[go: up one dir, main page]

JPS62201646A - Production or composite oxide catalyst - Google Patents

Production or composite oxide catalyst

Info

Publication number
JPS62201646A
JPS62201646A JP61042727A JP4272786A JPS62201646A JP S62201646 A JPS62201646 A JP S62201646A JP 61042727 A JP61042727 A JP 61042727A JP 4272786 A JP4272786 A JP 4272786A JP S62201646 A JPS62201646 A JP S62201646A
Authority
JP
Japan
Prior art keywords
catalyst
composite oxide
oxide catalyst
added
antimonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61042727A
Other languages
Japanese (ja)
Other versions
JPH0638918B2 (en
Inventor
Kohei Sarumaru
猿丸 浩平
Yoichi Ishii
洋一 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP61042727A priority Critical patent/JPH0638918B2/en
Priority to US07/017,582 priority patent/US4769357A/en
Priority to KR1019870001604A priority patent/KR930008084B1/en
Priority to CS871285A priority patent/CZ279428B6/en
Priority to DE8787102798T priority patent/DE3764977D1/en
Priority to CN87100990A priority patent/CN1010179B/en
Priority to EP87102798A priority patent/EP0235760B1/en
Publication of JPS62201646A publication Critical patent/JPS62201646A/en
Publication of JPH0638918B2 publication Critical patent/JPH0638918B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain a catalyst having high selectivity by using heat-treated composite oxide shown in Sb-X-Si-O as one part of feed source of antimony for a composite oxide catalyst. CONSTITUTION:In case of using a composite oxide catalyst contg. Sb, Mo, V and/or Nb in the vapor phase catalytic oxidizing reaction, a composite oxide which is shown in Sb-X-Si-O (wherein X shows Fe, CO, Ni and Bi) and heated at 600-900 deg.C is used as one part of a feed source of antimony. In such a way, in case of introducing some of X componential elements in a form of antimonate in an Sb-Mo-V and/or Nb-X-Y-O catalyst, Si is compounded into this antimonate and thereby a composite oxide catalyst excellent in selectivity is obtained.

Description

【発明の詳細な説明】 〔発明の背景〕 1五立1 本発明は、SbとMOとVおよび(または)Nbとを少
なくとも含む複合酸化物触媒の製造法に関する。さらに
具体的には、本発明は、特定の成分元素、すなわち3b
、の導入態様に主要な特徴を有する複合酸化物触媒の製
造法に関する。SbとMOと■および(または)Nbと
を少なくとも含む複合酸化物触媒は気相接触酸化反応に
使用するものとして周知のものである。この場合の気相
接触酸化反応としては、具体的には、オレフィンを酸化
して不飽和アルデヒドまたは不飽和カルボン酸にする反
応、オレフィンをアンモニアの存在下に酸化(アンモ酸
化)して不飽和ニトリルにする反応、飽和アルデヒドま
たは飽和カルボン酸を酸化的に脱水素して不飽和カルボ
ン酸にする反応、その他が挙げられる。
DETAILED DESCRIPTION OF THE INVENTION [Background of the Invention] 1. The present invention relates to a method for producing a composite oxide catalyst containing at least Sb, MO, V and/or Nb. More specifically, the present invention provides specific component elements, namely 3b
The present invention relates to a method for producing a composite oxide catalyst having a main feature in the mode of introduction. A composite oxide catalyst containing at least Sb, MO, (1) and (or) Nb is well known for use in gas phase catalytic oxidation reactions. Specifically, the gas phase catalytic oxidation reaction in this case includes a reaction in which an olefin is oxidized to an unsaturated aldehyde or an unsaturated carboxylic acid, and an olefin is oxidized in the presence of ammonia (ammo-oxidation) to form an unsaturated nitrile. reaction, oxidative dehydrogenation of a saturated aldehyde or saturated carboxylic acid to form an unsaturated carboxylic acid, and others.

これらの例示から明らかなように、「気相接触酸化」は
単純な酸化の外に「アンモ酸化」および「酸化的脱水素
」を包含するものとされており(本発明もまたこの定i
に従うものとする)、分子状酸素(空気および(または
)酸素ガス)の存在下に行なわれるという特徴を共有す
るものである。
As is clear from these examples, "vapor phase catalytic oxidation" includes "ammo oxidation" and "oxidative dehydrogenation" in addition to simple oxidation (the present invention also applies to this definition).
), they share the characteristic that they are carried out in the presence of molecular oxygen (air and/or oxygen gas).

粱ILガ 分子状酸素の存在下に行なわれる上記のような気相接触
酸化反応では、目的生成物の一部が更に酸化されて、付
加価値の低いものに変るという好ましくない逐次反応を
伴うことが多い。
The above-mentioned gas phase catalytic oxidation reaction carried out in the presence of molecular oxygen involves an undesirable sequential reaction in which a part of the target product is further oxidized and converted into a product with low added value. There are many.

この逐次反応を極力抑止するには、反応に際しての触媒
の有効係数を如何に向上させるかが一つの要素であるこ
とが古くからよく知られている。
It has long been well known that in order to suppress this sequential reaction as much as possible, one of the factors is how to improve the effectiveness coefficient of the catalyst during the reaction.

触媒の有効係数を向上させるということは、反応の際の
反応物の拡散抵抗支配を極力低減させるということと一
致する。
Improving the effective coefficient of the catalyst corresponds to minimizing the diffusion resistance of the reactants during the reaction.

触媒の有効係数に関しては触媒形状と細孔分布とが最も
支配的な因子となることはよく知られていて、たとえば
、「化学工学」第30巻、第2号、第73〜79頁(1
966年化学工学協会発行)には触媒形状と有効係数の
関係が論じられており、また[化学工学rVJ  <W
!田重文、束畑平一部編二東京化学同人社1963年刊
)第32〜37頁には細孔分布と有効係数の関係が論じ
られている。
It is well known that the catalyst shape and pore distribution are the most dominant factors regarding the effectiveness coefficient of a catalyst.
The relationship between the catalyst shape and the effective coefficient is discussed in ``Chemical Engineering Society of Japan, published in 1966'', and ``Chemical Engineering rVJ <W
! The relationship between the pore distribution and the effective coefficient is discussed on pages 32 to 37 (edited by Fumi Tashige and Hiraichi Tsukahata, published by Tokyo Kagaku Dojinsha, 1963).

ところで、SbとMOとV 63よび(または)Nbと
を少なくとも含む複合酸化物触媒が周知であることは前
記したところであるが、その具体例として特開昭47−
18823号、同49−43922号および同52−2
3589号公報を挙げることが出来る。これらの公報に
よれば、触媒の調製の際に上記の有効係数に係る細孔分
布に関しての特別の記載はなされていないが、SbとN
iとをアンチモン酸ニッケルの形で使用することが有利
であることが示されており、アンチモン酸ニッケルをS
b供給源とN1供給源との合体および′l&温熱処理に
よって製造する方法が開示されている。これらの触媒は
、シリカを担体とすることが出来る。
By the way, as mentioned above, a composite oxide catalyst containing at least Sb, MO, V63, and/or Nb is well known, and a specific example thereof is disclosed in JP-A-47-
No. 18823, No. 49-43922 and No. 52-2
Publication No. 3589 can be mentioned. According to these publications, there is no special description regarding the pore distribution related to the above-mentioned effective coefficient when preparing the catalyst, but Sb and N
It has been shown to be advantageous to use nickel antimonate in the form of S
A method of manufacturing by combining a b source and an N1 source and 'l& thermal treatment is disclosed. These catalysts can use silica as a carrier.

〔発明の概要〕[Summary of the invention]

l一旦 本発明者らは、上記のSb−N i −0複合体を製造
する際に高温熱処理前にシリカを添加しておけば、より
マクロな細孔径を有するSb−N i −Si−0の複
合酸化物を得ることが出来て、大幅な選択性の改良をな
しうること、ならびにNi以外にもあらかじめアンチモ
ン酸塩の形にして使用すると高選択性を与える元素とし
てFe5Co、NiJ′3よびB1があること、を見出
した。
l Once the present inventors have added silica before high-temperature heat treatment when producing the above-mentioned Sb-N i -0 composite, Sb-N i -Si-0 having a more macroscopic pore diameter can be produced. It is possible to obtain a composite oxide of We discovered that B1 exists.

本発明は、これらの発見に暴くものである。The present invention debunks these discoveries.

従って本発明による複合酸化物触媒の製造法は、Sbと
MOと■および(または)Nbとを少なくとも含む複合
酸化物触媒を所要各元素の供給源の合体および加熱から
なる工程によって製造するに当り、Sbの供給源の少な
くとも一部として、Sb−X−3+ −0(ただし、X
G、tFei、Go、N1およびB1からなる群から選
ばれる少なくとb一種)で示される600〜900℃で
加熱された履歴を有する複合酸化物を使用すること、を
特徴とするものである。
Therefore, the method for producing a composite oxide catalyst according to the present invention involves producing a composite oxide catalyst containing at least Sb, MO, (1) and (or) Nb by a process consisting of combining and heating sources of each required element. , Sb-X-3+ -0 (where X
It is characterized by using a composite oxide having a history of being heated at 600 to 900° C., which is represented by at least one type b selected from the group consisting of G, tFei, Go, N1, and B1.

効  果 Sb−Mo−VおよびにtfLt)Nb−X−Y−0(
Xはアンチモン酸塩の形で共存させる元素、Yは本触媒
に共存しつる元素)系触媒においてX成分元素のあるも
のをアンチモン酸塩の形で導入する際に本発明に従って
3iをこのアンチモン酸塩に複合させておくことによっ
て、選択性の改良された複合酸化物触媒が得られる。
Effect Sb-Mo-V and tfLt)Nb-X-Y-0(
When X is an element that coexists in the form of an antimonate, and Y is an element that coexists with the present catalyst in the form of an antimonate, according to the present invention, 3i is added to the antimonate. By combining with a salt, a composite oxide catalyst with improved selectivity can be obtained.

シリカが複合酸化物触媒の担体として使用されることは
周知であるが、アンチモン酸塩形成時にそれを存在させ
ておくことによって本来のアンチモン酸塩およびシリカ
がそれぞれ固有していた細孔よりもよりマクロな細孔を
有する複合酸化物を生成することが出来、生成触媒の選
択性が大幅に向上したということは思いがけなかったこ
とと解される(後記比較例参照)。またFe1CO1N
iおよび3iについてもこの技術が適用できて同様に高
選択性触媒が得られるということも思いがけなかったこ
とであるというべきである。
It is well known that silica is used as a support for complex oxide catalysts, but its presence during antimonate formation makes it possible to reduce the pores inherent in the original antimonate and silica, respectively. It is understood that it was unexpected that a composite oxide with macroscopic pores could be produced and the selectivity of the produced catalyst was significantly improved (see Comparative Example below). Also Fe1CO1N
It should also be said that it was unexpected that this technique could be applied to i and 3i and similarly highly selective catalysts could be obtained.

なお、上記においてアンチモン酸塩の形成ということは
、本発明に則してこれを正確にいえば、各元素供給源化
合物を合して熱処理(600〜900℃)することを意
味するものであって、必ずしも化学物質としてのアンチ
モン酸塩の形成を意味する訳ではない(また、その形成
を確認する実益もない)。
In addition, in accordance with the present invention, the formation of antimonate in the above refers to heat-treating (600 to 900°C) the combination of each element source compound. This does not necessarily imply the formation of antimonate as a chemical (nor is there any practical benefit in confirming its formation).

〔発明の詳細な説明〕[Detailed description of the invention]

本発明による触媒は、SbとMoと■および(または>
Nbとを少なくとも含む複合酸化物触媒の範驕に属する
ものである。この触媒系は下式で模式的に示ずことがで
きる。
The catalyst according to the present invention comprises Sb, Mo, ■ and (or >
It belongs to the category of composite oxide catalysts containing at least Nb. This catalyst system can be schematically represented by the formula below.

Sb−Mo−Vおよび(または)Nb−X−Y−〇 ここでXはアンチモン酸塩の形で共存させる元素であっ
て、具体的にはFe、Go、Niおよび(3iである。
Sb-Mo-V and/or Nb-X-Y- Here, X is an element coexisting in the form of antimonate, specifically Fe, Go, Ni, and (3i).

Yは本触媒系に共存しつる元素であって、具体的には、
たとえばW、Cu等である。
Y is an element that coexists in this catalyst system, specifically,
For example, W, Cu, etc.

この種の複合酸化物触媒はシリカ、アルミナ、耐火性酸
化物、その他を添加し成型させるか、あるいはこれらに
担持せられて用いられるのが普通であるが、これら成分
と触媒成分とは峻別し難いことがあるから、たとえば上
記のシリカの3iをYの成分として捉えることもできよ
う。
This type of composite oxide catalyst is usually used by adding and molding silica, alumina, refractory oxides, etc., or by supporting them, but these components and catalyst components are clearly distinguished. Since this may be difficult, for example, the above 3i of silica may be regarded as a component of Y.

このような複合酸化物触媒が周知であることは前記した
ところであって、本発明においても、本発明固有の改善
を除けば、組成および製造法は合目的的な任意のもので
ありうる。製造法は、基本的には、触媒成分元素供給源
を一時にあるいは段階的に合体させ、合体の過程の適当
な時期に担持或いは賦形を行ない、最終的に熱処理する
ことが望ましい。触媒の形状に関しては有効係数を高く
とる目的からはAr15半径を小さくするものが望まし
いことは当然である。
As mentioned above, such a composite oxide catalyst is well known, and in the present invention, the composition and production method may be any suitable for the purpose, except for improvements specific to the present invention. As for the production method, it is basically desirable to combine the catalyst component element sources all at once or in stages, carry out support or shaping at an appropriate time in the process of combination, and finally heat-treat. Regarding the shape of the catalyst, it is natural that it is desirable to have a small Ar15 radius for the purpose of increasing the effective coefficient.

アンチモン供給源 本発明によってFe、Go、Niおよび8;をも上記基
本触媒系に導入すべく使用するアンチモン供給源は、S
b−X−Si −0(ただし、Xは1”e、 C01N
iおよびB1からなる群から選ばれる少なくとも一種)
で示される600〜900℃で加熱された履歴を有する
複合酸化物である。
Antimony Source The antimony source used according to the present invention to also introduce Fe, Go, Ni and 8 into the basic catalyst system is S
b-X-Si -0 (X is 1"e, C01N
at least one selected from the group consisting of i and B1)
It is a composite oxide that has a history of being heated at 600 to 900°C.

この複合酸化物は、それが複合酸化物であるところから
、基本触媒系に関して前記したような方法によってml
製することができる。具体的には、原料面ではSb供給
源としては金属アンチモン、酸化アンチモン等を、Fe
1CO1N+、Bi供給源としてはこれらの硝M塩、塩
化物等を、Si供給源としてはコロイダルシリカ、粒状
シリカ等を用い、操作面では、たとえば、三酸化アンチ
モンの粉末とシリカとを硝酸鉄(あるいはCo。
Since this composite oxide is a composite oxide, it can be prepared in ml by the method described above regarding the basic catalyst system.
can be manufactured. Specifically, in terms of raw materials, metal antimony, antimony oxide, etc. are used as Sb supply sources, Fe
As the 1CO1N+, Bi supply source, these nitrate M salts, chlorides, etc. are used, and as the Si supply source, colloidal silica, granular silica, etc. are used.In terms of operation, for example, antimony trioxide powder and silica are mixed with iron nitrate ( Or Co.

N1または3iの硝酸塩)の水溶液に加え、撹拌しなが
ら蒸発乾固し、生成固体を600〜900℃、好ましく
は650〜850℃、で空気存在下に焼成すればよい。
Nitrate of N1 or 3i) is added to an aqueous solution, evaporated to dryness with stirring, and the resulting solid is calcined at 600 to 900°C, preferably 650 to 850°C, in the presence of air.

焼成後の固体は、これが粉末として得られないときには
適当に粉砕して本発明触媒のSb供給源の少なくとも一
部として使用する。
If the solid after calcination cannot be obtained as a powder, it is appropriately pulverized and used as at least a part of the Sb source for the catalyst of the present invention.

この複合酸化物の原子比、すなわち Sb  −x  −s−o  のW−Zは下記の通りX
ly Z であることが好ましい。
The atomic ratio of this composite oxide, that is, W-Z of Sb -x -s-o is as follows:
Preferably, it is ly Z .

W:1〜401好ましくは1〜20 x:1〜20、好ましくは1〜10 y:1〜10.好ましく(41〜5 2:各成分の酸化度によって決まる数。W: 1-401 preferably 1-20 x: 1-20, preferably 1-10 y: 1-10. Preferably (41-5 2: Number determined by the degree of oxidation of each component.

木!1菫I Sb供給源の少なくとも一部が上記のSb−x−Si−
0複合酸化物であるということを除けば、本発明による
触媒は前記したような複合酸化物触媒の製造法に従って
製造することができる。仕上り触媒のSbの少なくとも
25%以上、好ましくは50%〜100%、を上記の複
合酸化物で供給することが好ましい。
wood! At least a part of the Sb source is the above-mentioned Sb-x-Si-
The catalyst according to the present invention can be manufactured according to the method for manufacturing a composite oxide catalyst as described above, except that it is a composite oxide. It is preferred that at least 25% or more, preferably 50% to 100%, of the Sb in the finished catalyst be supplied by the above composite oxide.

触媒製造の一具体例を示せば、上記のようにして得られ
たSb−X−Si−0複合酸化物粉末をMO,Vまたは
Nbの多重酸(たとえばモリブデン酸またはリンモリブ
デン酸)またはされらの塩(たとえばアンモニウム塩)
、これら金属の水酸化物または塩、ならびに必要に応じ
て添加する成分(前記のY成分)たとえば銅化合物およ
びタングステン化合物等、を湿式にて混合し、濃縮、乾
燥後、粉砕する。得られる粉末を、そのままあるいは適
当な担体および試形剤、たとえばシリカ、グラファイト
、アビセル等と共に適当な形状、たとえば小粒状、小柱
状、リング状等の形状に賦型(打錠、押出、その他の方
法による)したのち、300〜500℃程度の温度で1
〜10時間程時間熱して、複合酸化物触媒とする。この
場合の加熱の雰囲気は非還元性、好ましくは分子状酸素
の共存下が好ましい。
To give a specific example of catalyst production, the Sb-X-Si-0 composite oxide powder obtained as described above is mixed with a multiple acid of MO, V or Nb (for example, molybdic acid or phosphomolybdic acid) or salts (e.g. ammonium salts)
, hydroxides or salts of these metals, and optionally added components (the aforementioned Y component), such as copper compounds and tungsten compounds, are wet mixed, concentrated, dried, and then pulverized. The obtained powder is shaped (tabletted, extruded, etc.) into an appropriate shape, such as small granules, trabecular shapes, and ring shapes, as it is or together with suitable carriers and excipients such as silica, graphite, and Avicel. (depending on the method), then 1 at a temperature of about 300 to 500℃.
The mixture is heated for about 10 hours to obtain a composite oxide catalyst. The heating atmosphere in this case is preferably non-reducing, preferably in the coexistence of molecular oxygen.

このようにして得られる本発明触媒は、下記の式で模式
的に表わされる組成のものである。
The catalyst of the present invention thus obtained has a composition schematically represented by the following formula.

(Sb) a(Mo)b (Vおよび(または)N b
 ) c X d Y e S j fOaここでXは
Fe、co、Ni、またはB1であり、Yは共存しつる
成分元素たとえばCU、W等であり、a−gは下記の値
である。
(Sb) a(Mo)b (V and/or) N b
) c

a:1〜100、好ましくは10〜100b:1〜10
0、好ましくは1〜50 C:0.1〜50、好ましくは1〜20d:1〜100
、好ましくは10〜100e:0.1〜50、好ましく
は1〜20f:1〜100、好ましくは10〜1o。
a: 1-100, preferably 10-100 b: 1-10
0, preferably 1-50 C: 0.1-50, preferably 1-20d: 1-100
, preferably 10-100e: 0.1-50, preferably 1-20f: 1-100, preferably 10-1o.

g=各成分元素の酸化度によって決まる数また、このよ
うにして得られる本発明触媒は平均細孔径が2000八
以上のものであって、Sbの導入を本発明の方法によら
ないで得た従来触媒の平均細孔径が400〜100OA
であることと茗しい対比をなす。なおここで[平均細・
孔径Jとは水銀圧入法によるポロシメーターにより測ら
れたものであり、微分曲線の最大位置を示すものとする
g = number determined by the degree of oxidation of each component element The catalyst of the present invention obtained in this manner has an average pore diameter of 200.8 or more, and was obtained without introducing Sb by the method of the present invention. The average pore diameter of conventional catalysts is 400 to 100OA.
It contrasts sharply with the fact that Note that here [average thin
The pore diameter J is measured by a porosimeter using a mercury intrusion method, and indicates the maximum position of the differential curve.

触媒の使用 本発明による触媒は、気相接触酸化反応に使用して高選
択性で目的化合物を与える。この場合の気相接触酸化反
応がアンモ酸化および酸化的脱水素を包含する広い意味
を持つものであることは前記したところである。
Use of the Catalyst The catalyst according to the invention is used in gas phase catalytic oxidation reactions to give the target compound with high selectivity. As mentioned above, the gas phase catalytic oxidation reaction in this case has a broad meaning including ammoxidation and oxidative dehydrogenation.

本発明による触媒の好ましい用途の一つは、不飽和アル
デヒドICとえばアクロレインまたはメタクロレインを
酸化して対応する不飽和カルボン酸すなわちアクリル酸
またはメタクリル酸を製造する場合のそれである。すな
わち、オレフィンたとえばプロピレンまたはイソブチン
の気相接触酸化によりアクリル酸またはメタクリル酸を
製造する工程をオレフィンの酸化による不飽和アルデヒ
ドの製造およびその酸化による不飽和カルボン酸の製造
の二工程に分割して実施する場合の後段反応が本発明触
媒の最も典型的な使用対象である。なおこの場合の前段
工程の気相接触酸化反応に用いられる触媒としてはMo
−3iの複合酸化物触媒が良く知られており、工業的に
広く用いられている。また、これらMo−Si系の複合
酸化物触媒はアンモ酸化および酸化的脱水素反応に対し
極めて有用であることも良く知られている。
One of the preferred uses of the catalyst according to the invention is in the oxidation of unsaturated aldehydes IC, such as acrolein or methacrolein, to produce the corresponding unsaturated carboxylic acids, ie acrylic acid or methacrylic acid. That is, the process of producing acrylic acid or methacrylic acid by vapor phase catalytic oxidation of an olefin, such as propylene or isobutyne, is carried out by dividing it into two steps: production of an unsaturated aldehyde by oxidation of the olefin, and production of an unsaturated carboxylic acid by the oxidation. The most typical use target of the catalyst of the present invention is the latter stage reaction in which the catalyst of the present invention is used. In this case, the catalyst used in the gas phase catalytic oxidation reaction in the first step is Mo.
-3i composite oxide catalysts are well known and widely used industrially. It is also well known that these Mo-Si-based composite oxide catalysts are extremely useful for ammoxidation and oxidative dehydrogenation reactions.

硝酸ニッケル136gを温水90dに溶解し、これにシ
リカ(カープレックス#67)509及び三酸化アンチ
モン159gを徐々に撹拌しながら加える。このスラリ
ー状液を加熱して濃縮し、90℃で乾燥する。次いで、
これをマツフル炉にて800℃で3時間焼成する。生成
固体を粉砕して、60メツシュ篩通過とする(Sb−N
i−3i−0粉末)。
136 g of nickel nitrate is dissolved in 90 d of warm water, and 509 g of silica (Carplex #67) and 159 g of antimony trioxide are gradually added thereto with stirring. This slurry liquid is concentrated by heating and dried at 90°C. Then,
This is fired in a Matsufuru furnace at 800°C for 3 hours. The produced solid is crushed and passed through a 60 mesh sieve (Sb-N
i-3i-0 powder).

純水540dを約80℃に加熱して、パラタングステン
酸アンモン8.1g、パラモリブデン酸アンモン63.
9g、メタバナジン酸アンモン8.4gおよび塩化第一
銅7.8gを撹拌しながら順次加えて溶解させる。次に
、上記Sb−Ni−Si −0粉末をこの溶液に撹拌し
ながら徐々に加えて、十分に8合する。このスラリーを
80〜100℃に加熱して濃縮し、乾燥する。この乾燥
品を粉砕して、24メツシュ篩通過する。これに1.5
重量%のグラファイトを添加混合し、小型打錠成型機に
て5φX 4 h I/lの円柱状に成型する。これを
マツフル炉にて400℃で5時間焼成して、触媒とした
Heating 540 d of pure water to about 80°C, 8.1 g of ammonium paratungstate and 63 g of ammonium paramolybdate were added.
9 g of ammonium metavanadate, 8.4 g of ammonium metavanadate, and 7.8 g of cuprous chloride were sequentially added and dissolved with stirring. Next, the above Sb-Ni-Si-0 powder is gradually added to this solution while stirring, and the mixture is thoroughly mixed. This slurry is heated to 80-100°C to concentrate and dry. This dried product is crushed and passed through a 24-mesh sieve. 1.5 for this
% by weight of graphite is added and mixed, and the mixture is molded into a cylindrical shape of 5φ×4 h I/l using a small tablet molding machine. This was fired in a Matsufuru furnace at 400°C for 5 hours to obtain a catalyst.

ここで得た触媒の組成は、原子比で下記の通りである。The composition of the catalyst obtained here is as follows in atomic ratio.

Sb:Ni :Si :MO:V:W:Cu=100:
43:80:35ニア:3:3゛この触媒50Idを内
径20III/I11、長ざ500Ill/mのステン
レス鋼製ナイタージャケット付反応管に充填して、アク
ロレインの接触酸化反応を行なった。原料ガスはアクロ
レイン4%、スチーム46%および空気50%とし、O
″CC基準間速度870h”でこの反応管に流通させた
Sb:Ni:Si:MO:V:W:Cu=100:
43:80:35Near:3:3゛This catalyst (50Id) was packed into a stainless steel night jacketed reaction tube having an inner diameter of 20III/I11 and a length of 500Ill/m to carry out a catalytic oxidation reaction of acrolein. The raw material gas is 4% acrolein, 46% steam and 50% air, and O
It was made to flow through this reaction tube at a "CC standard speed of 870 h".

ナイター浴ff1250℃において、アクロレイン転化
率98.4%、アクリル酸敗・率94.7%、アクリル
酸への選択率96.2%であった。
In a night bath ff of 1250° C., the acrolein conversion rate was 98.4%, the acrylic acid rancidity rate was 94.7%, and the selectivity to acrylic acid was 96.2%.

比較例1 硝酸ニッケル136gを温水90dに溶解し、これに三
酸化アンチモン159gを徐々に撹拌しながら添加する
。このスラリー状液を加熱して濃縮し、90℃で乾燥す
る。次いで、これをマツフル炉にて800℃で3時間焼
成する。生成固体を粉砕し、60メツシュ篩通過とする
(Sb−Ni−〇粉末)。
Comparative Example 1 136 g of nickel nitrate is dissolved in 90 d of warm water, and 159 g of antimony trioxide is gradually added thereto with stirring. This slurry liquid is concentrated by heating and dried at 90°C. Next, this is fired in a Matsufuru furnace at 800° C. for 3 hours. The produced solid is pulverized and passed through a 60 mesh sieve (Sb-Ni-〇 powder).

純水540d!を約80℃に加熱し、パラタングステン
酸アンモン8.1g、バラモリブデン酸アンモン63.
9g、メタバナジン酸アンモン8.4gおよび塩化第一
銅2.8gを撹拌しながら順次加えて、溶解させる。次
に、上記Sb−Ni−0粉末をこの溶液に加えて、十分
撹拌混合する。次に、シリカ(カープレックス#67)
509を加えて十分撹拌混合する。以下、実施例1Ji
31様に触媒を製造して、同様の反応評価を実施した。
Pure water 540d! was heated to about 80°C, and 8.1 g of ammonium paratungstate and 63 g of ammonium baramolybdate were added.
9 g, ammonium metavanadate, 8.4 g, and cuprous chloride, 2.8 g, are sequentially added and dissolved with stirring. Next, the above Sb-Ni-0 powder is added to this solution and thoroughly stirred and mixed. Next, silica (Carplex #67)
Add 509 and mix thoroughly. Below, Example 1Ji
A catalyst was prepared in the same manner as No. 31, and the reaction evaluation was conducted in the same manner.

ナイター浴温270℃において、アクロレイン転化率9
7.9%、アクリル酸収率91.2%、アクリル酸への
選択率93.2%であった。
At a night bath temperature of 270°C, the acrolein conversion rate was 9.
The yield of acrylic acid was 91.2%, and the selectivity to acrylic acid was 93.2%.

実施例2 実施例1に於ける硝酸ニッケル136gの代りに硝酸第
二鉄189gを用いて、以下同様の触媒製造及び反応評
価を実施した。
Example 2 The same catalyst production and reaction evaluation as in Example 1 were carried out using 189 g of ferric nitrate instead of 136 g of nickel nitrate in Example 1.

得られた触媒の組成は、下記の通りである。The composition of the obtained catalyst is as follows.

Sb:Fe:Si :Mo:V:W:Cu−100:4
3:80:35ニア:3:3ナイタ一浴瀉260℃にお
いて、アクロレン転化率99.9%、アクリル酸収率9
4.2%、アクリル酸への選択率94.3%であった。
Sb:Fe:Si:Mo:V:W:Cu-100:4
3:80:35 Near: 3:3 Naita single bath at 260°C, acrolene conversion rate 99.9%, acrylic acid yield 9
The selectivity to acrylic acid was 94.3%.

衷JU1旦 実施例1に於ける硝酸ニッケル136gの代りに硝酸コ
バルト136gを用いて、同様にしてSb−Go−Si
 −0粉末を製造した。
Sb-Go-Si
-0 powder was produced.

次に、純水540dを約80℃に加熱し、バラモリブデ
ン酸アンモン63.9g、メタバナジン酸アンモン8.
4g、水酸化ニオブ (NbO(0)−1> 3> 4.6gおよび塩化第一
銅5.6gを順次撹拌しながら加えて、溶解混合させる
。この液に上記Sb−Go−Si −0粉末を徐々に加
え、撹拌して十分に混合する。以下実施例1と同様にし
て、次の組成の触媒を得た。
Next, 540 d of pure water was heated to about 80°C, and 63.9 g of ammonium baramolybdate and 8.9 g of ammonium metavanadate were added.
4g of niobium hydroxide (NbO(0)-1>3>4.6g) and 5.6g of cuprous chloride are sequentially added with stirring to dissolve and mix.The above Sb-Go-Si-0 powder is added to this solution. was gradually added and stirred to mix thoroughly.A catalyst having the following composition was obtained in the same manner as in Example 1.

Sb:Co:Si :Mo:V:Nb:Cu−100:
43:80:35ニア:3:にの触媒につき実施例1と
同様にしてアクロレインの触媒酸化反応を行なった。
Sb:Co:Si:Mo:V:Nb:Cu-100:
A catalytic oxidation reaction of acrolein was carried out in the same manner as in Example 1 using the 43:80:35 near:3 catalyst.

ナイター浴温260℃において、アクロレイン転化率9
9.9%、アクリル酸収率95.2%、アクリル酸への
選択率95.3%であった。
At a night bath temperature of 260°C, the acrolein conversion rate was 9.
The yield of acrylic acid was 95.2%, and the selectivity to acrylic acid was 95.3%.

実施例4 金属アンチモン133gをi硝酸700dに少量づつ撹
拌しながら加えて酸化させる。硝酸ガスの発生がなくな
ってから、次に硝酸ビスマス277gを加えて十分に撹
拌する。次に、シリカゾル(Si02として20%含右
含有ノーテックスN)1255Fを加え、撹拌しながら
加熱濃縮し、乾燥させる。これを800℃/3時間/空
気中で焼成した後、粉砕する(Sb−B i −Si 
−0粉末)。 次に、純水540−を約80℃に加熱し
、バラモリブデン酸アンモン63.9g、メタバナジン
酸アンモン8.49、水酸化ニオブ4.6gおよび硫酸
銅21.2gを順次撹拌しながら溶解混合する。この液
に上記Sb−s+〜5i−0粉末を徐々に加えて、十分
に混合する。以下、実施例1と同様にして、次の組成の
触媒を得た。
Example 4 133 g of metallic antimony is added little by little to 700 d of nitric acid with stirring and oxidized. After no nitric acid gas is generated, 277 g of bismuth nitrate is added and stirred thoroughly. Next, silica sol (Nortex N containing 20% Si02) 1255F is added, heated and concentrated while stirring, and dried. After firing this in air at 800°C for 3 hours, it is pulverized (Sb-B i -Si
-0 powder). Next, 540 g of pure water is heated to about 80° C., and 63.9 g of ammonium baramolybdate, 8.49 g of ammonium metavanadate, 4.6 g of niobium hydroxide, and 21.2 g of copper sulfate are sequentially dissolved and mixed with stirring. . The above Sb-s+ to 5i-0 powders are gradually added to this liquid and mixed thoroughly. Thereafter, in the same manner as in Example 1, a catalyst having the following composition was obtained.

Sb:Bi :Si :Mo:V:Nb:Cu−100
:43:40:35ニア:3:9この触媒につき実施例
1と同様にしてアクロレインの接触酸化反応を行った。
Sb:Bi:Si:Mo:V:Nb:Cu-100
:43:40:35 Near:3:9 Using this catalyst, a catalytic oxidation reaction of acrolein was carried out in the same manner as in Example 1.

ナイター浴温260℃にて、アクロレイン転化率99.
2%、アクリル酸収率92.6%、アクリル酸への選択
率93.3%であった。
At a night bath temperature of 260°C, the acrolein conversion rate was 99.
2%, acrylic acid yield 92.6%, and selectivity to acrylic acid 93.3%.

実施例5 実施例1に於ける硝酸ニッケル136すの代りに硝酸ニ
ッケル68gおよび硝酸コバルト68gを用いて、同様
にしてSb−N 1−Go−Si −O粉末を製造した
。以下同様の触媒製造および反応評価を実施した。
Example 5 Sb-N 1-Go-Si-O powder was produced in the same manner as in Example 1, except that 68 g of nickel nitrate and 68 g of cobalt nitrate were used instead of 136 g of nickel nitrate in Example 1. Similar catalyst production and reaction evaluation were carried out below.

得られた触媒の組成は、下記の通りである。The composition of the obtained catalyst is as follows.

Sb:Co:Ni :Si :Mo:V:W:Cu−1
00:21.5:21.5:80:35ニア:3:3 ナイター浴i!260℃において、アクロレイン転化率
99.9%、アクリル酸収率94.9%、アクリル酸へ
の選択率95.0%であった。
Sb:Co:Ni:Si:Mo:V:W:Cu-1
00:21.5:21.5:80:35 Near: 3:3 Night game bath i! At 260°C, the acrolein conversion rate was 99.9%, the acrylic acid yield was 94.9%, and the selectivity to acrylic acid was 95.0%.

Claims (1)

【特許請求の範囲】[Claims] SbとMoとVおよび(または)Nbとを少なくとも含
む複合酸化物触媒を所要各元素の供給源の合体および加
熱からなる工程によつて製造するに当り、Sbの供給源
の少なくとも一部として、Sb−X−Si−O(ただし
、XはFe、Co、NiおよびBiからなる群から選ば
れる少なくとも一種)で示される600〜900℃で加
熱された履歴を有する複合酸化物を使用する、複合酸化
物触媒の製造法。
In producing a composite oxide catalyst containing at least Sb, Mo, V, and (or) Nb by a process consisting of combining and heating sources of each required element, at least part of the source of Sb, A composite using a composite oxide represented by Sb-X-Si-O (where X is at least one selected from the group consisting of Fe, Co, Ni, and Bi) and has a history of being heated at 600 to 900°C. Method for producing oxide catalyst.
JP61042727A 1986-02-27 1986-02-27 Method for producing complex oxide catalyst Expired - Lifetime JPH0638918B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP61042727A JPH0638918B2 (en) 1986-02-27 1986-02-27 Method for producing complex oxide catalyst
US07/017,582 US4769357A (en) 1986-02-27 1987-02-24 Process for producing composite oxide catalyst
KR1019870001604A KR930008084B1 (en) 1986-02-27 1987-02-25 Process for preparing composite oxide catalyst
CS871285A CZ279428B6 (en) 1986-02-27 1987-02-26 Process for preparing a catalyst based on oxides
DE8787102798T DE3764977D1 (en) 1986-02-27 1987-02-27 METHOD FOR PRODUCING CATALYSTS FROM COMPOSED OXIDES.
CN87100990A CN1010179B (en) 1986-02-27 1987-02-27 Preparation method of antimony-molybdenum-vanadium-niobium-containing composite oxide catalyst
EP87102798A EP0235760B1 (en) 1986-02-27 1987-02-27 Process for producing composite oxide catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61042727A JPH0638918B2 (en) 1986-02-27 1986-02-27 Method for producing complex oxide catalyst

Publications (2)

Publication Number Publication Date
JPS62201646A true JPS62201646A (en) 1987-09-05
JPH0638918B2 JPH0638918B2 (en) 1994-05-25

Family

ID=12644089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61042727A Expired - Lifetime JPH0638918B2 (en) 1986-02-27 1986-02-27 Method for producing complex oxide catalyst

Country Status (1)

Country Link
JP (1) JPH0638918B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7144557B2 (en) 2002-01-11 2006-12-05 Mitsubishi Chemical Corporation Multitube reactor, vapor phase catalytic oxidation method using the multitube reactor, and start up method applied to the multitube reactor
JP2009207995A (en) * 2008-03-04 2009-09-17 Mitsubishi Rayon Co Ltd Catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid and its manufacturing method
JP2013198902A (en) * 1999-01-11 2013-10-03 Saudi Basic Ind Corp Highly active and selective catalytic system for production of unsaturated nitriles

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4867129B2 (en) 2003-12-15 2012-02-01 三菱化学株式会社 Method for producing (meth) acrylic acid or (meth) acrolein
EP3431175B1 (en) 2008-11-25 2022-11-30 Mitsubishi Chemical Corporation Method of packing a packing material into a plate-type reactor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013198902A (en) * 1999-01-11 2013-10-03 Saudi Basic Ind Corp Highly active and selective catalytic system for production of unsaturated nitriles
US7144557B2 (en) 2002-01-11 2006-12-05 Mitsubishi Chemical Corporation Multitube reactor, vapor phase catalytic oxidation method using the multitube reactor, and start up method applied to the multitube reactor
US7297814B2 (en) 2002-01-11 2007-11-20 Mitsubishi Chemical Corporation Multitube reactor, vapor phase catalytic oxidation method using the multitube reactor, and start up method applied to the multitube reactor
JP2009207995A (en) * 2008-03-04 2009-09-17 Mitsubishi Rayon Co Ltd Catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid and its manufacturing method

Also Published As

Publication number Publication date
JPH0638918B2 (en) 1994-05-25

Similar Documents

Publication Publication Date Title
JP3696239B2 (en) Method for producing catalytically active composite metal oxide material containing elements V and Mo in the form of oxides as basic components
JP3744750B2 (en) Composite oxide catalyst and method for producing acrylic acid
JPS6236739B2 (en)
JPH0587299B2 (en)
JP4317211B2 (en) Catalyst for gas phase partial oxidation reaction and method for producing the same
KR930008084B1 (en) Process for preparing composite oxide catalyst
JPS5820944B2 (en) Production method of acrolein by propylene oxidation
JPS62201646A (en) Production or composite oxide catalyst
JP4364870B2 (en) Catalyst for partial oxidation reaction of propylene and isobutylene and method for producing the same
JP3108511B2 (en) Method for producing catalyst for synthesizing unsaturated aldehydes and unsaturated carboxylic acids
JP3720625B2 (en) Method for preparing molybdenum-bismuth-iron-containing composite oxide catalyst
JPS6028824A (en) Catalyst for manufacturing methacrolein
JP3154798B2 (en) Method for producing catalyst for synthesizing unsaturated aldehydes and unsaturated carboxylic acids
WO2005056185A1 (en) Process for producing composite oxide catalyst
JP3772392B2 (en) Composite oxide catalyst and method for producing methacrylic acid
JP3999972B2 (en) Method for producing acrylic acid or methacrylic acid
JP3347263B2 (en) Preparation of catalysts for the production of unsaturated aldehydes and unsaturated carboxylic acids
JP3446403B2 (en) Method for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JPS62213846A (en) Preparation of composite oxide catalyst
JP4629886B2 (en) Catalyst for producing methacrolein and / or methacrylic acid, method for producing the same, and method for producing methacrolein and / or methacrylic acid
JP2003251184A (en) Method for manufacturing catalyst for composite oxide
JP3999965B2 (en) Method for producing acrylic acid or methacrylic acid
JP3314457B2 (en) Process for producing unsaturated aldehyde and unsaturated carboxylic acid
JPH0597761A (en) Production of methacrolein and catalyst used for producing methacrolein
JP7532841B2 (en) Method for producing catalyst for synthesis of unsaturated carboxylic acid

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term