is Ni.
-Cr 1-a2N, Cr-5i02, Cr-3i, etc.

これらはサーマルヘッド用抵抗発熱体としてすぐれた特
性を有するが、種々の欠点も有する。合金等の金属系の
発熱抵抗体は耐熱性及び耐酸化性に劣り、印字に必要な
エネルギーを繰返し印加した場合、発熱によって発熱抵
抗体に酸化現象が発生し、抵抗値の増大を招き、印字特
性の低下を招く。
Although these have excellent properties as resistance heating elements for thermal heads, they also have various drawbacks. Metal-based heating resistors such as alloys have poor heat resistance and oxidation resistance, and when the energy necessary for printing is repeatedly applied, the heat generation causes oxidation of the heating resistor, leading to an increase in resistance value and causing printing problems. This leads to deterioration of characteristics.

また、これらの金属系の発熱抵抗体は繰返し通電による
熱パルスにより急激な熱サイクル下に置かれたとき大き
く熱膨張・収縮し、下地基板と表面耐摩耗性保護膜との
間に大きい応力を生じてクラックの原因となる。一方、
Ta5i02等の酸化物や窒化物等の場合には、熱伝導
率が小さいため発熱体内での均熱性に欠け、印字品質を
低下させた。
In addition, these metal heating resistors undergo large thermal expansion and contraction when placed under rapid thermal cycles due to heat pulses caused by repeated energization, creating large stress between the underlying substrate and the surface wear-resistant protective film. This causes cracks. on the other hand,
In the case of oxides and nitrides such as Ta5i02, their thermal conductivity is low, so they lack heat uniformity within the heating element, resulting in a decrease in printing quality.

また、金属系の発熱抵抗体は固有抵抗率が小さく、また
L記の化合物系の発熱抵抗体でも固有抵抗が小さく(丁
a2Nで200〜300μΩcm、丁a−3i02でも
約2000μΩcm)、サーマルヘッドに必要な面積抵
抗1(7口前後を得ようとすると、数十への薄膜の発熱
抵抗体を実現しなければなら\ず、安定して装造づるこ
とが困難である。典型的な製法はスパッタリング、イオ
ンブレーティング、CVD法などの周知の半導体プロセ
ス技術であるが、膜厚が1000人程度4いと工程制御
が困難である。また、これらの発熱体材料の抵抗温度係
数は成分比に対して比較的不感でおり、所望値に制御す
ることが困難である。さらに、金属系では発熱体と電力
供給電極との間に反応が生じ、発熱抵抗体の抵抗値変動
や断線等の不良の発生の原因となる。
In addition, metal-based heating resistors have a small specific resistivity, and even compound-based heating resistors listed in L have a small specific resistance (200 to 300 μΩcm for a 2N, approximately 2000 μΩcm for a 3i02), making it suitable for thermal heads. In order to obtain the required sheet resistance of 1 (around 7 holes), several tens of thin film heating resistors must be realized, and it is difficult to stably manufacture them.The typical manufacturing method is Although well-known semiconductor process technologies such as sputtering, ion blating, and CVD methods are used, process control is difficult when the film thickness is approximately 1,000 layers.In addition, the temperature coefficient of resistance of these heating element materials varies with the component ratio. It is relatively insensitive and difficult to control to a desired value.Furthermore, in metal systems, a reaction occurs between the heating element and the power supply electrode, resulting in defects such as fluctuations in the resistance value of the heating resistor and disconnection. cause the occurrence.

[発明の目的] 従って、本発明の目的は、耐熱性が高く、寿命が長く、
固有抵抗率が大きく、しかも温度係数が調整可能な薄膜
発熱抵抗体を用いた薄膜型サーマルヘッドを提供するこ
とにある。
[Objective of the Invention] Therefore, the object of the present invention is to provide a material with high heat resistance, long life, and
It is an object of the present invention to provide a thin film type thermal head using a thin film heating resistor having a large specific resistivity and an adjustable temperature coefficient.

[発明の概要] 本発明は、薄膜発熱抵抗体として、高融点金属と、硅素
と、ホウ素と、酸素と、窒素とを主成分として含有させ
たことを特徴とする。すなわち、)1−3i−8−0−
N系発熱抵抗体でおる。ここにHは高融点金属でTi、
Ha、w 1Hf、 Ni、 V 、 Zr、 La、
 Ta。
[Summary of the Invention] The present invention is characterized in that a thin film heating resistor contains a high melting point metal, silicon, boron, oxygen, and nitrogen as main components. That is, )1-3i-8-0-
Covered with N-based heating resistor. Here H is a high melting point metal, Ti,
Ha, w 1Hf, Ni, V, Zr, La,
Ta.

Fe、 Co及びC「より選ばれた少なくとも1種であ
る。
At least one selected from Fe, Co and C.

高融点金属の存在により発熱体の抵抗率は繰返し熱パル
スによっても長期に変化せず、安定したサーマルヘッド
が得られる。また金属系の場合とちがい、酸−窒化物で
あるため熱膨張・収縮が小さく、上下層との熱膨張係数
の差による大きい内部応力の発生、ひいてはクラックの
発生がない。
Due to the presence of the high melting point metal, the resistivity of the heating element does not change over a long period of time even with repeated heat pulses, resulting in a stable thermal head. Also, unlike metal-based materials, since it is an oxy-nitride, thermal expansion and contraction are small, and large internal stress due to the difference in thermal expansion coefficient between the upper and lower layers does not occur, and cracks do not occur.

金属や窒化ホウ素、硅素の間化を増やせば熱伝導性が良
くなり均熱性が向上し、また十分な窒素の存在により経
時酸化のおそれもなく特性が安定する。さらに、高融点
金属の含有率に対して固有抵抗率及び抵抗温度係数が大
きく変化するので、その含有間を制御することでサーマ
ルヘッドの特性の制御範囲が大きくなり、例えば104
μΩcmのような発熱体抵抗の設計も容易になし得る。
Increasing the concentration of metal, boron nitride, and silicon improves thermal conductivity and improves thermal uniformity, and the presence of sufficient nitrogen stabilizes the properties without fear of oxidation over time. Furthermore, since the specific resistivity and temperature coefficient of resistance change greatly depending on the content of high-melting point metals, controlling the content increases the control range of the characteristics of the thermal head.
It is also possible to easily design a heating element resistance such as μΩcm.

このような高抵抗率では、発熱体の薄膜は1000人前
後が好適となり、成膜が容易となる。
With such a high resistivity, the thickness of the heating element thin film is preferably around 1000, which facilitates film formation.

[発明の詳細な説明] 本発明の薄膜型サーマルヘッドの構成の概要は第1図に
示されている。図中1はグレーズドセラミック基板であ
り、その表面にグレーズ層2が形成される。グレーズ層
2は磁器のうわぐすりに相当する酸化物であり、硅素及
びアルミニウム酸化物を含み、またより好ましくはさら
に発熱抵抗体に用いられる高融点金属と同じものを含む
。グレーズ層2の上には例えば公知のスパッタ法により
本発明の薄膜抵抗発熱体3が成膜され、さらに電力供給
用電極(Ni、C「、酊等、特に酊)4が蒸着またはス
パッタなどで成膜され、最後に公知の耐摩耗性保護膜(
例えばBP系、5i−0系、Aj  −3i−0系等)
6がスパッタ法等で成膜される。
[Detailed Description of the Invention] The outline of the structure of the thin film type thermal head of the present invention is shown in FIG. In the figure, 1 is a glazed ceramic substrate, on the surface of which a glazed layer 2 is formed. The glaze layer 2 is an oxide corresponding to a porcelain glaze and contains silicon and aluminum oxides, and more preferably also contains the same high melting point metal used in the heating resistor. A thin film resistance heating element 3 of the present invention is formed on the glaze layer 2 by, for example, a well-known sputtering method, and a power supply electrode (Ni, C, etc., in particular) 4 is formed by vapor deposition or sputtering. Finally, a known wear-resistant protective film (
For example, BP series, 5i-0 series, Aj-3i-0 series, etc.)
6 is formed by a sputtering method or the like.

発熱抵抗体3は本発明に従って、硅素とホウ素と高融点
金JFmM (丁1、)to、 W 、In1旧、V 
、 lr。
The heating resistor 3 is made of silicon, boron, and high melting point gold JFmM (1,) to, W, In1, V, according to the present invention.
, lr.

La、 Cr、Ta、 Fe、 Coの少なくとも1種
)とを含む窒−酸化物である。本発明で特に重要なのは
ホウ素を含むことである。この高融点金属は種類によっ
て作用上のちがいがあるが、しかし単独またはどの組合
せを用いても発熱抵抗体の抵抗率と抵抗温度係数とはそ
れぞれ107〜102μΩcm及び−15OO〜+so
oppm /’Cの範囲で大きく変動する。従って特定
の高融点金属含有率を選択することにより、所望の抵抗
率及び温度係数の発熱体を設計しつる。
It is a nitride-oxide containing at least one of La, Cr, Ta, Fe, and Co). What is particularly important in the present invention is the inclusion of boron. The action of this high melting point metal differs depending on the type, but regardless of whether it is used alone or in any combination, the resistivity and temperature coefficient of resistance of the heating resistor are 107 to 102 μΩcm and -15OO to +so, respectively.
It fluctuates widely in the oppm/'C range. Therefore, by selecting a specific refractory metal content, a heating element with a desired resistivity and temperature coefficient can be designed.

例えば抵抗率104μΩcmのものを選択すれば膜厚は
1000Å以上となしうる。一般に高融点金属は10〜
60wt%の範囲で選択しうる。この点については実施
例により具体的に示す。 B 、Si、 0 、 Nは
耐熱性、耐酸化性の物質を形成しうるちのであり、その
比率を変えることにより耐熱性を保ちながら抵抗率を変
えることができる。例えばSl o、34B0.06 
 0.15  NO,33抵抗率>>1°7μΩcm−
温度係数 < −1500pl)Itl/ ℃であるが
、高融点金属Mの含有率が10wt%以上で 107μ
Ωcm以下、−100ppm/ ’C以上を得ることが
できる。
For example, if one with a resistivity of 104 μΩcm is selected, the film thickness can be 1000 Å or more. Generally, high melting point metals are 10~
It can be selected within a range of 60 wt%. This point will be specifically illustrated in Examples. B, Si, 0, and N form a heat-resistant and oxidation-resistant substance, and by changing their ratio, the resistivity can be changed while maintaining heat resistance. For example Sl o, 34B0.06
0.15 NO, 33 Resistivity >>1°7μΩcm-
Temperature coefficient < -1500pl)Itl/℃, but when the content of high melting point metal M is 10wt% or more, it is 107μ
It is possible to obtain Ωcm or less and -100ppm/'C or more.

)1 、 Si、B、0、Nの少なくとも2種を含有す
るグレーズ層2を選択すれば、本発明の発熱抵抗体は下
地基板の面に良くなじみ、また熱膨張係数の差が少なく
なり好ましい。また耐摩耗保護層6に対しても同様とす
ればさらに好都合である。
) 1. If the glaze layer 2 containing at least two of Si, B, 0, and N is selected, the heating resistor of the present invention will fit well on the surface of the underlying substrate, and the difference in coefficient of thermal expansion will be reduced, which is preferable. . It would be even more convenient if the same applies to the wear-resistant protective layer 6.

本発明の発熱抵抗体は特にスパッタ法で製造することが
できる。例えば所望の組成比を有する固形物粉末を予め
製造し、それを圧縮成形してペレット化し、これをター
ゲットとしてArをスパッタガスとして用い、その他必
要に応じて02、N2ガス等を共存させ、酊イオンをタ
ーゲットに衝撃させ、放出されたイオンないし原子を基
板上に付着させる。膜組成はペレットの組成及びスパッ
タ条件を変えることにより調整しうる。
The heating resistor of the present invention can be manufactured particularly by a sputtering method. For example, solid powder having a desired composition ratio is produced in advance, it is compressed into pellets, and this is used as a target and Ar is used as a sputtering gas, and if necessary, 02 gas, N2 gas, etc. Ions are bombarded with a target, and the released ions or atoms are deposited on a substrate. The film composition can be adjusted by changing the pellet composition and sputtering conditions.

実施例 組成H0x ”’ 0.34 80.06 00.15
 NO,33のぺ′ットをターゲットとして1〜6mT
orrのArをスパッタガスとして用い、ターゲット−
基板距離60mm、RF電力1〜10W/Cm’、基板
温度200〜400℃の条件を調整して、上記組成の発
熱抵抗体を製作し、さらにA!電極、保護膜を順に成膜
してサーマルヘッドを作成した。なお、基板表面層及び
保護層にはSi、8の他にNoを少量含有させた。得ら
れたサーマルヘッドに対して、次ぎのテストを行った。
Example composition H0x ”' 0.34 80.06 00.15
1-6mT targeting No. 33 pet
Using orr Ar as sputtering gas, the target
A heating resistor having the above composition was manufactured by adjusting the conditions of substrate distance 60 mm, RF power 1 to 10 W/Cm', and substrate temperature 200 to 400°C, and further A! A thermal head was created by sequentially depositing electrodes and a protective film. Note that the substrate surface layer and the protective layer contained a small amount of No in addition to Si and 8. The following tests were conducted on the obtained thermal head.

x=0.12のサンプルに対してパルス幅0.3m秒、
周期1m秒の熱パルスを加えたときの抵抗値変化率を第
2図に示した。またMOの含有率による抵抗率及び抵抗
温度係数を第3図に示した。なお対照サンプルとして従
来の丁a2N発熱抵抗体Aと、Zr−3i発熱抵抗体C
に対する耐熱パルステストの結果を第2図に併記した。
Pulse width 0.3 msec for sample x = 0.12,
Figure 2 shows the rate of change in resistance when a heat pulse with a period of 1 msec was applied. Further, the resistivity and temperature coefficient of resistance depending on the MO content are shown in FIG. In addition, as control samples, a conventional D2N heating resistor A and a Zr-3i heating resistor C were used.
The results of the heat resistance pulse test are also shown in Figure 2.

第2図のBは本発明による発熱抵抗体を用いたサーマル
ヘッドを示す。
B in FIG. 2 shows a thermal head using a heating resistor according to the present invention.

[作用効果] 第2図から分るように、本発明の)to−3i−8−0
−N未発熱抵抗体Bを用いたサーマルヘッドは熱パルス
を多数加えても抵抗値が変らず、耐熱性が良い。
[Operation and Effect] As can be seen from Fig. 2, the present invention) to-3i-8-0
The thermal head using the -N non-heat generating resistor B has good heat resistance as the resistance value does not change even if a large number of heat pulses are applied.

従来の発熱抵抗体A(丁a2N)やC(Zr−3i)で
は成る一定数の熱パルスを越えると抵抗の変化が大きく
なる。
When a certain number of heat pulses are exceeded in the conventional heating resistors A (Za2N) and C (Zr-3i), the change in resistance becomes large.

第3図から分るように、本発明の発熱抵抗体は高融点金
属の含有量に応じてその抵抗率及び抵抗温度係数が大き
く変動する。従って高融点金属の含有率を調整すること
によってこれらの値を所望の値に設計することができる
As can be seen from FIG. 3, the resistivity and temperature coefficient of resistance of the heating resistor of the present invention vary greatly depending on the content of the high melting point metal. Therefore, these values can be designed to desired values by adjusting the content of the high melting point metal.

耐熱性の向上は、発熱体面内の温度分布の均一化、及び
熱膨張係数の減少によるものと思われる。
The improvement in heat resistance is thought to be due to the uniformity of the temperature distribution within the plane of the heating element and the reduction in the coefficient of thermal expansion.

また下地基板の表面層及び/または耐摩耗保護層に)t
o、 Si、 B 、 O、t4を含有した材料を用い
れば、相互間のなじみが良くなって密着性が向上し、熱
衝撃等に強くなり、クラック・剥離等の発生が抑制され
る。また、本発明の発熱抵抗体は耐薬品性に優れ、アル
カリや湿気の影響を受は難い。
Also, on the surface layer of the underlying substrate and/or the wear-resistant protective layer)
If a material containing O, Si, B, O, and t4 is used, the mutual compatibility will be improved, the adhesion will be improved, the material will be resistant to thermal shock, etc., and the occurrence of cracks, peeling, etc. will be suppressed. Further, the heating resistor of the present invention has excellent chemical resistance and is hardly affected by alkali or moisture.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はサーマルヘッドの構造を示す断面図、第2図は
本発明の発熱抵抗体を用いたサーマルヘッド及び従来例
の耐熱テストを示すグラフ、及び第3図は本発明のサー
マルヘッドにおいて発熱抵抗体中に含有される高融点金
属と抵抗率及び抵抗温度係数との関係を示すグラフであ
る。
FIG. 1 is a cross-sectional view showing the structure of a thermal head, FIG. 2 is a graph showing a heat resistance test of a thermal head using the heating resistor of the present invention and a conventional example, and FIG. 3 is a graph showing heat generation in the thermal head of the present invention. It is a graph showing the relationship between a high melting point metal contained in a resistor, resistivity, and resistance temperature coefficient.

Claims (1)

【特許請求の範囲】 1、熱下地基板上に、高融点金属と硅素とホウ素と酸素
と窒素とを主成分とする発熱抵抗体薄膜を設け、その表
面に耐摩耗性保護膜を形成し、さらに前記抵抗体に電力
供給用電極を接続した、薄膜型サーマルヘッド。 2、高融点金属がTi、Mo、W,Hf、Ni、V、Z
r、La、Cr、Ta、Fe、Coよりなる群から選ば
れる前記第1項記載のサーマルヘッド。 3、下地基板の表面層が硅素と、ホウ素と、OとNと高
融点金属のうち少なくとも3種とを含んでいるグレーズ
である前記第1項または第2項記載のサーマルヘッド。 4、耐摩耗性保護膜が硅素とホウ素とOとNと高融点金
属のうち少なくとも2種を含んでいる前記第1項ないし
第3項のいずれかに記載のサーマルヘッド。 5、電力供給用電極がAl単層である前記第1項ないし
第4項のいずれかに記載のサーマルヘッド。
[Scope of Claims] 1. A heating resistor thin film containing a high melting point metal, silicon, boron, oxygen, and nitrogen as main components is provided on a thermal base substrate, and a wear-resistant protective film is formed on its surface, Furthermore, a thin film type thermal head has a power supply electrode connected to the resistor. 2. High melting point metal is Ti, Mo, W, Hf, Ni, V, Z
2. The thermal head according to item 1, which is selected from the group consisting of r, La, Cr, Ta, Fe, and Co. 3. The thermal head according to item 1 or 2, wherein the surface layer of the base substrate is a glaze containing at least three of silicon, boron, O, N, and a high melting point metal. 4. The thermal head according to any one of items 1 to 3, wherein the wear-resistant protective film contains at least two of silicon, boron, O, N, and a high melting point metal. 5. The thermal head according to any one of items 1 to 4 above, wherein the power supply electrode is an Al single layer.
JP61044254A 1986-03-03 1986-03-03 Thin-film thermal head Expired - Fee Related JPH0712692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61044254A JPH0712692B2 (en) 1986-03-03 1986-03-03 Thin-film thermal head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61044254A JPH0712692B2 (en) 1986-03-03 1986-03-03 Thin-film thermal head

Publications (2)

Publication Number Publication Date
JPS62202756A true JPS62202756A (en) 1987-09-07
JPH0712692B2 JPH0712692B2 (en) 1995-02-15

Family

ID=12686390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61044254A Expired - Fee Related JPH0712692B2 (en) 1986-03-03 1986-03-03 Thin-film thermal head

Country Status (1)

Country Link
JP (1) JPH0712692B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0736881A2 (en) * 1995-03-09 1996-10-09 Philips Patentverwaltung GmbH Electrical resistance device with CrSi resistance layer
US20130286137A1 (en) * 2010-12-25 2013-10-31 Kyocera Corporation Thermal head and thermal printer including the same
CN113645724A (en) * 2021-05-27 2021-11-12 邓景月 Demisting liquid crystal dimming film and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5311037A (en) * 1976-07-19 1978-02-01 Toshiba Corp Thin film thermal head
JPS5325442A (en) * 1976-08-20 1978-03-09 Matsushita Electric Ind Co Ltd Thermal print head

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5311037A (en) * 1976-07-19 1978-02-01 Toshiba Corp Thin film thermal head
JPS5325442A (en) * 1976-08-20 1978-03-09 Matsushita Electric Ind Co Ltd Thermal print head

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0736881A2 (en) * 1995-03-09 1996-10-09 Philips Patentverwaltung GmbH Electrical resistance device with CrSi resistance layer
EP0736881A3 (en) * 1995-03-09 1997-06-04 Philips Patentverwaltung Electrical resistance including a CrSi resistive layer
US20130286137A1 (en) * 2010-12-25 2013-10-31 Kyocera Corporation Thermal head and thermal printer including the same
US8810618B2 (en) * 2010-12-25 2014-08-19 Kyocera Corporation Thermal head and thermal printer including the same
CN113645724A (en) * 2021-05-27 2021-11-12 邓景月 Demisting liquid crystal dimming film and preparation method thereof

Also Published As

Publication number Publication date
JPH0712692B2 (en) 1995-02-15

Similar Documents

Publication Publication Date Title
JPH07132628A (en) Thermal head and production thereof
JPS62202756A (en) Thin film type thermal head
JP2870692B2 (en) Thin-film thermal head
JPH0312551B2 (en)
JPS62201264A (en) Membrane type thermal head
JPS62202753A (en) Thin film type thermal head
JPS62202754A (en) Thin film type thermal head
JP3205404B2 (en) Wear-resistant protective film and thermal head having the same
JPS62202755A (en) Thin film type thermal head
JPS62201266A (en) Membrane type thermal head
US4862195A (en) Overcoating layer for thermal printing head
JPS62201263A (en) Membrane type thermal head
JPS62201265A (en) Membrane type thermal head
JPH0712689B2 (en) Thermal head
JPS63303766A (en) Thermal head
JPS62201262A (en) Membrane type thermal head
JPS623968A (en) Abrasion-resistant thin film thermal head
JP2990719B2 (en) Thermal head
JPS6145543B2 (en)
JP2775884B2 (en) Thermal head
JPS61297159A (en) Thermal head and manufacture thereof
JPS63135260A (en) Thermal head
JPS6367319B2 (en)
WO2022255987A1 (en) Heater and method for producing a heater
JPH05193171A (en) Thermal head

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees