JPS6219919B2 - - Google Patents
Info
- Publication number
- JPS6219919B2 JPS6219919B2 JP5588180A JP5588180A JPS6219919B2 JP S6219919 B2 JPS6219919 B2 JP S6219919B2 JP 5588180 A JP5588180 A JP 5588180A JP 5588180 A JP5588180 A JP 5588180A JP S6219919 B2 JPS6219919 B2 JP S6219919B2
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- quicklime
- soil
- granular soil
- cement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 63
- 239000002689 soil Substances 0.000 claims description 37
- 239000010802 sludge Substances 0.000 claims description 34
- 239000000292 calcium oxide Substances 0.000 claims description 32
- 235000012255 calcium oxide Nutrition 0.000 claims description 32
- 239000003795 chemical substances by application Substances 0.000 claims description 19
- 239000004568 cement Substances 0.000 claims description 15
- 238000001723 curing Methods 0.000 claims description 7
- 230000029087 digestion Effects 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 5
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 claims description 4
- 239000001569 carbon dioxide Substances 0.000 claims description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 238000007596 consolidation process Methods 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims description 2
- 229910052602 gypsum Inorganic materials 0.000 claims description 2
- 239000010440 gypsum Substances 0.000 claims description 2
- 238000004062 sedimentation Methods 0.000 claims description 2
- 238000005728 strengthening Methods 0.000 claims description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 1
- 230000002378 acidificating effect Effects 0.000 claims 1
- 238000007664 blowing Methods 0.000 claims 1
- 229910052799 carbon Inorganic materials 0.000 claims 1
- 239000011147 inorganic material Substances 0.000 claims 1
- 239000011368 organic material Substances 0.000 claims 1
- 239000002245 particle Substances 0.000 description 16
- 239000000463 material Substances 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 238000009826 distribution Methods 0.000 description 7
- 239000007789 gas Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 230000035515 penetration Effects 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 4
- 230000001079 digestive effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000011049 filling Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 2
- 239000000920 calcium hydroxide Substances 0.000 description 2
- 235000011116 calcium hydroxide Nutrition 0.000 description 2
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 239000000567 combustion gas Substances 0.000 description 2
- 239000000295 fuel oil Substances 0.000 description 2
- 239000003350 kerosene Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L sodium carbonate Substances [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 150000004683 dihydrates Chemical class 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011326 fired coke Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010421 standard material Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B20/00—Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
- C04B20/10—Coating or impregnating
- C04B20/1018—Coating or impregnating with organic materials
- C04B20/1029—Macromolecular compounds
- C04B20/1044—Bituminous materials
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Treatment Of Sludge (AREA)
- Glanulating (AREA)
Description
【発明の詳細な説明】
この発明は、河川や海域の水底に堆積した汚泥
や、上下水道の浄水施設などから排水される沈澱
池汚泥および建設工事などに際して発生する廃泥
などのいわゆるヘドロに、セメント系固化剤と消
化速度を極度に遅延させた生石灰を添加混合し
て、取扱いが容易で作業性が良く、充填性に優
れ、かつ充填後固結性を有する埋立材料、盛土材
料、路床材料等の土木材料を得ることを目的とす
る、汚泥から粒状土を製造する方法に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION This invention applies to so-called sludge, such as sludge deposited on the bottom of rivers and sea areas, sedimentation tank sludge drained from water and sewage water purification facilities, and waste sludge generated during construction work. Landfill materials, embankment materials, and roadbeds that are easy to handle, have good workability, have excellent filling properties, and have solidifying properties after filling, by adding and mixing cement-based solidifying agents and quicklime that has an extremely slow digestion rate. The present invention relates to a method for producing granular soil from sludge for the purpose of obtaining civil engineering materials such as raw materials.
従来の技術においては、ヘドロにセメントと生
石灰を混合して粒状化をはかる場合、セメントな
どの固化剤とヘドロが固結作用によりある程度の
強度を得るための養生期間が必要であり、生石灰
の消化反応が急速に進行すれば、消化反応に基づ
く生石灰の膨脹による自己崩壊が先行して、固結
ヘドロを粒状化することはできない。したがつて
生石灰の消化反応の開始を抑制する必要が生ずる
ため、粒径を大きくして比表面積を相対的に減少
させ、水との接触面積を少なくする方法がとられ
ている。しかしこの場合、生石灰の混合比(重量
比)が同じであれば、固結土中の生石灰粒の分布
は、粒径が大きいほど粗となり、その消化反応に
伴なう自己崩壊による粒状土もまた大きい塊状と
なる。 In conventional technology, when granulating sludge by mixing cement and quicklime, a curing period is required for the sludge to gain a certain degree of strength due to the caking effect of the solidifying agent such as cement, and the sludge is hard to digest. If the reaction proceeds rapidly, the solidified sludge cannot be granulated because the quicklime will self-destruct due to expansion due to the digestive reaction. Therefore, it is necessary to suppress the start of the digestive reaction of quicklime, so methods are used to increase the particle size and relatively reduce the specific surface area, thereby reducing the contact area with water. However, in this case, if the mixing ratio (weight ratio) of quicklime is the same, the distribution of quicklime particles in the compacted soil will be coarser as the particle size increases, and granular soil will also be caused by self-collapse due to the digestion reaction. It also forms large clumps.
一方粒状土の粒径を砂程度とするには、生石灰
の粒径を小さくして、固結土中に密な分布をさせ
る必要がある。生石灰の粒径を小さくすることは
必然的に消化速度を速めることとなり、また生石
灰粒の分布を均一化するための混合機などによる
撹拌も必要となるので、従来法によりセメント類
と生石灰を用いて、ヘドロから状状土を得ること
はほとんど不可能である。したがつて、現在粒状
土を得る方法として、固化剤によつて十分固結し
た汚泥をクラツシヤー等で機械的に破砕する方法
が用いられている。 On the other hand, in order to make the particle size of granular soil similar to that of sand, it is necessary to reduce the particle size of quicklime so that it is densely distributed in the compacted soil. Reducing the particle size of quicklime inevitably increases the rate of digestion, and also requires stirring using a mixer to even out the distribution of quicklime particles, so conventional methods using cement and quicklime Therefore, it is almost impossible to obtain shaped soil from sludge. Therefore, the method currently used to obtain granular soil is to mechanically crush sludge sufficiently solidified with a solidifying agent using a crusher or the like.
さらに従来法によるヘドロの粒状土は、固結が
完了しているものが多く、埋戻しあるいは締固め
をしてもその後の固結効果はほとんど見られない
ので、有効な土木材料とはいえない。 Furthermore, most of the sludge granular soil produced by conventional methods has already been consolidated, and even if it is backfilled or compacted, there is almost no consolidation effect afterward, so it cannot be considered an effective civil engineering material. .
この発明は、従来法の欠点を除くためになされ
たものであつて、詳細に説明すれば以下のように
なる。 This invention was made to eliminate the drawbacks of the conventional method, and will be explained in detail as follows.
まず、ヘドロにセメント系固化剤と生石灰を混
合する際の装置の一例を単純化して図示すれば第
1図のようになる。容器1中のヘドロと容器2中
の固化剤とをそれぞれスラリーポンプP1およびP2
によつて、それぞれの流量計F1およびF2を通じ
て混合機Mで混合し、混合器Mの出口付近に開口
したホツパー3から粒状の生石灰をヘドロ層上に
落下散布させながらベルトコンベア4で処理土養
生箱5に移送する。 First, a simplified example of an apparatus for mixing cement solidifying agent and quicklime with sludge is shown in FIG. 1. Slurry pumps P 1 and P 2 pump the sludge in container 1 and the solidifying agent in container 2, respectively.
Accordingly, the mixture is mixed by a mixer M through the respective flowmeters F 1 and F 2 , and granular quicklime is dropped and scattered onto the sludge layer from a hopper 3 opened near the outlet of the mixer M, and processed by a belt conveyor 4. Transfer to soil curing box 5.
ここで、固化剤の固化速度は迅速であつて、一
方生石灰の消化速度は遅いことが望ましい。した
がつて、固化剤は早強性のセメントを用いるか、
または普通セメントに硫酸ナトリウム、炭酸ナト
リウム、塩化カルシウム等のセメント固結促進剤
を添加したものを使用することが多い。また、生
石灰は一般に900〜1200℃で焼成して作られる
が、消化速度を低下する目的から、粒径を大きく
(好ましくは5〜10mm径)、コークス混焼による竪
型焼成炉によつて特に高温で長時間(たとえば
1200〜1500℃、24hr)焼成した超硬焼き生石灰が
望ましい。このような超硬焼きの生石灰は、表面
が溶融状態となり、比表面積は著しく減少してい
るので、消化遅延性に優れるが、さらにそれ以上
の遅延効果を高めるためには、超硬焼き生石灰粒
の表面に、軽油、灯油、重油あるいはポリビニル
アルコールなどを、浸漬法または噴霧法によつて
被覆したり、炭酸ガス、亜硫酸ガス、塩酸ガス等
の酸性のガスを吹付けて炭酸カルシウム、硫酸カ
ルシウム、塩化カルシウム等の層を形成させる。
また、養生中の粒状土を酸性ガスによつて処理す
ると、土木材料として使用したとき、雨水等によ
つて酸化カルシウムあるいは水酸化カルシウムが
溶出し、アルカリ度の高い排水となることを防ぐ
という効果をも有する。 Here, it is desirable that the solidifying agent has a rapid solidifying rate, while the quicklime has a slow digesting rate. Therefore, use early-strengthening cement as the hardening agent, or
Alternatively, ordinary cement to which cement setting accelerators such as sodium sulfate, sodium carbonate, and calcium chloride are added is often used. In addition, quicklime is generally made by firing at 900 to 1200℃, but in order to reduce the digestion rate, the particle size is large (preferably 5 to 10 mm diameter) and it is produced at a particularly high temperature in a vertical kiln using co-fired coke. for a long time (for example
1200-1500℃, 24hr) Calcined carbide quicklime is preferable. The surface of this kind of carbide baked quicklime is in a molten state and the specific surface area is significantly reduced, so it has excellent digestion retardation properties.However, in order to further increase the delay effect, it is necessary to use carbide baked quicklime grains. Coat the surface with light oil, kerosene, heavy oil, polyvinyl alcohol, etc. by dipping or spraying, or spray acid gas such as carbon dioxide, sulfur dioxide, or hydrochloric acid gas to coat the surface with calcium carbonate, calcium sulfate, A layer of calcium chloride, etc. is formed.
In addition, treating curing granular soil with acid gas has the effect of preventing calcium oxide or calcium hydroxide from leaching out by rainwater, etc., resulting in highly alkaline wastewater when used as a civil engineering material. It also has
前記したような固結速度の速い固化剤とヘドロ
を予め混合し、ある程度の強度を有する状態にな
つた後、消化速度の遅い生石灰粒を強制混合しな
いで混入すれば、ヘドロと固化剤の固結がさらに
進行する中で、原型を保つた生石灰粒の消化反応
が徐々に進行し、生石灰粒は次第に膨脹して、つ
いには自己崩壊をするに至り、その結果固型物自
体も適度の大きさに破砕され、取扱いが容易で作
業性が良く、充填性の優れた土木材料とすること
ができる。また、自己崩壊をした生石灰は、消化
反応後は消石灰として含有されているので、ヘド
ロ中に含まれる粘土成分とポゾラン反応を起こ
し、再固結するので、締固め後の強度は引き続い
て上昇し、土木材料として極めて有効な性質を示
す。 If sludge is mixed in advance with a solidifying agent that has a high solidifying rate as described above and has a certain degree of strength, then if quicklime grains that have a slow digesting rate are mixed in without forced mixing, the solidifying agent and sludge can be mixed. As the solidification progresses, the digestive reaction of the quicklime grains, which have kept their original shape, gradually progresses, causing the quicklime grains to gradually expand and eventually self-disintegrate.As a result, the solid matter itself becomes moderately large. It can be crushed into civil engineering materials that are easy to handle, have good workability, and have excellent filling properties. In addition, since self-disintegrating quicklime is contained as slaked lime after the digestion reaction, it causes a pozzolanic reaction with the clay components contained in the sludge and reconsolidates, so the strength after compaction continues to increase. , exhibits extremely effective properties as a civil engineering material.
このように、従来の固化処理法は、浚渫したヘ
ドロのままでは、流動性が大きく、極めて作業性
が劣り、投棄する上で種々の問題点があるので、
これを解決することに主眼が置かれ、土木材料と
して再利用するにしても、充填材料といつた程度
の消極的なものに過ぎないが、この発明は、前記
したような再利用後の固結強度上昇を重視し、有
効な土木材料として積極的に利用しようとするこ
とに特徴がある。 As described above, in the conventional solidification treatment method, dredged sludge remains highly fluid, has extremely poor workability, and has various problems when dumping.
The main focus is on solving this problem, and even if it is reused as a civil engineering material, it is only a passive material such as a filling material, but this invention It is characterized by its emphasis on increasing bond strength and its active use as an effective civil engineering material.
なお、ヘドロに固化剤を混合し、これに生石灰
粒を混入し、2〜24時間放置すれば、この間に生
石灰の自己崩壊が起り、さらに1週間程度養生期
間を置けば粒状土の強度は2〜3Kg/cm2の強度に
まで上昇する。しかし、このような時間的経過を
短縮しようとする場合には、第1図に例示するよ
うな工程の中に、適宜加温装置を設置すればよ
い。加温装置としては重油、ガスその他の燃焼ガ
スあるいはスチームを熱源とした通気バンド型乾
燥機、通気回転型乾燥機、流動層型乾燥機、通気
棚型乾燥機等普通用いられる乾燥機でよく、また
天日乾燥の利用も極めて経済的であることは勿論
である。 If you mix a solidifying agent with the sludge and add quicklime granules to it and leave it for 2 to 24 hours, the quicklime will self-disintegrate during this time, and if you leave the curing period for another week, the strength of the granular soil will increase to 2. The strength increases to ~3Kg/ cm2 . However, if it is desired to shorten such a time lapse, a heating device may be appropriately installed in the process as illustrated in FIG. The heating device may be a commonly used dryer such as a ventilated band dryer, ventilated rotary dryer, fluidized bed dryer, ventilated shelf dryer, etc. that uses heavy oil, gas, other combustion gas, or steam as the heat source. It goes without saying that the use of solar drying is also extremely economical.
つぎに実施例を挙げる。 Next, examples will be given.
実施例 1
対象ヘドロ:浄水場沈澱スラツジ
初期含水比 750%
固化剤:セメント系固化剤(セメントと2水石膏
の混合物)
生石灰:ハードバーン(硬焼き石灰)
対象ヘドロに対して、重量比で固化剤ミルク
(固化剤:水=2:1)を(1)22.5%または(2)26.0
%添加混合し、さらに生石灰を5%添加したもの
を1週間空中養生を行つた。その間に、生石灰は
消化反応を起し、その際の膨脹圧によつて処理土
は破砕され粒状土となつた。この粒状土の土木材
料としての適用性を知るために、常法に従つて土
質試験を行い、その結果、得られた粒状土の粒度
分布曲線を第2図に、γd−N曲線を第3図に、
CBR−N曲線を第4図に、さらに、貫入抵抗値
の経時変化を第5図に、CBR値の経時変化を第
6図に示すが、いずれの測定値からも優れた土木
材料として利用しうることがわかつた。Example 1 Target sludge: Water treatment plant precipitated sludge Initial moisture content 750% Solidifying agent: Cement-based solidifying agent (mixture of cement and dihydrate gypsum) Quicklime: Hard burnt lime Solidified by weight ratio to target sludge Additive milk (solidifying agent: water = 2:1) to (1) 22.5% or (2) 26.0%
% added and mixed, and then 5% quicklime was added and air curing was performed for one week. During this time, the quicklime underwent a digestive reaction, and the expansion pressure at that time crushed the treated soil into granular soil. In order to know the applicability of this granular soil as a civil engineering material, a soil test was conducted according to the conventional method. The particle size distribution curve of the obtained granular soil is shown in Figure 2, and the γd-N curve is shown in Figure 3. In the figure,
The CBR-N curve is shown in Figure 4, the change in penetration resistance over time is shown in Figure 5, and the change in CBR value over time is shown in Figure 6. I found out that it works.
なお、第2図の縦軸に記載の加積通過率%とは
土の粒径分布を表示する際のその粒子より小さい
土粒子の重量百分率(%)であり、第3図におけ
るγd(乾燥密度)とは土の全体積に対して土粒
子の重さだけを考えた場合の単位体積重量であつ
て、土の湿潤密度をγtとし含水比をWとすれば
γd=100/W+100×γt
の関係が成立する。また第4図におけるCBR値
とはCalifornia Beaving Ratio試験(路床土支持
力比試験と呼ばれる貫入試験の一種)に基づいて
定められた直径(JISでは5cmと規定)のピスト
ンを供試体表面に押込んだとき、一定貫入量に対
する圧力と標準材料に対する圧力との比であり、
主として路床土や路盤等のたわみ性舗装の設計に
広く用いられる数値である。さらに、第5図にお
けるコーン支持力とは先端にコーン(円錐)をつ
けたロツドを土中に貫入させたときの地盤貫入抵
抗値であり、土層の性状を示す数値である。 Note that the cumulative passage rate % shown on the vertical axis in Figure 2 is the weight percentage (%) of soil particles smaller than the soil particle when the particle size distribution of soil is displayed, and γd (dry Density) is the unit volume weight when considering only the weight of soil particles relative to the total volume of soil, and if the wet density of soil is γt and the water content ratio is W, then γd=100/W+100×γt The relationship holds true. In addition, the CBR value in Figure 4 refers to a piston with a diameter determined based on the California Beaving Ratio test (a type of penetration test called subgrade soil bearing capacity ratio test) (defined as 5 cm in JIS) on the surface of the specimen. When penetrated, it is the ratio of the pressure for a constant penetration amount and the pressure for standard material,
This is a numerical value that is widely used mainly in the design of flexible pavement such as subgrade soil and roadbed. Furthermore, the cone bearing capacity in FIG. 5 is the ground penetration resistance value when a rod with a cone at the tip is penetrated into the soil, and is a numerical value indicating the properties of the soil layer.
実施例 2
対象ヘドロ:海成粘土
初期含水比 100%
固結剤:セメント固化剤
生石灰:灯油コーテイング生石灰
対象ヘドロに対し、重量比で固化剤(セメン
ト:水=2:1)を5%添加混合し、さらに生石
灰を5%添加したものを1週間空中または密閉養
生し、実施例1と同様土質試験を行い、その結
果、得られた粒状土の粒度分布曲線を第7図に、
γd−N曲線を第8図に、CBR−N曲線を第9
図に示すが、この結果のみを見ても極めて優れた
土木材料であることがわかる。Example 2 Target sludge: Marine clay Initial water content 100% Solidifying agent: Cement solidifying agent Quicklime: Kerosene coating quicklime Add and mix 5% solidifying agent (cement: water = 2:1) by weight to the target sludge. Then, 5% quicklime was added and the mixture was cured in air or in a sealed container for one week, and the soil test was conducted in the same manner as in Example 1. The particle size distribution curve of the resulting granular soil is shown in Figure 7.
The γd-N curve is shown in Figure 8, and the CBR-N curve is shown in Figure 9.
As shown in the figure, just by looking at the results alone, it can be seen that this is an extremely excellent civil engineering material.
実施例 3
実施例1と同様の方法で配合処理した粒状土
を、通気回転型頃乾燥機を用いて100℃前後のガ
ス炉の排ガス(市販のボンベ入りプロパンガスの
燃焼ガスで炭酸ガス約15%、窒素ガス約75%、水
分その他約10%を含む)で約10分間通気乾燥し
た。1日後にはすでに2〜3Kg/cm2の強度が得ら
れ、土質試験の結果も実施例1の場合と殆んど変
らなかつた。Example 3 Granular soil mixed and treated in the same manner as in Example 1 was mixed with exhaust gas from a gas furnace at around 100°C (combustion gas of commercially available propane gas in a cylinder) using an aerated rotary dryer to reduce carbon dioxide to about 15%. %, containing about 75% nitrogen gas and about 10% moisture and other substances) for about 10 minutes. After one day, a strength of 2 to 3 kg/cm 2 was already obtained, and the soil test results were almost the same as in Example 1.
第1図は汚泥から粒状土を製造するときの装置
の一例を示す簡略図、第2図は実施例1の粒度分
布曲線、第3図は同γd−N曲線、第4図は同
CBR−N曲線、第5図は同貫入抵抗値の経時変
化、第6図は同CBR値の経時変化であり、第7
図は実施例2の粒度分布曲線、第8図は同γd−
N曲線、第9図は同CBR−N曲線である。
1……ヘドロ容器、2……固化剤容器、3……
ホツパー、4……ベルトコンベア、5……養生
箱、P1,P2……スラリーポンプ、F1,F2……流
量計、M……混合機。
Figure 1 is a simplified diagram showing an example of an apparatus for producing granular soil from sludge, Figure 2 is the particle size distribution curve of Example 1, Figure 3 is the same γd-N curve, and Figure 4 is the same.
CBR-N curve, Figure 5 shows the change in penetration resistance value over time, Figure 6 shows the change in CBR value over time, and Figure 7 shows the change in CBR value over time.
The figure shows the particle size distribution curve of Example 2, and FIG. 8 shows the same γd-
The N curve and FIG. 9 are the same CBR-N curves. 1... Sludge container, 2... Solidifying agent container, 3...
Hopper, 4...belt conveyor, 5...curing box, P1 , P2 ...slurry pump, F1 , F2 ...flow meter, M...mixer.
Claims (1)
た早強性のセメント系固化剤とを混合処理したも
のに、超硬焼きもしくは表面に無機質または有機
質のコーテイングを施して消化速度を極度に低下
させた生石灰を均等に分散配合させることを特徴
とする汚泥から粒状土を製造する方法。 2 特許請求の範囲1において、対象汚泥が沈澱
池汚泥のとき、固化剤としてセメントに石膏類を
配合したものを使用することを特徴とする汚泥か
ら粒状土を製造する方法。 3 特許請求の範囲1において、粒状土を乾燥も
しくは加温養生することにより固結促進をするこ
とを特徴とする汚泥から粒状土を製造する方法。 4 特許請求の範囲1において、粒状土表面に炭
酸ガスあるいは亜硫酸ガス等の酸性ガスを吹きつ
けることを特徴とする汚泥から粒状土を製造する
方法。[Claims] 1. A mixture of sludge and cement or an early-strengthening cement-based solidifying agent added with a caking accelerator, which is then treated with cemented carbide or coated with an inorganic or organic material on the surface to improve the digestion rate. A method for producing granular soil from sludge, which is characterized by evenly dispersing and blending quicklime with extremely low carbon content. 2. The method for producing granular soil from sludge according to claim 1, characterized in that when the target sludge is sedimentation tank sludge, a mixture of cement and gypsum is used as a solidifying agent. 3. A method for producing granular soil from sludge according to claim 1, characterized in that consolidation is promoted by drying or heating and curing the granular soil. 4. The method for producing granular soil from sludge according to claim 1, which comprises blowing an acidic gas such as carbon dioxide gas or sulfur dioxide gas onto the surface of the granular soil.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5588180A JPS56152798A (en) | 1980-04-25 | 1980-04-25 | Manufacture of granulated loam from sludge |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5588180A JPS56152798A (en) | 1980-04-25 | 1980-04-25 | Manufacture of granulated loam from sludge |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56152798A JPS56152798A (en) | 1981-11-26 |
JPS6219919B2 true JPS6219919B2 (en) | 1987-05-01 |
Family
ID=13011431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5588180A Granted JPS56152798A (en) | 1980-04-25 | 1980-04-25 | Manufacture of granulated loam from sludge |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS56152798A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100427059B1 (en) * | 2002-11-07 | 2004-04-13 | 홍진씨엔텍 주식회사 | Method for solidifying sewage sludge |
JP5634961B2 (en) * | 2011-08-25 | 2014-12-03 | 有限会社広和金属工業 | Sludge treatment method |
-
1980
- 1980-04-25 JP JP5588180A patent/JPS56152798A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS56152798A (en) | 1981-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9327326B2 (en) | Geopolymer additives and methods of use for treatment of fluid fine tailings | |
CN101275394A (en) | The curing method of saline soil | |
WO2015104466A1 (en) | Hydraulic cements based on cement or on cement clinker or on lime, on calcium sulphate, and on a pozzolanic component; process for the manufacture thereof and uses thereof | |
US5100473A (en) | Process for producing hardened materials from combustion ash of fluidized bed | |
CN107935627B (en) | Construction method of slag-based cementing material in highway high fill | |
US4313762A (en) | Method of wasting fly ash and product produced thereby | |
JPH0581632B2 (en) | ||
JP4965065B2 (en) | Method for producing ground material and method for reusing ground material obtained thereby | |
KR100732732B1 (en) | Method for stabilization treatment of steel making slag, stabilized steel making slag, and material and method for environmental preservation of water area using said slag | |
JPS6219919B2 (en) | ||
JPH03275134A (en) | Utilization of coal ash | |
JP3803076B2 (en) | Admixture for soil stabilization and soil stabilization method using the same | |
KR100660386B1 (en) | High-performance concrete composition using bottom ash, its concrete product and method of manufacturing the product | |
JP3220202B2 (en) | Wastewater treatment method for construction | |
CN109293294A (en) | A kind of side slope deep layer gutter enhancement eco-concrete | |
JP3636767B2 (en) | Solidification method of Otani stone chips | |
JPH11267696A (en) | Treatment of mud water and wet soil | |
JP4591082B2 (en) | Solidified body manufacturing method and on-site solidified body construction method | |
US3293999A (en) | Material and method for pavement construction | |
JP4139371B2 (en) | Manufacturing method of pipework laying back material and pipework laying back material | |
JP4645195B2 (en) | Method for producing carbonated solid | |
JP3720272B2 (en) | Manufacturing method for civil engineering materials | |
JP2000344556A (en) | Method for producing and using soil-based inorganic material | |
JP2000334496A (en) | Soil-based inorganic material and method of using the same | |
JPH0228534B2 (en) |