JPS62202732A - Composite material consisting of graphite and copper or copper alloy - Google Patents
Composite material consisting of graphite and copper or copper alloyInfo
- Publication number
- JPS62202732A JPS62202732A JP4662086A JP4662086A JPS62202732A JP S62202732 A JPS62202732 A JP S62202732A JP 4662086 A JP4662086 A JP 4662086A JP 4662086 A JP4662086 A JP 4662086A JP S62202732 A JPS62202732 A JP S62202732A
- Authority
- JP
- Japan
- Prior art keywords
- plate
- copper
- graphite
- composite material
- copper plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Ceramic Products (AREA)
- Physical Vapour Deposition (AREA)
- Laminated Bodies (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、例えばX線ターゲットやスパッタリングター
ゲット等に使われる黒鉛と銅または銅合金からなる複合
材に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a composite material made of graphite and copper or a copper alloy, which is used, for example, in X-ray targets, sputtering targets, and the like.
銅および銅合金と黒鉛とは互いに熱膨張率が大きく異な
っている。鋼および銅合金の線膨張係数が18〜20X
IO″6であるのに対し、黒鉛の線膨張係数は3〜丁×
10″6である。一般に、ろう付けや拡散接合で熱膨張
率が実用上問題にならない範囲は、両者の線膨張、係数
の差がl0XIO”より小さい場合である。Copper and copper alloys and graphite have significantly different coefficients of thermal expansion. The linear expansion coefficient of steel and copper alloy is 18~20X
IO″6, whereas the linear expansion coefficient of graphite is 3 to 1 ×
10"6. Generally, the range in which the coefficient of thermal expansion does not pose a practical problem in brazing or diffusion bonding is when the difference in linear expansion and coefficient between the two is smaller than 10XIO".
このため、両者を硬ろう付けや拡散接合などで接合する
と、接合後の冷却過程で銅板の収縮率の方が大きいため
両者に寸法差を生じて大きな残留応力が発生し、脆性材
料である黒鉛板が破壊することがある。For this reason, when the two are joined by hard brazing or diffusion bonding, the shrinkage rate of the copper plate is greater during the cooling process after joining, resulting in a dimensional difference between the two and a large residual stress. The board may be destroyed.
例えば、第9図に示されるように黒鉛板1と銅板2を互
いに厚み方向に重ねるに当って、両者を高温度で拡散接
合(、または硬ろう付け)したとする。この場合、接合
後の冷却過程で銅板2は黒鉛板1に対して相対的に収縮
する。このため接合時の温度と冷却時の温度差が大きい
場合に、黒鉛板1と銅板2は、第9図に想像線で示した
ように撓み、極端な場合には第10図に示されるように
黒鉛板1に放射状のクラック3が生じる。このため黒鉛
板1と銅板2からなる複合材は、小さなテストピースで
は接合可能な場合があるが、実用的な大きさでは黒鉛板
1が破壊することが多い。For example, as shown in FIG. 9, suppose that a graphite plate 1 and a copper plate 2 are stacked on each other in the thickness direction and are diffusion bonded (or hard brazed) at high temperature. In this case, the copper plate 2 contracts relative to the graphite plate 1 during the cooling process after bonding. Therefore, if there is a large temperature difference between the bonding temperature and the cooling temperature, the graphite plate 1 and the copper plate 2 will bend as shown by the imaginary lines in Figure 9, and in extreme cases, as shown in Figure 10. Radial cracks 3 appear on the graphite plate 1. For this reason, the composite material consisting of the graphite plate 1 and the copper plate 2 may be able to be joined with a small test piece, but the graphite plate 1 often breaks when it is of a practical size.
従って現状では、両者を機械的手段によって締結するか
、樹脂系接着剤による接合、もしくはインジウムや半田
等の比較的低温で行なわれる軟ろう付けによって接合し
ている。Therefore, at present, they are joined by mechanical means, by resin-based adhesive, or by soft brazing using indium, solder, or the like at a relatively low temperature.
しかしながら、機械的締結では荷重が局部的に負荷され
るため締結力をあまり高くすることができない。一方、
樹脂系接着剤や軟ろう付けによる接合では、接合部の耐
熱性が劣るため、X線ターゲットやスパッタリングター
ゲットのように高温で使用されるものには問題がある。However, in mechanical fastening, the load is applied locally, so the fastening force cannot be increased very much. on the other hand,
Bonding using a resin adhesive or soft brazing has poor heat resistance at the bonded portion, which poses a problem for those used at high temperatures, such as X-ray targets and sputtering targets.
しかも真空や特殊雰囲気中で使用すると、接着剤から不
純物ガスが発生する可能性がある。Moreover, when used in a vacuum or special atmosphere, there is a possibility that impurity gases will be generated from the adhesive.
本発明の複合材は、黒鉛板と、純銅または銅合金からな
る銅板と、この銅板よりも熱膨張率が小さい金属からな
るインサート板とを具備し、かつ上記黒鉛板と銅板を拡
散接合あるいは硬ろう付け等の高温で行なう接合手段に
より上記インサート板を介して互いに接合させたもので
ある。上記インサート板は、上記銅板よりも弾性係数の
高い金属が望ましい。The composite material of the present invention comprises a graphite plate, a copper plate made of pure copper or a copper alloy, and an insert plate made of a metal whose coefficient of thermal expansion is smaller than that of the copper plate, and the graphite plate and the copper plate are bonded by diffusion bonding or hardening. They are bonded to each other via the insert plate by a high-temperature bonding means such as brazing. The insert plate is preferably made of a metal having a higher elastic modulus than the copper plate.
上記構成の複合材は、銅板と黒鉛板とが両者の間に耐熱
性のインサート板を介して接合されているので、接合後
の冷却過程において銅板の収縮がインサート板によって
押えられる。このため複合材の撓みが減少し、冷却過程
で黒鉛板にクラックが生じたり破壊することを防止でき
る。In the composite material having the above structure, the copper plate and the graphite plate are joined with a heat-resistant insert plate interposed therebetween, so that shrinkage of the copper plate is suppressed by the insert plate during the cooling process after joining. Therefore, the deflection of the composite material is reduced, and it is possible to prevent the graphite plate from cracking or breaking during the cooling process.
上記複合材の黒鉛板と銅板は、互いに硬ろ・う付けある
いは拡散接合など高温で行なわれる接合手段によって面
的に接合されているから、両者の接合強度が高くかつ耐
熱性がある。また、接着剤による接合と比較すると耐熱
性がはるかに優れており、かつ真空雰囲気中でガスの放
出を生じるおそれもない。Since the graphite plate and the copper plate of the above-mentioned composite material are bonded to each other in a plane by a bonding method performed at high temperature such as hard brazing, brazing or diffusion bonding, the bonding strength between the two is high and heat resistant. Furthermore, compared to bonding using adhesives, the heat resistance is far superior, and there is no risk of gas release in a vacuum atmosphere.
第1図に示された一実施例において、複合材5は黒鉛製
の板6と、純銅または銅合金からなる銅板7と、これら
黒鉛板6と銅板7との間に設けられたインサート板8と
を備えている。In one embodiment shown in FIG. 1, the composite material 5 includes a graphite plate 6, a copper plate 7 made of pure copper or a copper alloy, and an insert plate 8 provided between the graphite plate 6 and the copper plate 7. It is equipped with
インサート板8は、上記銅板7よりも熱膨張率が小さく
かつ融点が銅板7と同等もしくは銅板7よりも高い金属
からなる。対象となる金属は、Hf、I r、Mo、N
b、Os、Pt、Ta。The insert plate 8 is made of a metal having a coefficient of thermal expansion smaller than that of the copper plate 7 and a melting point equal to or higher than that of the copper plate 7 . Target metals are Hf, Ir, Mo, N
b, Os, Pt, Ta.
Ti、V、Zr、Wおよびこれら金属の合金である。イ
ンサート板8の線膨張係数は、黒鉛板6の線膨張係数に
近い値、もしくは黒鉛板6と銅板7の中間の値にあれば
よい。具体的には、黒鉛の線膨張係数をαCとした場合
に、
(aa−3x10″!1≦αC≦αC+5×10″6)
の範囲の金属を採用すれば、黒鉛板6との接合が可能で
ある。These are Ti, V, Zr, W, and alloys of these metals. The coefficient of linear expansion of the insert plate 8 may be close to the coefficient of linear expansion of the graphite plate 6 or a value intermediate between that of the graphite plate 6 and the copper plate 7. Specifically, when the linear expansion coefficient of graphite is αC, (aa-3x10″!1≦αC≦αC+5×10″6)
If a metal within the range of 2 is used, bonding with the graphite plate 6 is possible.
銅板7の厚みは、実用的には2〜’aOrnm位であり
、これに対してインサート板8の厚みは、その弾性係数
にも左右されるが、実用的には銅板7の厚みの1/20
ないし 115位、すなわち0.1ないし2゜Orm前
後のものが使用される。インサート板8は剛性の高いも
のが望ましいため、弾性係数が銅板7の弾性係数よりも
高い材料を選定するのがよい。The thickness of the copper plate 7 is practically about 2~'aOrnm, whereas the thickness of the insert plate 8 depends on its elastic modulus, but it is practically about 1/200 nm of the thickness of the copper plate 7. 20
to 115 degrees, that is, around 0.1 to 2°Orm, is used. Since it is desirable that the insert plate 8 has high rigidity, it is preferable to select a material whose elastic modulus is higher than that of the copper plate 7.
以上のことを考慮すると、インサート板8の材料にはM
o、W、Nbなどの難溶融・低熱膨張金属またはその合
金が好適である。Considering the above, the material of the insert plate 8 is M
Metals with low melting properties and low thermal expansion, such as O, W, and Nb, or alloys thereof are suitable.
上記インサート板8を黒鉛板6と銅板7との間に挟み、
接合温度まで加熱するとともに厚み方向に加圧すること
により、インサート板8を介して黒鉛板6と銅板7とが
拡散接合させられる。なお、黒鉛板6とインサート板8
との間、あるいは銅板7とインサート板8との間に適宜
の硬ろう材を介在させることにより、硬ろう付げによる
接合を行なってもよい。接合温度は例えば800ないし
1000℃位である。The insert plate 8 is sandwiched between the graphite plate 6 and the copper plate 7,
By heating to the bonding temperature and applying pressure in the thickness direction, the graphite plate 6 and the copper plate 7 are diffusion bonded via the insert plate 8. In addition, the graphite plate 6 and the insert plate 8
By interposing an appropriate hard brazing material between the copper plate 7 and the insert plate 8, the joining may be performed by hard brazing. The bonding temperature is, for example, about 800 to 1000°C.
接合後の冷却過程では黒鉛板6に比べて銅板7の収縮率
が大きいが、黒鉛板6と銅板7との間には剛性の高いイ
ンサート板8が挟み込まれており、かつこれらが互いに
拡散接合ないし硬ろう付げによって強固に接合されてい
るため、熱膨張率の差による銅板7の収縮が押えられる
。このため複合材5の撓みが減少し、黒鉛板6にクラッ
クが生じることが防止される。During the cooling process after bonding, the shrinkage rate of the copper plate 7 is greater than that of the graphite plate 6, but a highly rigid insert plate 8 is sandwiched between the graphite plate 6 and the copper plate 7, and they are diffusion bonded to each other. Since they are firmly joined by hard brazing, shrinkage of the copper plate 7 due to the difference in coefficient of thermal expansion can be suppressed. As a result, the deflection of the composite material 5 is reduced, and the occurrence of cracks in the graphite plate 6 is prevented.
上記インサート板8の融点は銅板7の融点と同等もしく
は銅板7よりも高く、しかも黒鉛板6と銅板7とが高温
で行なわれる接合手段によって互いに接合されているか
ら、複合材5は優れた耐熱性を発揮する。しかもインサ
ート板8の厚みは銅板7の厚みの1/20ないし 1/
2と薄いため、黒鉛板6とインサート板8との間の熱伝
動性に与える影響が少ない。そして機械的締結の場合の
ような局部的な荷重の負荷を生じないばかりか、接着剤
を使用した場合のような汚染物質の放出も生じない。ま
た、黒鉛の耐熱性は非酸化性雰囲気では約2500℃と
優れているため、銅板7側を適宜の手段によって冷却す
ることにより、優れた高温耐熱性を発揮する。The melting point of the insert plate 8 is equal to or higher than the melting point of the copper plate 7, and since the graphite plate 6 and the copper plate 7 are bonded to each other by a bonding method performed at high temperature, the composite material 5 has excellent heat resistance. Demonstrate your sexuality. Moreover, the thickness of the insert plate 8 is 1/20 to 1/20 of the thickness of the copper plate 7.
Since it is as thin as 2, it has little effect on the thermal conductivity between the graphite plate 6 and the insert plate 8. Moreover, not only does it not impose localized loads as in the case of mechanical fastening, but also does not cause the release of contaminants as in the case of using adhesives. Furthermore, since graphite has excellent heat resistance of about 2500° C. in a non-oxidizing atmosphere, by cooling the copper plate 7 side by an appropriate means, it exhibits excellent high temperature heat resistance.
これらの理由から、上記複合材5はX線ターゲットやス
パッタリングターゲット等に好適である。For these reasons, the composite material 5 is suitable for X-ray targets, sputtering targets, and the like.
第2図にX線ターゲット10の一例を示す。このターゲ
ット10には、長波長の炭素の特性X線を得るために、
第3図に示される複合材5が使用される。この複合材5
は、黒鉛板6の端面6aがテーバ状に加工され、このテ
ーバ状端面6aに電子線を当てることにより炭素の特性
X線を発生させる。その時の温度上昇に対処するために
、銅板7側に冷却筒11を設けるとともに、この冷却筒
11に管12.13を通じて冷却水などの冷媒を流通さ
せ、銅板7を介して黒鉛板6の冷却を行なう。FIG. 2 shows an example of the X-ray target 10. This target 10 includes:
A composite material 5 shown in FIG. 3 is used. This composite material 5
In this method, an end surface 6a of a graphite plate 6 is processed into a tapered shape, and characteristic X-rays of carbon are generated by applying an electron beam to this tapered end surface 6a. In order to cope with the temperature rise at that time, a cooling cylinder 11 is provided on the copper plate 7 side, and a coolant such as cooling water is passed through the cooling cylinder 11 through pipes 12.13 to cool the graphite plate 6 through the copper plate 7. Do this.
こうしたX線ターゲットでは、数百度℃程度の耐熱性と
真空雰囲気中でも不純物ガスを放出しないことが必要で
あり、しかも局部加熱を防ぐ目的からターゲット10が
軸回りに高速回転させられるので、高い接合強度が要求
される。これらの要求を満足するものとして、本実施例
の複合材5が好適である。なお、第4図に示された実施
例の複合材5は、銅板7にテーバ状の凹部7aを設けて
いる。Such an X-ray target must have heat resistance of several hundred degrees Celsius and must not emit impurity gas even in a vacuum atmosphere. Furthermore, the target 10 is rotated around its axis at high speed in order to prevent local heating, so it must have high bonding strength. is required. The composite material 5 of this example is suitable as one that satisfies these requirements. In addition, in the composite material 5 of the embodiment shown in FIG. 4, a tapered recess 7a is provided in the copper plate 7.
第5図に示されるスパッタリング装置は、図示しない被
接着材に黒鉛をコーティングするものであり、ターゲッ
トに本発明の複合材5を用いる。The sputtering apparatus shown in FIG. 5 coats a material to be bonded (not shown) with graphite, and uses the composite material 5 of the present invention as a target.
この複合材5の構造は基本的には前述した複合材5(第
1図のもの)と同様に、インサート板8を介して黒鉛板
6と銅板7を高温で接合したものである。通常はスパッ
タリング中にターゲットの表面が高温に加熱されるため
に、ターゲットの反対側は冷却される。図示例において
は、銅板7側に冷媒供給管J4を通じて冷媒15が供給
されることにより、ターゲットすなわち複合材5の冷却
がなされる。この場合、銅板7は押え用の裏金を兼用し
ている。同図において、16はマグネットである。The structure of this composite material 5 is basically the same as that of the composite material 5 described above (FIG. 1), in which a graphite plate 6 and a copper plate 7 are bonded together at high temperature via an insert plate 8. Typically, during sputtering, the surface of the target is heated to a high temperature so that the opposite side of the target is cooled. In the illustrated example, the target, that is, the composite material 5 is cooled by supplying the refrigerant 15 to the copper plate 7 side through the refrigerant supply pipe J4. In this case, the copper plate 7 also serves as a presser back metal. In the figure, 16 is a magnet.
スパッタリングスピードを速くするためには、ターゲッ
トに投入するエネルギーを大きくする必要があるが、従
来一般的に行なわれていた樹脂系接着剤や軟ろう付けに
よる接合では耐熱性が200℃以下であり、耐熱性の点
で難がある。これに対し本発明による複合材5を用いた
ターゲットは、耐熱性が格段に優れていることから、よ
り大きなエネルギーを投入できることになり、スパッタ
リングスピードを向上させることができる。In order to increase the sputtering speed, it is necessary to increase the energy input to the target, but the conventional bonding methods using resin adhesives and soft brazing have a heat resistance of 200°C or less. There is a problem in terms of heat resistance. On the other hand, the target using the composite material 5 according to the present invention has significantly superior heat resistance, so that a larger amount of energy can be input, and the sputtering speed can be improved.
ターゲットに使われる複合材5あるいは黒鉛板6の接合
形状は、第6図に示される円環状、第7図に示される矩
形状、あるいは第8図に示されるコ字状を始めとして、
種々の形状が考えられる。The joining shape of the composite material 5 or the graphite plate 6 used for the target may be an annular shape as shown in FIG. 6, a rectangular shape as shown in FIG. 7, or a U-shape as shown in FIG.
Various shapes are possible.
本発明によれば、互いに熱膨張率の大きく異なる黒鉛板
と銅板を拡散接合や硬ろう付けなどのような高温接合手
段によって互いに接合した場合に、黒鉛の破損を防止で
きる。しかも本発明の複合材は耐熱性と接合強度に優れ
ており、かつ雰囲気中への不純物ガスの放出の心配もな
い。According to the present invention, when a graphite plate and a copper plate having significantly different coefficients of thermal expansion are bonded to each other by high-temperature bonding means such as diffusion bonding or hard brazing, damage to the graphite can be prevented. Moreover, the composite material of the present invention has excellent heat resistance and bonding strength, and there is no fear of releasing impurity gas into the atmosphere.
第1図は本発明の一実施例を示す複合材の断面図、第2
図は本発明の他の実施例を示す複合材を用いたX線ター
ゲットの斜視図、第3図は第2図に示された複合材の断
面図、第4図は本発明の更に別の実施例を示す複合材の
断面図、第5図はスパッタリング装置の断面図、第6図
ないし第8図はそれぞれ複合材の互いに異なる形状例を
示す平面図。第9図は従来の複合材の一例を示す側面図
、第10図は第9図に示された複合材にクラックが生じ
た状態の平面図である。
5・・・複合材、6・・・黒鉛板、7・・・銅板、8・
・・インサート板。
出願人代理人 弁理士 鈴江武彦
第1図
第2図
a
第4図
第5図
第6図 第7図 第8図
第9図
第10図Fig. 1 is a sectional view of a composite material showing one embodiment of the present invention;
3 is a cross-sectional view of the composite material shown in FIG. 2, and FIG. 4 is a perspective view of an X-ray target using a composite material showing another embodiment of the present invention. FIG. 5 is a cross-sectional view of a sputtering device, and FIGS. 6 to 8 are plan views showing examples of different shapes of the composite material. FIG. 9 is a side view showing an example of a conventional composite material, and FIG. 10 is a plan view of the composite material shown in FIG. 9 in which a crack has occurred. 5... Composite material, 6... Graphite plate, 7... Copper plate, 8...
...insert board. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2 a Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10
Claims (2)
の銅板よりも熱膨張率が小さい金属からなるインサート
板とを具備し、かつ上記黒鉛板と銅板を拡散接合あるい
は硬ろう付け等の高温で行なう接合手段により上記イン
サート板を介して互いに接合させたことを特徴とする黒
鉛と銅または銅合金からなる複合材。(1) A graphite plate, a copper plate made of pure copper or a copper alloy, and an insert plate made of a metal with a coefficient of thermal expansion smaller than that of the copper plate, and the graphite plate and the copper plate are bonded by diffusion bonding, hard brazing, etc. A composite material made of graphite and copper or a copper alloy, characterized in that they are bonded to each other via the insert plate by a bonding method performed at high temperature.
係数よりも高い金属を用いたことを特徴とする特許請求
の範囲第1項記載の黒鉛と銅または銅合金からなる複合
材。(2) The composite material made of graphite and copper or a copper alloy according to claim 1, wherein the insert plate is made of a metal whose elastic modulus is higher than that of the copper plate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4662086A JPH069906B2 (en) | 1986-03-04 | 1986-03-04 | Composite material consisting of graphite and copper or copper alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4662086A JPH069906B2 (en) | 1986-03-04 | 1986-03-04 | Composite material consisting of graphite and copper or copper alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62202732A true JPS62202732A (en) | 1987-09-07 |
JPH069906B2 JPH069906B2 (en) | 1994-02-09 |
Family
ID=12752335
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4662086A Expired - Lifetime JPH069906B2 (en) | 1986-03-04 | 1986-03-04 | Composite material consisting of graphite and copper or copper alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH069906B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6759143B2 (en) | 2000-10-31 | 2004-07-06 | Nikko Materials Company, Limited | Tantalum or tungsten target-copper alloy backing plate assembly and production method therefor |
US6793124B1 (en) | 2000-10-02 | 2004-09-21 | Nikko Materials Company, Limited | Diffusion-joined target assemly of high-purity cobalt target and copper alloy backing plate and production method therefor |
WO2008096648A1 (en) | 2007-02-09 | 2008-08-14 | Nippon Mining & Metals Co., Ltd. | Target formed of sintering-resistant material of high-melting point metal alloy, high-melting point metal silicide, high-melting point metal carbide, high-melting point metal nitride, or high-melting point metal boride, process for producing the target, assembly of the sputtering target-backing plate, and process for produc |
-
1986
- 1986-03-04 JP JP4662086A patent/JPH069906B2/en not_active Expired - Lifetime
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6793124B1 (en) | 2000-10-02 | 2004-09-21 | Nikko Materials Company, Limited | Diffusion-joined target assemly of high-purity cobalt target and copper alloy backing plate and production method therefor |
US6759143B2 (en) | 2000-10-31 | 2004-07-06 | Nikko Materials Company, Limited | Tantalum or tungsten target-copper alloy backing plate assembly and production method therefor |
WO2008096648A1 (en) | 2007-02-09 | 2008-08-14 | Nippon Mining & Metals Co., Ltd. | Target formed of sintering-resistant material of high-melting point metal alloy, high-melting point metal silicide, high-melting point metal carbide, high-melting point metal nitride, or high-melting point metal boride, process for producing the target, assembly of the sputtering target-backing plate, and process for produc |
JPWO2008096648A1 (en) * | 2007-02-09 | 2010-05-20 | 日鉱金属株式会社 | Target consisting of hard-to-sinter body of refractory metal alloy, refractory metal silicide, refractory metal carbide, refractory metal nitride or refractory metal boride, its manufacturing method, and sputtering target-backing plate assembly and its Production method |
JP2012136779A (en) * | 2007-02-09 | 2012-07-19 | Jx Nippon Mining & Metals Corp | Target formed of sintering-resistant material of high-melting point metal alloy, high-melting point metal silicide, high-melting point metal carbide, high-melting point metal nitride, or high-melting point metal boride, process for producing the target, assembly of the sputtering target-backing plate, and process for producing the same |
EP2806048A2 (en) | 2007-02-09 | 2014-11-26 | JX Nippon Mining & Metals Corporation | Target formed of sintering-resistant material of high-melting point metal alloy, high-melting point metal silicide, high-melting point metal carbide, high-melting point metal nitride, or high-melting point metal boride, process for producing the target, assembly of the sputtering target-backing plate, and process for producing the same |
Also Published As
Publication number | Publication date |
---|---|
JPH069906B2 (en) | 1994-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0135937B1 (en) | Method of bonding alumina to metal | |
JP6451866B2 (en) | Junction structure and manufacturing method thereof | |
JPS5849672A (en) | Jointed body comprising metal layer and ceramic layer and manufacture | |
JPS62202732A (en) | Composite material consisting of graphite and copper or copper alloy | |
Peng et al. | Mechanical reliability of transient liquid phase bonding of Au–Sn solder with Ni (Cu) substrates | |
JPS62204936A (en) | Composite material consisting of graphite and metal | |
JPS62204937A (en) | Composite material consisting of graphite and copper or copper alloy | |
JPH069905B2 (en) | Composite material consisting of graphite and metal | |
JP4124589B2 (en) | Wafer holding device | |
US5855313A (en) | Two-step brazing process for joining materials with different coefficients of thermal expansion | |
JPS63144175A (en) | Bonding structure between ceramics and metal | |
JPH0672779A (en) | Method for joining carbon member | |
WO1998003297A1 (en) | Two-step brazing process for joining materials with different coefficients of thermal expansion | |
US10486405B2 (en) | Nanomaterial assisted bonding method to produce curved surfaces | |
JPH0234912B2 (en) | SERAMITSUKUSUTOKINZOKUTAITONOSETSUGOHOHO | |
JPS6221768A (en) | Graphite joining method | |
JP6682403B2 (en) | Insulating substrate manufacturing method and insulating substrate | |
JPH105992A (en) | Al metal joined body | |
JPH04317475A (en) | Brazing method for parts made of materials with different coefficients of thermal expansion | |
JP2019036601A (en) | Junction structure and manufacturing method thereof | |
JPH05270935A (en) | Dissimilar material joint and its joining method | |
JPS63225585A (en) | Joined body of ceramics and metal and its joining method | |
JPS6053036A (en) | Manufacture of semiconductor element | |
JPH0142914B2 (en) | ||
JPS62252376A (en) | Bonding method between alumina ceramics and copper plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |