JPS62196306A - Manufacturing method of multi-layer tungsten alloy - Google Patents
Manufacturing method of multi-layer tungsten alloyInfo
- Publication number
- JPS62196306A JPS62196306A JP3747686A JP3747686A JPS62196306A JP S62196306 A JPS62196306 A JP S62196306A JP 3747686 A JP3747686 A JP 3747686A JP 3747686 A JP3747686 A JP 3747686A JP S62196306 A JPS62196306 A JP S62196306A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- tungsten alloy
- core
- outer part
- ductility
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Powder Metallurgy (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は特に衝撃的な工1荷のかかるクライルやマンド
レル等に適した高延性を有するタングステン合金の製造
方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION <Industrial Field of Application> The present invention relates to a method for producing a tungsten alloy having high ductility and suitable for making cryle, mandrel, etc., which require particularly high-impact work.
く従来の技術と問題点〉
従来ニッケルや鉄を結合材としたタングステン合金は、
その高比重を利用して自動巻時計用重り、遮蔽材、バラ
ンサー等に使用されていたが、近年この材料の高比重、
高強度に着口して、衝撃的な負荷のかかるクライルやマ
ンドレル等に用いる試みがなされてきた。合金の高比重
化により、その剛性を高めることが出来るが、その反面
延性が低下するという問題点があった。Conventional technology and problems〉 Conventionally, tungsten alloys using nickel or iron as binders
Utilizing its high specific gravity, it was used for weights for automatic watches, shielding materials, balancers, etc., but in recent years, the high specific gravity of this material,
Attempts have been made to achieve high strength and use it in cryle, mandrel, etc. that are subject to impact loads. By increasing the specific gravity of the alloy, it is possible to increase its rigidity, but on the other hand, there is a problem in that its ductility decreases.
この問題点にか↑して、本発明者らは先に、高延性を有
するタングステン合金の製造方法を発明した。即ち、W
粉末85〜97%および残部がNiとFeの粉末からな
る混合粉末を、1〜4 t o n / c +n ’
の0水圧下で圧粉し、ついで該圧粉体を0−−60’C
の水素気流中で液相焼結し、つぎに該焼結体を真空中に
おいて加熱後2)冷する熱処理を施rことにより、高延
性のタングステン合金を製造することが可能であるとす
るものであった。In view of this problem, the present inventors previously invented a method for manufacturing a tungsten alloy having high ductility. That is, W
A mixed powder consisting of 85% to 97% powder and the balance being Ni and Fe powder is 1 to 4 ton/c + n'
The powder is compacted under 0 water pressure, and then the compact is heated to 0--60'C.
It is possible to produce a highly ductile tungsten alloy by liquid-phase sintering in a hydrogen stream, followed by heat treatment in which the sintered body is heated in a vacuum and then cooled. Met.
く間厘点を解決するための手El>
その後の研究により、合金の延性を高める方法として、
合金の外側部と芯部の各々の特性を異なったものにrる
ことにより、その性能を上記の方法によって製′iLさ
れたものに比べて、さらに改良されることを見い出だし
た。Techniques for solving the Kumagari point El> Subsequent research revealed that as a method to increase the ductility of alloys,
It has been found that by varying the properties of the outer and core parts of the alloy, its performance is further improved compared to that produced by the method described above.
即ち、タングステン合金を製造するにあたり、外Il!
11部の組成がw量比でW粉末93〜97%および残部
がNiとFeの粉末からなる混合粉末であり、そして、
芯部の組成がW粉末85〜91%および残部がNiとF
eの粉末からなる混合粉末であって、粉末充填時に外側
部と芯部とにおいて、上記混合粉末を各々混入すること
なく充填したのち、1〜4ton/cfi2の0水圧下
で圧粉し、ついで該圧粉体を0〜−60°Cの水素気流
中で液相焼結しっぎに該焼結体を真空中において加熱後
2)冷する熱処理を施すことによって、芯部が外側部よ
りも高延性である二層のタングステン合金から成り、ま
たさらに上記熱処理体を加工率5〜20%でスエーノ加
工を施rことによって、芯部が外側部よりも高延性であ
る二層のタングステン合金から成るものである。That is, when manufacturing tungsten alloy, outside Il!
The composition of 11 parts is a mixed powder consisting of W powder of 93 to 97% in w amount ratio and the balance of Ni and Fe powder, and
The composition of the core is W powder 85-91% and the balance is Ni and F.
A mixed powder consisting of powder e, which is filled with the above-mentioned mixed powder in the outer part and the core part without mixing with each other at the time of powder filling, and then compacted under zero water pressure of 1 to 4 ton/cfi2, and then The green compact is liquid-phase sintered in a hydrogen stream at 0 to -60°C, and then the sintered body is heated in a vacuum and then 2) cooled. Furthermore, by subjecting the heat-treated body to sueno processing at a processing rate of 5 to 20%, a two-layer tungsten alloy in which the core part is more ductile than the outer part is obtained. It consists of
次に本発明の(1η成と効果については、以下の通りで
ある。Next, the (1η formation and effects of the present invention) are as follows.
原料粉末としては、W、 Ni、 Feの各粉末を使用
するが、所望の比重を保−〕ためには、外側部において
はWfiが9325以上、芯部においてはW)tが85
%以上であることが必要であるが、所望の伸びを保つた
めには、外側部においてはW@が97%未満、芯部にお
いてはW電が91!6未満であることが必要である。N
iとFeは焼結時践相を発生し、高密度化を促進し、か
つ材料の延性を高める目的で添加され、その着は、外側
部においては、3%未満では上記の効果が発汗できず7
%を越えると所望の比重が得られないことがら3〜7%
に限定され、芯部においては9%末)5うでは、所望の
伸びが確保できず、15%を越えると所望の比重が得ら
れないことから9〜15%に各各限定した。土たNiと
Feの量的な関係としては、Feが結合相全体に対して
20〜50%程度が望ましく、この理由はこの範囲でN
iおよびFe単体より融点が十分に低下し、効果的な液
相焼結が可能となるからである。W, Ni, and Fe powders are used as raw material powders, but in order to maintain the desired specific gravity, Wfi should be 9325 or more in the outer part and W)t should be 85 in the core part.
% or more, but in order to maintain the desired elongation, it is necessary that W @ be less than 97% in the outer part and less than 91!6 in the core part. N
I and Fe are added for the purpose of generating phase formation during sintering, promoting densification, and increasing the ductility of the material.If the content is less than 3% in the outer part, the above effect cannot be achieved. Zu7
If it exceeds 3 to 7%, the desired specific gravity may not be obtained.
If the core part is limited to 9%, the desired elongation cannot be ensured, and if it exceeds 15%, the desired specific gravity cannot be obtained, so each content was limited to 9 to 15%. Regarding the quantitative relationship between Ni and Fe, it is desirable for Fe to account for about 20 to 50% of the entire binder phase, and the reason for this is that within this range, N
This is because the melting point is sufficiently lower than that of i and Fe alone, and effective liquid phase sintering becomes possible.
各粉末の粒度は成形性、焼結性および材料の延性の観ノ
、χから1−10μ程度が望ましい。The particle size of each powder is desirably about 1-10 μm based on the considerations of moldability, sinterability, and ductility of the material.
またN1とFeの合金粉末を使用しても液相焼結が可能
であることがら、嘔体の粉末を使用する場合と同様の効
果がある。Further, since liquid phase sintering is possible even when using an alloy powder of N1 and Fe, the same effect as when using a powder of spores can be obtained.
つぎに上記粉末を混合した後、1〜4 t o n /
c +n 2の静水圧で圧縮動る。Next, after mixing the above powder, 1 to 4 tons/
It compresses and moves under the hydrostatic pressure of c + n 2.
1ton/eta2以下の圧力では液相焼結をf〒なっ
ても2〜3%の気孔が残留するので延性が落ちる。At a pressure of 1 ton/eta2 or less, 2 to 3% of pores remain even after liquid phase sintering, resulting in a decrease in ductility.
4 t o n / c I* 2を越える圧力では、
成形体の密度が高過ぎて、焼も11時の51温過程で気
孔はほとんど、いわゆるクローズド・ボアとなるため、
水素による還元や不純物除去が効果的に行なえなくなる
。また、材料の均質性を高め、従って延性を高めるため
に通常の1軸圧縮ではなく、算木圧圧縮を行なう必要が
あり、圧粉は1〜4 t o n / C162の算木
圧圧縮によることとした。At pressures exceeding 4 ton/c I*2,
The density of the compact is so high that most of the pores become so-called closed bores during the 51-temperature process at 11 o'clock in the firing process.
Reduction and impurity removal by hydrogen cannot be performed effectively. In addition, in order to increase the homogeneity of the material and therefore increase its ductility, it is necessary to perform arithmetic compression instead of the usual uniaxial compression, and the powder is compressed by arithmetic compression at a rate of 1 to 4 tons/C162. I decided to do so.
つぎに圧粉体を水系気流中で焼結するが、この際最も重
要な点は、水素の露点を0〜−60’(:の間に保つこ
とである。これは圧粉体のw−W粒界やW−マトリック
ス粒界に、酸化物その池の不純物が存在すると、液相焼
結後の延性を24しく損うためであり、通常使用されて
いる5〜20°C程度の露点の水素雰囲気中ではなく、
0〜−60°Cの極めて低い露点の水素雰囲気中に圧粉
体を置き、昇温36程を含む焼結工程中に、充分な還元
と不純物除去を行なうことにより、材料の延性を高める
ことができるのである。0℃より高い露点の雰囲気では
上記の効果が充分ではなく、また−60℃以下1こ炉内
′7F、囲気を維持しても効果の程度は向上しないので
焼結炉内の水素の露点は0〜−GOoCとした。焼結炉
の出口ffl’lの水素の露点をこの範囲に保つtこめ
には勿論、入口側の水素の露点はさらに低く、たとえば
−70°C以下に保つ必要があり、さらに炉材、圧粉体
の量、炉の形状等を2′5′慮して、びこ入水素置ら適
宜選択する必要のあることは当然である。Next, the green compact is sintered in an aqueous air stream, but the most important point at this time is to maintain the hydrogen dew point between 0 and -60'. This is because the presence of impurities such as oxides at W grain boundaries or W-matrix grain boundaries will impair ductility after liquid phase sintering. not in a hydrogen atmosphere of
The green compact is placed in a hydrogen atmosphere with an extremely low dew point of 0 to -60°C, and the ductility of the material is increased by sufficient reduction and removal of impurities during the sintering process, which involves raising the temperature by about 36°C. This is possible. The above effect is not sufficient in an atmosphere with a dew point higher than 0°C, and the degree of the effect does not improve even if the atmosphere is maintained at 7F in the furnace below -60°C, so the dew point of hydrogen in the sintering furnace is 0 to -GOoC. Of course, in order to keep the hydrogen dew point at the outlet of the sintering furnace within this range, the hydrogen dew point at the inlet must be kept even lower, for example below -70°C, and the furnace material and pressure must be maintained even lower. Naturally, it is necessary to appropriately select the infiltrated hydrogen position, taking into account the amount of powder, the shape of the furnace, etc.
焼結はNiやFeが少なくとも液相を生じる温度で、か
つ充分な合金化と緻密化が進行するのに必要な時間加熱
することが高延性な材料を得るために必要であり、具体
的には少なくとも1450°C以上の温度、30分間以
上の時間を必要とする。In order to obtain a highly ductile material, sintering is necessary at a temperature at which Ni and Fe at least form a liquid phase and for a time necessary for sufficient alloying and densification to occur. requires a temperature of at least 1450°C or more and a time of at least 30 minutes.
つぎに所望の延性を附与するために、得られた焼結体に
さらに、熱処理を施すことが必要である。焼結体中に固
溶した水素量が多いと材料の延性を低下させるので、こ
れを除去するために焼結体を真空中において、700〜
1400℃の温度で2〜10時間加熱保持し、かつその
後2)冷することは必要なのである。冷却j上皮は、少
なくとも300℃まで40℃/分以上にする必要がある
。Next, in order to impart desired ductility, it is necessary to further heat-treat the obtained sintered body. If there is a large amount of dissolved hydrogen in the sintered body, it will reduce the ductility of the material, so in order to remove this, the sintered body is placed in a vacuum at a temperature of 700~
It is necessary to heat and hold at a temperature of 1400° C. for 2 to 10 hours, and then 2) cool it down. Cooling the epithelium should be at least 40°C/min up to at least 300°C.
この碌な熱処理を施すことによって、上記のような材料
中の水素量の低減化の茎ヱかに、粒界や校内への微量の
析出物の生成を防止することや、結合相中に過飽和に固
定したWの析出を防止することにより延性を高めること
が可能となると考えられる。This advanced heat treatment not only reduces the amount of hydrogen in the material as described above, but also prevents the formation of trace amounts of precipitates at grain boundaries and within the material, and also prevents supersaturation in the binder phase. It is considered that ductility can be increased by preventing precipitation of W fixed in the steel.
つぎに外側部と芯部との比率についでは、外側部が増大
することによって、より比重が高くなり、一方芯部が増
大することによって、より延性が高い材料になるが、粉
末充填上の制約から、径に対して、外側部:芯部が8:
2〜2:8が限度であり、好ましくは外側部:芯部=6
:4〜4:6の比率である。Next, regarding the ratio of the outer part to the core, as the outer part increases, the specific gravity becomes higher, and on the other hand, as the core part increases, the material becomes more ductile, but there are restrictions on powder filling. From, outer part: core part is 8:
The limit is 2 to 2:8, preferably outer part: core = 6
:4 to 4:6 ratio.
以上述べたとおり、原料、成形、焼結、熱処II等の工
程を本発明の如(組介せることにより、また、内外の合
金の組成を本発明のように組合せることによって従来の
タングステン合金に比べて著しい延性の改良が得られる
ことが可能となるのである。As described above, by combining the raw materials, molding, sintering, heat treatment II, and other processes as in the present invention, and by combining the compositions of the inner and outer alloys as in the present invention, conventional tungsten This makes it possible to obtain a significant improvement in ductility compared to alloys.
一方りウィルやマンドレルとしては、外側部の硬さを向
上させて、貫徹力を高め得る場合があり、その方法とし
ては、スエーノング加工が最も有効手段であることが、
種々検討の結果、確認されたが、外側部の硬さを向上さ
せるためには、その加工率が5%未満では、あまり効果
がなく、20%を越えると、芯部まで硬化し、合金の延
性が低下することから、スエージング加工の加工率は5
〜20%が適当である。On the other hand, for wills and mandrels, it is possible to increase the penetration force by improving the hardness of the outer part, and the most effective method for this is swaning.
As a result of various studies, it was confirmed that in order to improve the hardness of the outer part, if the processing rate is less than 5%, it is not very effective, and if it exceeds 20%, the core part will harden and the alloy will deteriorate. Since the ductility decreases, the processing rate of swaging is 5.
~20% is appropriate.
以下、本発明の効果を実施例により示す。Hereinafter, the effects of the present invention will be illustrated by examples.
実施例1
平均粒径がそれぞれ、5.5.5.0および6.2ミク
ロンのW、NiおよびFe粉末を一つは、95%W−3
゜5%Hi −1,5%Fe岨成(八)1こなるようl
こ、もう一つは、88%W−8.4%Ni−3.6%F
e組成([+)になるように配合し、アセトンを適当量
添加して、72時間ボットミル中で混合した混合粉末へ
およびBを調整した。この混合粉末をラバーの外側部に
Δ粉末を、ラバーの芯部にB粉末を各々、まざり合うこ
となく二層充填したのち、ラバープレスで成形し、水素
ガス中で1470℃で90分間焼結し、さらに真空中に
おいて1250°Cで6時間熱処理を行ない、冷却後外
側部及ゾ芯部の各々について、材料の引張強さおよび伸
びを測定した。Example 1 W, Ni and Fe powders with average particle sizes of 5.5, 5.0 and 6.2 microns, respectively, were made into 95% W-3
゜5%Hi -1,5%Fe
This, the other one is 88%W-8.4%Ni-3.6%F
B was prepared by adding an appropriate amount of acetone and mixing in a bot mill for 72 hours to prepare a mixed powder. After filling two layers of this mixed powder, Δ powder on the outside of the rubber and B powder on the core of the rubber, without mixing, they were molded in a rubber press and sintered in hydrogen gas at 1470°C for 90 minutes. Then, heat treatment was performed at 1250° C. for 6 hours in a vacuum, and after cooling, the tensile strength and elongation of the material were measured for each of the outer part and the core part.
実験NO,1〜4は特許請求の化1川内の条件で製造し
たものであり、延性の優れた材料が得られたことが分か
る。Experiments Nos. 1 to 4 were produced under the conditions of the chemical compound claimed in the patent, and it can be seen that materials with excellent ductility were obtained.
実験NO,5〜9は特許請求の範囲外の条件で製造した
ものであり、以下に示す様な理由で機械的性質(特に伸
び)が低下したちのである。Experiments Nos. 5 to 9 were manufactured under conditions outside the scope of the claims, and the mechanical properties (especially elongation) deteriorated for the following reasons.
すなわち、N014は成形圧力が低すぎ、焼結によって
充分に緻密化した材料が得られなかった。N096は成
形圧力が高仁ぎ、焼結の外温過程でrでに大部分の気孔
がクローズド・ボアとなり、水素ガスによるW粉末表面
の還元・不純物の除去が充分に行なわれなかった。That is, the molding pressure for N014 was too low, and a sufficiently densified material could not be obtained by sintering. In the case of N096, the molding pressure was too high, and most of the pores became closed bores during the external temperature process of sintering, and the W powder surface was not sufficiently reduced and impurities were not removed by hydrogen gas.
N017および8では焼結■、7の露点゛が高すぎ、W
粉末表面の還元・不純物の除去が充分ではなかった。In N017 and 8, the dew point of sintering ■, 7 is too high, W
Reduction of the powder surface and removal of impurities were not sufficient.
No、9に於いては真空熱処理後の冷却速度が遅いため
に、結合相に過飽和に固溶したWv、子がNiやFeと
の化合物となり、結か相とW粒子の界面に析出して伸び
が充分に出なかった。第1図に実9N0.2の外側部の
金属組織(a)と芯部の金属組織(1」)を示す。芯部
の金属K1. fi < l) )は、外側部のそれに
比較して、結合相の面積比率が高いことがわかる。In No. 9, because the cooling rate after the vacuum heat treatment was slow, the supersaturated solid solution of Wv in the binder phase became a compound with Ni and Fe, and precipitated at the interface between the binder phase and the W particles. There was not enough growth. Fig. 1 shows the metallographic structure (a) of the outer part and the metallographic structure (1'') of the core part of 9N0.2. Core metal K1. fi < l)), it can be seen that the area ratio of the binder phase is higher than that in the outer part.
本発明品に基づき、内径研削用クライルを製作し、性能
試験を実施したところ、本発明品は、同一密度の単層品
に比較して、工具刀先の振幅が20〜30%小さくなり
、その結果、より高精度の研削加工が可能になった。Based on the product of the present invention, a cryle for internal grinding was manufactured and a performance test was conducted, and it was found that the amplitude of the tool tip was 20 to 30% smaller with the product of the present invention compared to a single-layer product with the same density. As a result, more precise grinding has become possible.
」−上−
実施例2
実施例1の実験N002の熱処理体について、各種加工
率でスエーノング加工を行なった後の材料の引張強さ、
伸びおよV硬さを表2に示す。-Top- Example 2 The tensile strength of the material after the heat-treated body of Experiment N002 of Example 1 was subjected to swanong processing at various processing rates,
Table 2 shows the elongation and V hardness.
実験No、2−1は熱処理体であり、NO,2−2〜2
−5は、加工率を3〜25%まで変化させたものである
。Experiment No. 2-1 is a heat-treated body, and No. 2-2 to 2
-5 is one in which the processing rate was changed from 3 to 25%.
N012−2は、外側部の硬さが不充分であるのに対し
テNO,2−3,2−4は外11111 e ノ硬すカ
カなり増加し、かつ芯部が高い延性を示r、シかしなが
ζ)、NO,2−5は加工率が高過ぎるために1.芯部
まで脆化していることがわかる。No. 012-2 has insufficient hardness in the outer part, while No. 2-3 and 2-4 have a slightly increased hardness in the outer part and exhibit high ductility in the core part. ζ), No. 2-5 is 1. due to the processing rate being too high. It can be seen that the core has become brittle.
本発明に基づき、内径研削用クライルを製作し、性能試
験を実施したところ、本発明品は同一密度でかつ同一加
工率のスエーソング加工を施こした!It 1’4品に
比較して、工具刃先の振幅が10〜20%小さくなり、
その結果、より高精度の研削加工が可丁尼(二なった。Based on the present invention, a cryle for internal grinding was manufactured and a performance test was conducted, and it was found that the product of the present invention was able to perform sue song processing at the same density and processing rate! Compared to the It 1'4 product, the amplitude of the tool cutting edge is 10 to 20% smaller,
As a result, more precise grinding has become possible.
表 2Table 2
第1図は本発明の方法により製造した合金の金属組織(
倍率・100倍)を示す図である。Figure 1 shows the metal structure of the alloy produced by the method of the present invention (
It is a figure showing magnification (100 times).
Claims (2)
重量比でW粉末93〜97%および残部がNiとFeか
らなる組成の粉末とし、そして芯部がW粉末85〜91
%および残部がNiとFeとからなる組成の粉末とし、
成型型への粉末充填時に外側部と芯部とにおいて上記粉
末を各々実質的に混入することなく充填したのち、1〜
4ton/cm^2の静水圧下で圧粉し、ついで該圧粉
体を0〜−60℃の水素気流中で液相焼結し、つぎに該
焼結体を真空中で加熱後急冷する熱処理を施こすことを
特徴とする芯部が外側部よりも高延性であるタングステ
ン合金の製造方法。(1) When producing a tungsten alloy, the outer part is made of powder with a composition of 93 to 97% W powder and the balance is Ni and Fe, and the core part is made of W powder of 85 to 91% by weight.
% and the balance consists of Ni and Fe,
After filling the outside part and the core part with the above powders without substantially mixing them when filling the powder into the mold, 1-
The powder is compacted under a hydrostatic pressure of 4 ton/cm^2, then the compact is liquid-phase sintered in a hydrogen stream at 0 to -60°C, and then the sintered body is heated in a vacuum and then rapidly cooled. A method for producing a tungsten alloy in which the core portion is more ductile than the outer portion, the method comprising applying heat treatment.
工率5〜20%でスエージング加工を施すことを特徴と
する芯部が外側部よりも高延性であるタングステン合金
の製造方法。(2) A method for manufacturing a tungsten alloy in which the core part is more ductile than the outer part, characterized by subjecting the heat-treated body obtained in claim (1) to swaging processing at a processing rate of 5 to 20%. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61037476A JP2531624B2 (en) | 1986-02-24 | 1986-02-24 | Method for producing cored W alloy sintered body having high toughness and high strength |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61037476A JP2531624B2 (en) | 1986-02-24 | 1986-02-24 | Method for producing cored W alloy sintered body having high toughness and high strength |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62196306A true JPS62196306A (en) | 1987-08-29 |
JP2531624B2 JP2531624B2 (en) | 1996-09-04 |
Family
ID=12498572
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61037476A Expired - Fee Related JP2531624B2 (en) | 1986-02-24 | 1986-02-24 | Method for producing cored W alloy sintered body having high toughness and high strength |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2531624B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04333535A (en) * | 1991-05-09 | 1992-11-20 | Japan Steel Works Ltd:The | Method for manufacturing W sintered alloy |
JPH04333534A (en) * | 1991-05-09 | 1992-11-20 | Japan Steel Works Ltd:The | Method for manufacturing W sintered alloy |
JPH06200302A (en) * | 1992-07-09 | 1994-07-19 | Akamatsu Fuooshisu Kk | Production of cemented carbide tip |
JP2013067862A (en) * | 2011-09-23 | 2013-04-18 | Fusheng Precision Co Ltd | Method for integrally molding composite metal |
CN104190940A (en) * | 2014-08-20 | 2014-12-10 | 常熟市良益金属材料有限公司 | Method for preparing double-metal composite material |
CN106541140A (en) * | 2016-11-08 | 2017-03-29 | 西安科技大学 | A kind of preparation method of double metallic composite material |
CN115625337A (en) * | 2022-12-06 | 2023-01-20 | 成都虹波实业股份有限公司 | Novel tungsten alloy composite material and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52110209A (en) * | 1976-03-15 | 1977-09-16 | Mitsubishi Metal Corp | Coated hard alloy tool |
JPS5511133A (en) * | 1978-07-10 | 1980-01-25 | Ishikawajima Harima Heavy Ind Co Ltd | Abrasion resistant member made of sintered alloy |
JPS5913037A (en) * | 1982-07-09 | 1984-01-23 | Sumitomo Electric Ind Ltd | Production of w-ni-fe sintered alloy |
JPS6046861A (en) * | 1983-08-23 | 1985-03-13 | Kubota Ltd | High wear-resistant composite material and its manufacturing method |
-
1986
- 1986-02-24 JP JP61037476A patent/JP2531624B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52110209A (en) * | 1976-03-15 | 1977-09-16 | Mitsubishi Metal Corp | Coated hard alloy tool |
JPS5511133A (en) * | 1978-07-10 | 1980-01-25 | Ishikawajima Harima Heavy Ind Co Ltd | Abrasion resistant member made of sintered alloy |
JPS5913037A (en) * | 1982-07-09 | 1984-01-23 | Sumitomo Electric Ind Ltd | Production of w-ni-fe sintered alloy |
JPS6046861A (en) * | 1983-08-23 | 1985-03-13 | Kubota Ltd | High wear-resistant composite material and its manufacturing method |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04333535A (en) * | 1991-05-09 | 1992-11-20 | Japan Steel Works Ltd:The | Method for manufacturing W sintered alloy |
JPH04333534A (en) * | 1991-05-09 | 1992-11-20 | Japan Steel Works Ltd:The | Method for manufacturing W sintered alloy |
JPH06200302A (en) * | 1992-07-09 | 1994-07-19 | Akamatsu Fuooshisu Kk | Production of cemented carbide tip |
JP2013067862A (en) * | 2011-09-23 | 2013-04-18 | Fusheng Precision Co Ltd | Method for integrally molding composite metal |
CN104190940A (en) * | 2014-08-20 | 2014-12-10 | 常熟市良益金属材料有限公司 | Method for preparing double-metal composite material |
CN106541140A (en) * | 2016-11-08 | 2017-03-29 | 西安科技大学 | A kind of preparation method of double metallic composite material |
CN115625337A (en) * | 2022-12-06 | 2023-01-20 | 成都虹波实业股份有限公司 | Novel tungsten alloy composite material and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2531624B2 (en) | 1996-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2681206T3 (en) | Procedure for manufacturing a metal part | |
CN108060322A (en) | The preparation method of hard high-entropy alloy composite material | |
JPH01142048A (en) | Tungsten-nickel-iron alloy having extremely high mechanical characteristic value and production therof | |
CN108277412A (en) | A kind of nanometer tungsten based alloy material and preparation method thereof | |
CN110983152A (en) | A Fe-Mn-Si-Cr-Ni-based shape memory alloy and preparation method thereof | |
JPS62196306A (en) | Manufacturing method of multi-layer tungsten alloy | |
JPH0625386B2 (en) | Method for producing aluminum alloy powder and sintered body thereof | |
JPH02197535A (en) | Manufacture of intermetallic compound | |
CN108315625A (en) | The preparation method of armor-piercing bullet tungsten alloy | |
CN114855045B (en) | High-strength high-toughness high-density multi-component alloy and preparation method thereof | |
JP4281857B2 (en) | Sintered tool steel and manufacturing method thereof | |
JPS62185805A (en) | Method for manufacturing high-speed flying object made of tungsten alloy | |
JPS62224602A (en) | Production of sintered aluminum alloy forging | |
JP2552264B2 (en) | Method for producing W-based alloy sintered body having high toughness | |
JPH02259029A (en) | Manufacture of aluminide | |
JPS62287041A (en) | Production of high-alloy steel sintered material | |
JPS6046170B2 (en) | Copper alloy used for liquid phase sintering of iron powder | |
CN111334694A (en) | A method for modifying LPSO structure in magnesium alloy with primary nano-dispersed phase | |
CN113667853B (en) | Preparation method of rare earth oxide reinforced copper-based multi-scale grain structure composite material | |
JPH06271901A (en) | Ti-al intermetallic compound powder having excellent sinterability and sintered compact thereof | |
JP2803455B2 (en) | Manufacturing method of high density powder sintered titanium alloy | |
JPH04337001A (en) | Low-alloy steel powder for powder metallurgy and its sintered molding and tempered molding | |
JPS5964738A (en) | Manufacture of high hardness non-magnetic age- hardening type austenite steel by powder method | |
CN117758161A (en) | Maraging steel with double-peak heterostructure and preparation method thereof | |
JPS6330391B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |