[go: up one dir, main page]

JPS62196614A - Zoom lens - Google Patents

Zoom lens

Info

Publication number
JPS62196614A
JPS62196614A JP4107586A JP4107586A JPS62196614A JP S62196614 A JPS62196614 A JP S62196614A JP 4107586 A JP4107586 A JP 4107586A JP 4107586 A JP4107586 A JP 4107586A JP S62196614 A JPS62196614 A JP S62196614A
Authority
JP
Japan
Prior art keywords
lens
group
refractive index
axial
zoom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4107586A
Other languages
Japanese (ja)
Inventor
Akinaga Horiuchi
昭永 堀内
Nozomi Kitagishi
望 北岸
Hiroki Nakayama
博喜 中山
Shigeyuki Suda
須田 繁幸
Jun Hattori
純 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4107586A priority Critical patent/JPS62196614A/en
Publication of JPS62196614A publication Critical patent/JPS62196614A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To reduce the number of lenses, to reduce troubles due to an error between relative positions of lenses and to simplify assembling adjusting work by arranging at least one axial refractive index distribution type lens in a front group and arranging at least one radial refractive index distribution type lens in a rear group. CONSTITUTION:The zoom lens is provided with plural lens groups consisting of a zooming part for executing zooming by changing the intervals of these lenses on the axis and an image formation lens part arranged successively and the image formation lens part is divided on the border of the longest axial interval so that the zooming part side and the other side are set up as the front group and the rear group respectively. At least one axial refractive index distribution type lens whose refractive index is changed in the optical axis direction is arranged in the front group and at least one radial refractive index distribution type lens whose refractive index is changed in the direction rectangular to the optical axis is arranged in the rear group. Even if the front group of the final fixing lens group of the zoom lens is constituted of only one axial refractive index distribution type lens or two lenses added by a uniform lens and the rear group is constituted of only one radial refractive index distribution type lens, aberration can be efficiently corrected.

Description

【発明の詳細な説明】 く利用分野〉 本発明、はズームレンズに関し、特にズーム部に続いて
配された固定レンズ群を改善して画質を低下させること
なく全系のコンパクトを図ったものである。
[Detailed Description of the Invention] Field of Application The present invention relates to a zoom lens, and in particular improves the fixed lens group disposed following the zoom section to make the entire system more compact without deteriorating image quality. be.

〈従来技術〉 近年、撮影用ズームレンズに対して、小型軽量化の要請
が高まってきている。現在の撮影用レンズ系、特に写真
ないしビデオカメラ用ズームレンズには、物体側より順
に第ルンズ群を正レンズ群、第2し:/ズ群を負レンズ
群、第3レンズ群を正または負レンズ群で構成し、該第
1正レンズ群と該第2負レンズ群の間隔及び該第2負レ
ンズ群と該第3レンズ群の間隔を変化させて変−倍を行
ない、最も像側に変倍中固定の最終固定レンズ群で構成
される可変焦点距離光学系を用いる場合がほとんどであ
る。そして撮影用ズームレンズでは、特定の焦点距離に
於ける収差のみならず、変倍中の収差変動を補正する必
要があり、その手段として各レンズ群は個々に所望の収
差量を分担させることが定石である。
<Prior Art> In recent years, there has been an increasing demand for zoom lenses for photography to be smaller and lighter. Current photographic lens systems, especially zoom lenses for photography or video cameras, have the first lens group as a positive lens group, the second lens group as a negative lens group, and the third lens group as a positive or negative lens group, in order from the object side. It is composed of a lens group, and the distance between the first positive lens group and the second negative lens group and the distance between the second negative lens group and the third lens group are changed to perform magnification, and the lens closest to the image side is In most cases, a variable focal length optical system consisting of a final fixed lens group that is fixed during zooming is used. In photographic zoom lenses, it is necessary to correct not only aberrations at a specific focal length, but also aberration fluctuations during zooming, and one way to do this is to have each lens group individually share the desired amount of aberration. It's a standard.

なかで、も最終固定レンズ群が最も大きい空気間隔を境
に前群と後群の2群に分かれるタイプでは、該前群は、
ズーム部で残存する主として球面収差と細土色収差及び
コマ収差の補正を効果的に行なっており、該後群は、主
として非点収差及びコマ収差特に外向コマ収差の発生を
極力押えている。その為各レンズ群は一般に多数枚のレ
ンズで構成され、上記要請を阻む要因となっている。
Among these, in the type where the final fixed lens group is divided into two groups, the front group and the rear group, with the largest air gap as the boundary, the front group is
Mainly spherical aberration, Hosochromatic aberration, and coma aberration remaining in the zoom section are effectively corrected, and the rear group mainly suppresses the occurrence of astigmatism and coma aberration, especially outward coma aberration as much as possible. Therefore, each lens group is generally composed of a large number of lenses, which is a factor that hinders the above requirements.

従来はズームレンズをコンパクト化する為に(1)ズー
ム部の各レンズ群のパワーを強める。(2)リレーレン
ズ群の望遠比を小さくする。の方法が代表的である。上
記の方法は1次近似的には適切であるが、実際のレンズ
系に於い−ては種々の問題点を誘発する。即ち、(1,
)のズーム部のパワーを強める方法は通常量もパワーの
強い負の第2レンズ群の分担するペッツバール和が負の
値で太き(発生し、像面湾曲が著しくオーバーになる。
Conventionally, in order to make a zoom lens more compact, (1) the power of each lens group in the zoom section was increased; (2) Decrease the telephoto ratio of the relay lens group. This method is typical. Although the above method is suitable as a first-order approximation, it causes various problems in an actual lens system. That is, (1,
) In order to increase the power of the zoom section, the Petzval sum shared by the negative second lens group, which has a strong power, becomes negative and thick (occurs), resulting in a significantly excessive curvature of field.

また、ズーム部の組立て精度がきつくなる等製造上の問
題が生じる。
Further, manufacturing problems arise, such as the need to assemble the zoom section with greater precision.

同様に(2)のリレーレンズ群の望遠比を小さくする方
法もリレーレンズ群の分担するペッツバール和が負の値
に発生する方向で、像面湾曲がオーバーになる。このペ
ッツバール和を補正する手段として正レンズの屈折率を
低くしたり、或は強いパワーを有する正レンズと負レン
ズを組合わせたりすると今度は球面収差や高次収差が著
しく発生して補正が困難となる。また、(1)ではズー
ム部の構成枚数を増加する手段によって上記収差を補正
することが可能となるが、レンズ群の厚みが増し、主点
間隔を長くしなければならない。従つて、結果的には全
系の光学全長を短縮することが困難となる。即ち、リレ
一部はズーム部より発生する各種収差を除去する為に構
成)るレンズ枚数が多くなり、小型軽量化及び組立調整
の簡易化を阻む原因となっている。従って、通常の球面
レンズ系では、上記の要請に対して限界がある。
Similarly, in the method (2) of reducing the telephoto ratio of the relay lens group, the curvature of field becomes excessive in the direction in which the Petzval sum shared by the relay lens group takes a negative value. If the refractive index of the positive lens is lowered as a means of correcting this Petzval sum, or if a positive lens with strong power is combined with a negative lens, spherical aberration and higher-order aberrations will occur significantly, making correction difficult. becomes. Further, in (1), it is possible to correct the above aberration by increasing the number of lenses constituting the zoom section, but this increases the thickness of the lens group and requires a longer principal point interval. Therefore, as a result, it becomes difficult to shorten the total optical length of the entire system. In other words, the number of lenses in the relay (which is constructed to eliminate various aberrations generated by the zoom section) increases, which hinders miniaturization and weight reduction as well as simplification of assembly and adjustment. Therefore, ordinary spherical lens systems have limitations in meeting the above requirements.

く目的〉 本発明は上述の難点を解消し、全系をコンパクトにする
ことを目的とし、レンズ枚数を減少させることでレンズ
間の相対位置誤差即ち光学偏心によるトラ、プルを少な
くし、組立調整作業を簡易化し得る効果を引出すもので
ある。
Purpose of the present invention: The purpose of the present invention is to solve the above-mentioned problems and make the entire system compact.By reducing the number of lenses, the relative position error between lenses, that is, the pull caused by optical eccentricity, is reduced, and assembly adjustment is facilitated. This brings out the effect of simplifying the work.

そして上記目的は、複数のレンズ群を有し、これらの軸
上間隔を変えてズーミングを行うズーム部と、結像レン
ズ部を順置し、結像レンズ部を最も大きい軸上間隔を境
に分けてズーム部側を前群、他方を後群とし、前群中に
少なくとも1枚の、光軸方向に屈折率が変化するアキシ
ャル屈折率分布型レンズを配し、後群中に少なくとも1
枚の、光軸と直交する方向に屈折率が変化するラジアル
屈折率分布型レンズを配することで達成される。尚、更
なる特徴は後述の説明で明らかになると考えている。ま
た、後述の実施例の文−ム部では、正のフォーカシング
レンズ、負のバリエータそしてコンベンセータを順置し
た構成をあげているが、例えば最前にフォーカスとコン
ベンセーシヨンを兼ねたレンズ、次いでバリエータがく
るタイプ、あるいは第1正レンズが固定で、第ルンズと
第3レンズが同時に移動してズーミングするタイプなど
種々の型式を採用できる。
The above purpose is to have a zoom section that has a plurality of lens groups, perform zooming by changing the axial spacing between them, and an imaging lens section, and to arrange the imaging lens section with the largest axial spacing as the boundary. The zoom section side is the front group, and the other side is the rear group.The front group is provided with at least one axial gradient index lens whose refractive index changes in the optical axis direction, and the rear group is provided with at least one axial gradient index lens.
This is achieved by arranging two radial gradient index lenses whose refractive index changes in a direction perpendicular to the optical axis. It is believed that further features will become clear in the description below. Furthermore, in the text section of the embodiment described below, a configuration is mentioned in which a positive focusing lens, a negative variator, and a convencator are arranged in order. Various types can be adopted, such as a double lens type, or a type in which the first positive lens is fixed and the third lens and third lens move simultaneously for zooming.

以下ま、ず屈折率分布型レンズを結像レンズ系に使用す
る場合の一般輪番述べた後、実施例を説明する。
First, a general rotation when a gradient index lens is used in an imaging lens system will be described, and then embodiments will be described.

屈折率分布型レンズの3次収差係数は、P、J、5an
dsによって導かれているが、検層「レンズ設計法」(
共立出版株式会社)の記号を用いて表現すると式A1〜
A15となる。
The third-order aberration coefficients of the gradient index lens are P, J, 5an
Although it is guided by the ds, the well logging "lens design method" (
Expression A1 ~ using the symbols of Kyoritsu Publishing Co., Ltd.
It becomes A15.

ここで屈折率分布型レンズの収差係数は媒質が均質とし
た場合に発生する屈折項A1〜A5に、媒質に屈折率分
布があるためにレンズ表面に屈折率分布がつき均質レン
ズと異なった屈折作用を受けるために現われる屈折項A
6〜AIOと屈折率分布型レンズのレンズ内部を光が一
進行中に屈折されて発生する収差の項の転送順Al1−
A15が付加されたもので表現される。
Here, the aberration coefficient of a gradient index lens is the refraction terms A1 to A5 that occur when the medium is homogeneous, and the refraction terms A1 to A5 that occur when the medium is homogeneous. Refraction term A that appears due to the action
6 ~ Transfer order of aberration terms that occur when light is refracted while traveling inside the AIO and gradient index lens Al1-
It is expressed by adding A15.

3次収差係数(球面系、均質媒質) ■。=h:Q冠(Ns)           Alm
、=六、、Q、Q嵩(”’T’)A2m、=h、h、”
Q、”A、 (+)          A3P= 〜
ψ“       A4 rV、= m、+P、       、  H,N4m
、=h、h、、’o、+Δ’ (+) +””Δ、(+
)A5(屈折率分布型レンズ屈折項) I 、=h :ψIn、、             
       A6m、=h5.ψin、u     
               A7m、=hユ2ψ、
、、                   A8V、
=h、h:ψIn、u               
    A9ψIn、。=÷(ΔN1.)十さくΔTh
0.)      Al0(屈折率分布型レンズ転送順
) 球面収差を例にとり説明する。
Third-order aberration coefficient (spherical system, homogeneous medium) ■. =h: Q crown (Ns) Alm
,=6,,Q,Q volume("'T')A2m,=h,h,"
Q,”A, (+) A3P= ~
ψ" A4 rV, = m, +P, , H, N4m
,=h,h,,'o,+Δ' (+) +””Δ,(+
) A5 (gradient index lens refraction term) I, =h: ψIn,,
A6m,=h5. ψin, u
A7m, =hyu2ψ,
,, A8V,
=h, h:ψIn, u
A9ψIn,. = ÷ (ΔN1.) ΔTh
0. ) Al0 (gradient index lens transfer order) This will be explained by taking spherical aberration as an example.

まず、ラジアル屈折率分布型レンズにおける不均質の項
ψin、νは ψin、ν= 4 (ΔNty)/γv   A 16
となる。ここでΔNi、はν面後の媒質のNlとν面前
の媒質のN1との差を表わす。
First, the inhomogeneity term ψin, ν in the radial gradient index lens is ψin, ν=4 (ΔNty)/γv A 16
becomes. Here, ΔNi represents the difference between Nl of the medium after the ν plane and N1 of the medium before the ν plane.

この式はラジアル屈折重分−布型レンズの前の媒質が均
質(均質媒質ではN1=O)のときは、屈折率分布を表
わすh8の係数N1がNl<Oの場合に、凸面であると
ψIn < Oになりh4ψ1nto(以下、添字νは
省く)と球面収差をオーバ一方向に発生させる効果を有
し、凹面であるとψIn > Oになりh4ψ1n〉0
と球面収差をアンダーに発生する効果を有する。
This formula indicates that when the medium in front of the radial refraction multiple distribution type lens is homogeneous (N1=O in a homogeneous medium), and when the coefficient N1 of h8 representing the refractive index distribution is Nl<O, it is a convex surface. ψIn < O and h4ψ1nto (hereinafter the subscript ν is omitted) has the effect of generating spherical aberration in over one direction. If it is a concave surface, ψIn > O and h4ψ1n>0
This has the effect of under-producing spherical aberration.

一方、h2の係数NlがNl>0の場合は、凸面だとψ
in > Oになりh4φ1n〉0と球面収差をアンダ
一方向に発生させる効果を有し、凹面であるとψin 
< Oになりh4ψin < Oと球面収差をオーバー
に発生させる効果を有する。逆にラジアル屈折率分布型
レンズの後の媒質が均質のときは、ΔN1νの値が上記
の場合とは逆の符号になる。
On the other hand, if the coefficient Nl of h2 is Nl>0, if it is a convex surface, ψ
in > O, and h4φ1n〉0, which has the effect of generating spherical aberration in the under direction, and if it is concave, ψin
<O, and h4ψin <O, which has the effect of generating excessive spherical aberration. Conversely, when the medium after the radial gradient index lens is homogeneous, the value of ΔN1ν has the opposite sign from that in the above case.

次にアキシャル屈折率分布型レンズにおける不均質の項
ψ、n、、は ψin、ν= (ΔNoν)/γ2     A17と
なる。ここで由は光軸方向の屈折率の微分値であり、Δ
食oνはν面の前後の差を現わす。
Next, the inhomogeneity term ψ, n, in the axial gradient index lens becomes ψin, ν=(ΔNoν)/γ2 A17. Here, y is the differential value of the refractive index in the optical axis direction, and Δ
The eclipse oν represents the difference between the front and rear of the ν plane.

この式はアキシャル屈折率分布型レンズの前後の媒質が
均質(均質媒質ではMoν=0)のとき、該レンズの任
意の面に注目し、その面からもう一方の面にかけて屈折
率が減少する(即ち、分布変化の傾きNovがNo、<
O)ときは、面形状が平面以外ではψin < Oにな
り、h4φin < Oと球面収差をオー、バ一方向に
発生させる効果を有し、その面からもう一方の面にかけ
て屈折率が増加する(即ち食0ν>0)ときは、面形状
が平面以外ではψ1n〉0になり、h4ψ1n〉0と球
面収差をアンダーに発生させる効果を有する。、また、
面形状が平面のときはψin ” 0となり効果はない
This formula shows that when the media before and after an axial gradient index lens are homogeneous (Moν=0 in a homogeneous medium), focusing on an arbitrary surface of the lens, the refractive index decreases from that surface to the other surface ( That is, the slope Nov of the distribution change is No, <
O), when the surface shape is not flat, ψin < O, and h4φin < O, which has the effect of generating spherical aberration in one direction, and the refractive index increases from that surface to the other. (That is, when the eclipse 0ν>0), ψ1n>0 when the surface shape is other than a flat surface, which has the effect of generating h4ψ1n>0 and under-spherical aberration. ,Also,
When the surface shape is flat, ψin'' is 0 and there is no effect.

次にズームレンズに屈折率分布型レンズを用いたときの
作用を説明する。
Next, the effect when a gradient index lens is used as a zoom lens will be explained.

通常のズームレンズでFナンバーが1.2乃至1.4程
度に明るいものでは最終固定(リレー)レンズ群に多数
枚のレンズを使用するのが普通である。これに対し、ズ
ームレンズの最終固定レンズ群の前群をアキシャル屈折
率分布型レンズ1枚もしくは更に均質レンズを加えた2
枚で構成し、後群をラジアル屈折率分布型レンズ1枚で
構成したとしても良好に収差を補正することが可能であ
る。
For a normal zoom lens with a bright F number of about 1.2 to 1.4, a large number of lenses are normally used in the final fixed (relay) lens group. In contrast, the front group of the final fixed lens group of a zoom lens is composed of one axial gradient index lens or two homogeneous lenses.
Even if the rear group is composed of one radial index gradient lens, it is possible to satisfactorily correct aberrations.

即ち、最終固定レンズ群の前群にアキシャル屈折率分布
型レンズを配すると、従来の様に小数枚の均質レンズで
構成したときはアンダ一方向に大きく発生する球面収差
及びコマ収差の発生を前述した理由で小さくすることが
可能となる。特にこのレンズへ入射する軸上光線と射出
する軸上光線の光軸に対する傾角の絶対値が小さい方に
、他面に比して曲率がきつい凸面を向けると、レンズ面
上の屈折率を任意の値に制御できることに基づいて有効
な補正を実現できる。
In other words, when an axial gradient index lens is placed in the front group of the final fixed lens group, the spherical aberration and coma aberration that occur largely in the downward direction when constructed with a small number of homogeneous lenses as in the past can be avoided. This makes it possible to make it smaller. In particular, if a convex surface with a steeper curvature than the other surface is directed toward the side where the absolute value of the inclination angle with respect to the optical axis of the axial ray entering the lens and the axial ray exiting the lens is smaller, the refractive index on the lens surface can be adjusted arbitrarily. Effective correction can be realized based on the fact that the value of .

そして、後群にラジアル屈折率分布型レンズを用いると
、正のパワーを内部の集光作用に分担させることができ
るので屈折面の曲率を緩和させることができ、かつ、レ
ンズ面上の位置により屈折率が異なることから、球面収
差の発生が小さくなる。
If a radial graded index lens is used in the rear group, the positive power can be shared with the internal condensing action, so the curvature of the refracting surface can be relaxed, and the position on the lens surface can be Since the refractive indexes are different, the occurrence of spherical aberration is reduced.

また、第1図に示す本発明第1実施例の様に最終固定レ
ンズ群に於いて像側に凸面を向け、該凸面側からもう一
方の面にかけて屈折率が漸次減少するアキシャル屈折率
分布型レンズを用いても同様の収差補正効果を得ること
ができることは、式A17Iの説明から明らかである。
In addition, as in the first embodiment of the present invention shown in FIG. 1, an axial refractive index distribution type in which a convex surface faces the image side in the final fixed lens group and the refractive index gradually decreases from the convex surface side to the other surface. It is clear from the explanation of formula A17I that a similar aberration correction effect can be obtained by using a lens.

そ°して、軸上光線の高いレンズ群にアキシャル屈折率
分布型レンズを用いることからコマ収差の発生が小さく
なる為、後、群にも発生の小さいレンズが必要となる。
Furthermore, since the axial gradient index lens is used in the lens group with high axial rays, the occurrence of comatic aberration is reduced, so lenses with small occurrence of coma aberration are also required in the rear group.

それゆえ後群にはラジアル屈折率分布型レンズを用いる
ことが最も適した組合わせである。もし後群が負のパワ
ーを有する場合には、該後群中に漸次屈折率が増加する
分布を有するラジアル屈折率分布型レンズを用いれば、
負のパワーを内部の発散作用に分担させることができる
ので屈折面の曲率を緩和させることができ、且つ、レン
ズ面上の位置により屈折率が異なることから、上記後群
と同様に他の収差に影響なく球面収差の発生を小さくで
きる。
Therefore, the most suitable combination is to use a radial gradient index lens in the rear group. If the rear group has negative power, if a radial gradient index lens is used in which the rear group has a distribution in which the refractive index gradually increases,
Since the negative power can be shared with the internal diverging effect, the curvature of the refractive surface can be relaxed, and since the refractive index differs depending on the position on the lens surface, other aberrations can be reduced as well as in the rear group. It is possible to reduce the occurrence of spherical aberration without affecting the

尚、第1図に描(通り、物体側より順に合焦機能を有す
る正の第ルンズ群、変倍機能を有する負の第2レンズ群
、変倍作用に伴なう像面位置変動の補正機能を有する負
の第3レンズ群、そして変倍中固定の最終固定レンズ群
である第4正レンズ群で構成されるズームレンズで、第
4正レンズ群は物体側から発散で入射した光束をアフォ
ーカルに6する正レンズとファインダーへ一部の光を導
くプリズムが設けられており、それ以降は通常6凸2群
構成のペッツバール多イブが収差補正上適切な解の1つ
である。そして、像面の直前にはローパスフィルター。
As shown in Figure 1, in order from the object side, there is a positive lens group with a focusing function, a negative second lens group with a variable power function, and a correction for image plane position fluctuations due to variable power. This is a zoom lens consisting of a negative third lens group that has a function, and a fourth positive lens group that is the final fixed lens group during zooming. An afocal 6-convex positive lens and a prism that guides some of the light to the viewfinder are provided, and after that, a Petzval multi-beam configuration with 6 convex and 2 groups is one of the appropriate solutions for correcting aberrations. , a low-pass filter is placed just in front of the image plane.

ストライプフィルター、撮像管フェースプレートが配さ
れていて、レンズを射出する光束はほぼテレセントリッ
クになっている。
It has a stripe filter and an image pickup tube faceplate, and the light beam exiting the lens is almost telecentric.

第3図に示す実施例2は、物体側より順に合焦機能を有
する正の第ルンズ群、変倍機能を有する負 −の第4レ
ンズ群、変倍作用に伴なう像面位置変動の補正機能を有
する正の第3レンズ群、モして変倍中固定の最終固定レ
ンズ群である第4正レンズ群で構成されるズームレンズ
である。
Embodiment 2 shown in FIG. 3 includes, in order from the object side, a positive lens group having a focusing function, a negative fourth lens group having a variable power function, and a negative fourth lens group having a variable power function. This zoom lens includes a third positive lens group having a correction function, and a fourth positive lens group which is a final fixed lens group that is fixed during zooming.

この様に第3レンズ群を正レンズ群で構成することは、
ペッツバール和の補正には有利であるが、球面収差の発
生量がアンダーに大きくなり、′コマ収差の発生量も大
きくなる。その為、それらの収差を補正するには最終固
定レンズ群に多数枚のレンズが必要であった。そこで、
最終固定レンズ群の前群をアキシャル屈折率分布型レン
ズ1枚で、後群をラジアル屈折率分布型レンズ1枚で構
成して実施例1と同様に球面収差とコマ収差の補正を良
好に行なった。
Configuring the third lens group with a positive lens group in this way means that
Although this is advantageous for correcting the Petzval sum, the amount of spherical aberration generated becomes too large, and the amount of coma aberration also increases. Therefore, in order to correct these aberrations, a large number of lenses were required in the final fixed lens group. Therefore,
The front group of the final fixed lens group was composed of one axial gradient index lens, and the rear group was composed of one radial gradient index lens, and as in Example 1, spherical aberration and coma aberration were well corrected. Ta.

本発明の実施例は、必要最少限の枚数で構成する例とし
て、第1実施例では最終固定レンズ群の前群を2枚のレ
ンズ、後群を1枚のレンズで構成し、第2実施例では前
群と後群を各1枚ずつのレンズで構成しているが、これ
らを複数の屈折率分布型レンズあるいは均質レンズとの
組合わせで構成することによりさらに高性能化ができる
ことは言うまでもない。
In the embodiments of the present invention, the front group of the final fixed lens group is composed of two lenses and the rear group is composed of one lens, as an example of constructing the lens group with the minimum necessary number. In the example, the front group and the rear group each consist of one lens, but it goes without saying that performance can be further improved by configuring these in combination with multiple gradient index lenses or homogeneous lenses. stomach.

以下実施例のレンズデータを示す。Lens data of Examples is shown below.

尚、屈折率分布を表わす表現式として便宜上光軸からの
距離りに応じて変化する場合は屈折率をN(h)として
、 N (、h) =No+N+h’+N2h’+N3h’
+ −−−−とじ、光軸方向に屈折率分布を有する場合
はレンズの物体側の頂点を相対座標原点としその原点か
らの距離をXとした時の屈折率をN (x)として、N
 (X)=NO+NIX+N2X”+N3X”+  7
−−−とじて表わした。
For convenience, as an expression to express the refractive index distribution, if the refractive index changes depending on the distance from the optical axis, the refractive index is N(h), and N (, h) = No + N + h' + N2h' + N3h'
+ ---- If the lens has a refractive index distribution in the optical axis direction, the object-side vertex of the lens is the relative coordinate origin, and the refractive index when the distance from the origin is X is N (x), N
(X)=NO+NIX+N2X”+N3X”+7
--- Expressed together.

数値実施例1におけるR22.R23はビデオカメラの
撮像管のフェースプレートやフィルタ等を示す。
R22 in Numerical Example 1. R23 indicates the face plate, filter, etc. of the image pickup tube of the video camera.

数値実施例1におけるR15.R16はファインダー光
学系用等の光束分割のガラスブロックを示す。
R15 in Numerical Example 1. R16 indicates a glass block for dividing a light beam for a finder optical system or the like.

数値実施例1(第1図参照) 焦点距離F=100〜570Fナンバー1 : 1.2
2〜1.39画角 2ω=48.8°〜9.1゜ 可変間隔 Ni (x) =NO+N+ X+N2 X” 十N3
 x3λ   NoNI        N2ト1゜(
X)   d   1.88867 −4.15256
X10−”  −1,53134X10−’g   1
.91683 −3.12392刈0  −6.028
11XIO−’2.05803XlOイ 1.76137X10−’ Ni (h) =No +N+ h”+Nzh’λ  
NoNI      Ni 1’i、 (h)   d   1.85   −3.
65201X10   2.86314X10−”g 
  1.87525 −s:ao43s刈Q −’  
 3.00721 x 10−”数値実施例2(第3図
参照) 焦点距離F= 100〜284Fナンバー 1 : 1
..0画角2ω=44.6°〜16.4゜ K l’/ −232,6;l;1 可変間隔 Ni (x) =N6+N1x+Nzx”λ   No
NI        N2N8(x)   d   1
.85426 −9.6901X10″″”  、  
−1,09226XIO−’g   1.87933 
−1.01943X10   6.64091X10−
’2.05803X10−7 1.76137X10−6 Ni (h) =No 十N1 h”+N2h’λ  
NoNI     N2 N、(h)   d   1.85099 −2.69
575X10  −3.14357X10−”g   
1.89677 −2.65437X10  −3.3
9781X10−10上述め通り、例えば複数のレンズ
−より成り、物体側より順に第ルンズ群を正レンズ群、
第2レンズ群を負レンズ群、第3レンズ群を正または負
レンズ群で構成し、該第1正レンズ群と該第2正レンズ
群の間隔及び該第2負レンズ群と該第3レンズ群の間隔
を変化させて変倍を行ない、最も像側に変倍中固定の最
終固定レンズ群を有する可変焦点距離光学系に於いて、
該最終固定レンズ群中の最も大きい空気間隔を境に前群
と後群の2群に分け、該前群中に少なくとも1枚のアキ
シャル屈折率分布型レンズを用い、かつ該後群中に少な
くとも1枚のラジアル屈折率分布型レンズを用いること
により構成レンズ枚数を削減しても高性能なズームレン
ズを達成できた。さらに、構成レンズ枚数を削減するこ
とにより、小型軽量で組立調整の容易なズームレンズを
達成できた。
Numerical Example 1 (see Figure 1) Focal length F=100-570F number 1: 1.2
2 to 1.39 angle of view 2ω = 48.8° to 9.1° variable interval Ni (x) =NO+N+ X+N2 X” 10N3
x3λ NoNI N2to1゜(
X) d 1.88867 -4.15256
X10-'-1,53134X10-'g 1
.. 91683 -3.12392 mowing 0 -6.028
11XIO-'2.05803XlOi1.76137X10-' Ni (h) =No +N+ h"+Nzh'λ
NoNI Ni 1'i, (h) d 1.85 -3.
65201X10 2.86314X10-”g
1.87525 -s: ao43s kari Q -'
3.00721 x 10-” Numerical Example 2 (see Figure 3) Focal length F = 100-284F number 1:1
.. .. 0 angle of view 2ω=44.6°~16.4°K l'/-232,6;l;1 Variable interval Ni (x) =N6+N1x+Nzx"λ No
NI N2N8(x) d 1
.. 85426 -9.6901X10″″”,
-1,09226XIO-'g 1.87933
-1.01943X10 6.64091X10-
'2.05803X10-7 1.76137X10-6 Ni (h) =No 10N1 h"+N2h'λ
NoNI N2 N, (h) d 1.85099 -2.69
575X10-3.14357X10-”g
1.89677 -2.65437X10 -3.3
9781
The second lens group is a negative lens group, and the third lens group is a positive or negative lens group, and the distance between the first positive lens group and the second positive lens group, and the distance between the second negative lens group and the third lens. In a variable focal length optical system that performs magnification by changing the distance between the groups and has a final fixed lens group closest to the image side that remains fixed during the magnification change,
The final fixed lens group is divided into two groups, a front group and a rear group, using the largest air gap as a boundary, and at least one axial gradient index lens is used in the front group, and at least one axial gradient index lens is used in the rear group. By using one radial refractive index gradient lens, a high-performance zoom lens could be achieved even if the number of constituent lenses was reduced. Furthermore, by reducing the number of constituent lenses, we were able to create a zoom lens that is small, lightweight, and easy to assemble and adjust.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例を示すレンズ断面図で、第
2図はその諸収差図、第3図は第2実施例を示すレンズ
断面図で、第4図はその諸収差図。 図中で、Riは曲率半径、Diはレンズ面間隔、Mはメ
リデイオナル面、Sはサジツタル面である。
FIG. 1 is a sectional view of a lens showing the first embodiment of the present invention, FIG. 2 is a diagram of its various aberrations, FIG. 3 is a sectional view of a lens showing the second embodiment, and FIG. 4 is a diagram of its various aberrations. . In the figure, Ri is the radius of curvature, Di is the distance between lens surfaces, M is the meridional surface, and S is the sagittal surface.

Claims (5)

【特許請求の範囲】[Claims] (1)複数のレンズ群を有し、これらの軸上間隔を変え
てズーミングを行うズーム部と、結像レンズ部を装置し
、結像レンズ部を最も大きい軸上間隔を境に分けてズー
ム部側を前群、他方を後群とし、前群中に少なくとも1
枚の、光軸方向に屈折率が変化するアキシヤル屈折率分
布型レンズを配し、後群中に少なくとも1枚の、光軸と
直交する方向に屈折率が変化するラジアル屈折率分布型
レンズを配したことを特徴とするズームレンズ。
(1) A zoom section that has multiple lens groups and performs zooming by changing their axial spacing, and an imaging lens section, and the imaging lens section is divided based on the largest axial spacing and zoomed. One side is the front group, the other side is the rear group, and at least one
There are two axial gradient index lenses whose refractive index changes in the direction of the optical axis, and at least one radial gradient index lens whose refractive index changes in the direction perpendicular to the optical axis in the rear group. A zoom lens characterized by the
(2)前記前群に配したアキシヤル屈折率分布型レンズ
は、このレンズへ入射する軸上光線と射出する軸上光線
との光軸に対する傾角の絶対値が小さい方に、他面に比
して曲率がきつく且つ凸の面を向けるとともに、この凸
の面から他面に掛けて屈折率が減少する分布とした特許
請求の範囲第1項記載のズームレンズ。
(2) The axial gradient index lens arranged in the front group has a smaller absolute value of the inclination angle with respect to the optical axis of the axial ray entering the lens and the axial ray exiting the lens, compared to the other surface. 2. The zoom lens according to claim 1, wherein the zoom lens has a convex surface with a steep curvature, and has a distribution in which the refractive index decreases from the convex surface to the other surface.
(3)前記アキシアル屈折率分布型レンズは正のメニス
カスレンズである特許請求の範囲第1項記載のズームレ
ンズ。
(3) The zoom lens according to claim 1, wherein the axial gradient index lens is a positive meniscus lens.
(4)前記ラジアル屈折率分布型レンズは、光軸から遠
ざかるに従って減少する分布を有する特許請求の範囲第
1項記載のズームレンズ。
(4) The zoom lens according to claim 1, wherein the radial gradient index lens has a distribution that decreases as it moves away from the optical axis.
(5)前記ズーム部は、物体側より順に正の第1レンズ
群、負の第2レンズ群、正又は負の第3レンズ群を具え
、第1レンズ群と第2レンズ群との軸上間隔及び第2レ
ンズ群と第3レンズ群との軸上間隔を変化させてズーミ
ングを行う特許請求の範囲第1項記載のズームレンズ。
(5) The zoom unit includes, in order from the object side, a positive first lens group, a negative second lens group, and a positive or negative third lens group, and is on the axis between the first lens group and the second lens group. The zoom lens according to claim 1, wherein zooming is performed by changing the distance and the axial distance between the second lens group and the third lens group.
JP4107586A 1986-02-25 1986-02-25 Zoom lens Pending JPS62196614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4107586A JPS62196614A (en) 1986-02-25 1986-02-25 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4107586A JPS62196614A (en) 1986-02-25 1986-02-25 Zoom lens

Publications (1)

Publication Number Publication Date
JPS62196614A true JPS62196614A (en) 1987-08-31

Family

ID=12598329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4107586A Pending JPS62196614A (en) 1986-02-25 1986-02-25 Zoom lens

Country Status (1)

Country Link
JP (1) JPS62196614A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02101415A (en) * 1988-10-11 1990-04-13 Olympus Optical Co Ltd Distributed refractive index lens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02101415A (en) * 1988-10-11 1990-04-13 Olympus Optical Co Ltd Distributed refractive index lens

Similar Documents

Publication Publication Date Title
JP2682053B2 (en) Small zoom lens
JPH09325274A (en) Zoom lens
JP4356040B2 (en) Long zoom lens with anti-vibration function
JPH1020193A (en) Zoom lens
JPH0527172A (en) Zoom lens
JPS61148414A (en) Compact zoom lens
US6621643B2 (en) Zoom lens system
JPH0833515B2 (en) Compact high-magnification zoom lens
JPH0659192A (en) Zoom lens
JP3331011B2 (en) Small two-group zoom lens
JP3184581B2 (en) Zoom lens
JPH07318804A (en) Zoom lens
US5786945A (en) Zoom lens system
JPH05119260A (en) High-power zoom lens
JP2546293B2 (en) Small zoom lens
JP3134448B2 (en) Telephoto zoom lens
JP3258375B2 (en) Small two-group zoom lens
JP2513481B2 (en) Zoom lens
JPH0560971A (en) Rear focus zoom lens
JPH06175026A (en) Zoom lens including wide angle range
JPH0447287B2 (en)
JP3088112B2 (en) Zoom lens
JP3029150B2 (en) Wide-angle high zoom lens
US4952038A (en) Zoom lens system for use in compact camera
JP2000338400A (en) Zoom lens