[go: up one dir, main page]

JPS62195431A - Fuel supply control method in accelerating of multiple cylinder internal combustion engine - Google Patents

Fuel supply control method in accelerating of multiple cylinder internal combustion engine

Info

Publication number
JPS62195431A
JPS62195431A JP3373186A JP3373186A JPS62195431A JP S62195431 A JPS62195431 A JP S62195431A JP 3373186 A JP3373186 A JP 3373186A JP 3373186 A JP3373186 A JP 3373186A JP S62195431 A JPS62195431 A JP S62195431A
Authority
JP
Japan
Prior art keywords
fuel
cylinder
engine
amount
crank angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3373186A
Other languages
Japanese (ja)
Other versions
JPH081144B2 (en
Inventor
Kazumasa Iida
和正 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP3373186A priority Critical patent/JPH081144B2/en
Publication of JPS62195431A publication Critical patent/JPS62195431A/en
Publication of JPH081144B2 publication Critical patent/JPH081144B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To improve accelerating performance so as to omit matching adjustment by injecting an accelerating fuel quantity in a specific cylinder when a deviation value of a fuel quantity calculated on the basis of operating conditions is more than the fixed one. CONSTITUTION:An electronic control device 16 calculates a first fuel quantity on the basis of an air weight flow and number of revolution of an engine from an air flow sensor 14 every occurrence of a fixed crank angle position signal 22 of each cylinder of a multiple cylinder internal combustion engine 10. The electronic control device 16 calculates a second fuel quantity on the basis of throttle opening 19 and number of revolution of an engine. When a deviation value of the first and the second fuel quantities is more than the fixed one, the accelerating fuel quantity corresponding to the deviation value is injected and supplied 20 in the fixed cylinders. Accordingly, accelerating performance is improved and a matching adjustment between accelerating operation conditions can be omitted.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は多気筒内燃エンジンの加速時の燃料供給制御
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for controlling fuel supply during acceleration of a multi-cylinder internal combustion engine.

(従来の技術及びその問題点) 多気筒内燃エンジンの各吸気弁の直ぐ上流に電磁燃料噴
射弁を夫々設け、各気筒の所定のクランク角度位置の検
出信号発生毎に、例えば空気流量、吸気管内圧力等のエ
ンジンの負荷を表すパラメータ値とエンジン回転数に基
づいて燃料量を演算し、演算した燃料量を当該気筒に噴
射・供給する燃料供給制御方法は広く採用されている。
(Prior art and its problems) An electromagnetic fuel injection valve is provided immediately upstream of each intake valve of a multi-cylinder internal combustion engine, and each time a detection signal of a predetermined crank angle position of each cylinder is generated, the air flow rate, the inside of the intake pipe, etc. A fuel supply control method in which a fuel amount is calculated based on a parameter value representing an engine load such as pressure and an engine speed, and the calculated fuel amount is injected and supplied to the relevant cylinder is widely adopted.

斯かる燃料供給制御方法において、燃料を各気筒に噴射
・供給するタイミングは、低速運転時の未燃炭化水素の
排出量を極力抑制するために吸気行程が開始されるより
かなり早い時点、例えば、吸気行程上死点前180 ’
 CAで開始されている。然るに、例えば燃料噴射した
時点ではエンジンがアイドル状態にあり、その後にスロ
ットル弁が開弁され、吸気行程が開始される前にスロッ
トル全開状態に急加速するような場合、当該気筒にはス
ロットル全開時の空気が供給されるのに対し、燃料はア
イドル運転に必要な量しか供給されないことになり、燃
料が不足する。このような観点からすれば、燃料噴射タ
イミングは吸気行程中か、これに出来るだけ近い時点で
開始することが望ましい。
In such a fuel supply control method, the timing of injecting and supplying fuel to each cylinder is set at a point considerably earlier than the start of the intake stroke, for example, in order to suppress the amount of unburned hydrocarbon emissions during low-speed operation as much as possible. Intake stroke 180' before top dead center
It has been started in CA. However, for example, if the engine is in an idling state at the time of fuel injection, and then the throttle valve is opened and the engine suddenly accelerates to a fully open throttle state before the intake stroke starts, the cylinder in question will have no power when the throttle is fully open. of air is supplied, but only the amount of fuel required for idling operation is supplied, resulting in a fuel shortage. From this point of view, it is desirable that the fuel injection timing starts during the intake stroke or as close to this as possible.

一方、燃料量の演算に必要なエンジン回転数の検出には
、例えば上記所定のクランク角度位置の検出信号発生時
間間隔を測定して行われるため、エンジン回転数の検出
には検出遅れ時間が伴う。
On the other hand, since the engine speed required for calculating the fuel amount is detected by, for example, measuring the time interval at which the detection signal is generated at the predetermined crank angle position, detection of the engine speed involves a detection delay time. .

又、エンジン負荷を表すパラメータ値、例えばカルマン
渦方式のエアフローセンサによる空気流量の検出もその
検出期間として少なくとも上記クランク角度位置信号発
生時間間隔の期間は必要であり、吸気の脈動による測定
誤差を排除するために各クランク角度佐賀信号発生時の
測定値を逐次平均したものを空気流量検出値とすれば瞬
時の空気流量の検出は不可能であり、カルマン渦方式の
エアフローセンサにより得られた空気流量検出値を燃料
量の演算に使用すれば、板金、吸気行程中にタイミング
を合わせて燃料を噴射・供給するとしても吸気量の検出
遅れのためにアイドル相当の燃料量しか供給し得ない。
Furthermore, detection of parameter values representing engine load, such as air flow rate using a Karman vortex type air flow sensor, requires at least the above-mentioned crank angle position signal generation time interval as a detection period, eliminating measurement errors due to intake pulsation. In order to do this, if the air flow rate detection value is the sequential average of the measured values when each crank angle Saga signal is generated, it is impossible to detect the instantaneous air flow rate. If the detected value is used to calculate the fuel amount, even if fuel is injected and supplied at the same timing during the sheet metal intake stroke, only the amount of fuel equivalent to idling can be supplied due to the delay in detection of the intake amount.

従って、吸気量の検出遅れを伴う、上述のようなカルマ
ン渦方式のエアフローセンサ等を使用する限りでは加速
時の過渡燃料量を正確に設定することが出来ないことに
なる。
Therefore, as long as the above-mentioned Karman vortex type air flow sensor, etc., which involves a delay in detecting the intake air amount, is used, it is not possible to accurately set the transient fuel amount during acceleration.

そこで、従来、急加速時に必要な燃料量を確保するため
に、第4図+a)に示すようにスロットル開度をエンジ
ン回転とは無関係に、所定の時間経過毎、例えば10m
5毎に検出してスロットル開度変化量Δθを検出し、ス
ロットル開度変化量Δθが所定値より大きいとき、エン
ジンが加速状態にあると判定し、スロットル開度変化量
Δθに応じた追加加速燃料量をエンジンの回転に同期し
ない、上記所定時間毎の非同期でエンジンに噴射・供給
するようにしている(第4図[bl参照)。しかしなが
ら、この非同期加速増量はスロットル開度変化量へ〇だ
けのパラメータで増量値を決定しているため、特定の運
転状態では過渡運転状態にマツチングして適正量に決定
することができるが、他の運転状態では過不足が生じる
。この非同期加速増量はキャブレタの加速ポンプによる
加速増量方式に類似するが、各気筒の吸気弁の直ぐ上流
に電磁噴射弁を夫々配設して、燃料を噴射・供給する方
式のものでは追加加速燃料量の過不足が直接当該気筒の
燃焼状態(出力)に影響するので、上記キャブレタの加
速ポンプによる場合に比べ追加加速燃料量の過不足量の
許容範囲が狭く、過渡運転時の燃料供給量のマツチング
調整が難しくなる。
Therefore, conventionally, in order to secure the amount of fuel required during sudden acceleration, the throttle opening was adjusted every predetermined period of time, e.g.
When the throttle opening change amount Δθ is larger than a predetermined value, it is determined that the engine is in an acceleration state, and additional acceleration is performed according to the throttle opening change amount Δθ. The amount of fuel is injected and supplied to the engine asynchronously at predetermined time intervals, which is not synchronized with the rotation of the engine (see FIG. 4 [bl]). However, this asynchronous acceleration increase determines the increase value based on only the parameter 〇 to the throttle opening change amount, so in certain operating conditions it is possible to match the transient operating condition and determine the appropriate amount, but in other cases There will be excess or deficiency in the operating conditions. This asynchronous acceleration increase is similar to an acceleration increase method using a carburetor's acceleration pump, but in a system in which an electromagnetic injection valve is installed immediately upstream of each cylinder's intake valve to inject and supply fuel, additional acceleration fuel is used. Since excess or deficiency in the amount directly affects the combustion state (output) of the relevant cylinder, the tolerance range for excess or deficiency in the amount of additional acceleration fuel is narrower than when using the above-mentioned carburetor acceleration pump, and the amount of fuel supplied during transient operation is Matching adjustment becomes difficult.

本発明は斯かる問題点を解決するためになされたもので
、いかなるエンジン運転状態からの急加速であっても最
適量の追加加速燃料量を各気筒に噴射・供給することが
出来、しかも、このような過渡運転時の燃料供給量のマ
ツチング調整が不用、乃至は極めて容易に出来る多気筒
内燃エンジンの加速時の燃料供給制御方法を提供するこ
とを目的とする。
The present invention has been made to solve such problems, and it is possible to inject and supply an optimal amount of additional acceleration fuel to each cylinder even when sudden acceleration occurs from any engine operating state, and further, It is an object of the present invention to provide a fuel supply control method during acceleration of a multi-cylinder internal combustion engine that does not require matching adjustment of the fuel supply amount during transient operation or can be performed very easily.

(問題点を解決するための手段) 上述の目的を達成するために本発明に依れば、多気筒内
燃エンジンの各気筒の所定クランク角度位置信号の発生
毎に、エンジンの負荷を表すパラメータ値とエンジン回
転数に基づく第1の手法により演算した第1の燃料量を
当該気筒に噴射・供給する燃料供給制御方法において、
前記所定クランク角度位置信号の発生毎に、スロットル
開度を検出し、検出したスロットル開度とエンジン回転
数に基づく第2の手法により第2の燃料量を演算し、今
回所定クランク角度位置信号の発生時に演算した第2の
燃料量と前回所定クランク角度位置信号の発生時に演算
した第1の燃料量の偏差量を求め、該偏差量が所定値以
上のとき、該偏差量に対応する加速燃料量を前回発生し
た所定クランク角度位置信号に対応する気筒に噴射・供
給することを特徴とする多気筒内燃エンジンの加速時の
燃料供給制御方法が提供される。
(Means for solving the problem) According to the present invention, in order to achieve the above-mentioned object, a parameter value representing the load of the engine is determined every time a predetermined crank angle position signal of each cylinder of a multi-cylinder internal combustion engine occurs. In a fuel supply control method for injecting and supplying a first fuel amount calculated by a first method based on and engine rotational speed to the cylinder,
Each time the predetermined crank angle position signal is generated, the throttle opening degree is detected, and a second fuel amount is calculated by a second method based on the detected throttle opening degree and engine rotational speed. The amount of deviation between the second fuel amount calculated at the time of generation and the first fuel amount calculated at the time of the previous occurrence of the predetermined crank angle position signal is determined, and when the deviation amount is greater than or equal to a predetermined value, the acceleration fuel corresponding to the deviation amount is calculated. A method for controlling fuel supply during acceleration of a multi-cylinder internal combustion engine is provided, which comprises injecting and supplying a quantity of fuel to a cylinder corresponding to a previously generated predetermined crank angle position signal.

(作用) スロットル開度はリアルタイムに検出することが出来、
このスロットル開度とエンジン回転数とに基づく第2の
手法により加速瞬時の運転状態に必要な第2の燃料量を
推定することができる。そこで、前回所定クランク角度
位置信号の発生時に、第1の手法で演算され、当該気筒
に既に噴射・供給された第1の燃料量と、上述の第2の
燃料量との偏差量を求め、この偏差量が所定値以上のと
き、エンジンは加速状態にあると判定して、該偏差量に
対応する加速燃料量を、今回所定クランク角度位置信号
の発生時に、即ち、当該気筒の吸気行程中に噴射・供給
すると、先に供給された第1の燃料量とこの加速燃料量
とで所要量の燃料が当該気筒に供給されることになる。
(Function) Throttle opening degree can be detected in real time,
The second fuel amount required for the operating state at the instant of acceleration can be estimated by the second method based on the throttle opening degree and engine speed. Therefore, when the predetermined crank angle position signal was generated last time, the amount of deviation between the first amount of fuel that was calculated by the first method and already injected and supplied to the cylinder concerned, and the second amount of fuel described above is determined. When this deviation amount is greater than or equal to a predetermined value, it is determined that the engine is in an accelerating state, and the acceleration fuel amount corresponding to the deviation amount is applied at the time when the current predetermined crank angle position signal is generated, that is, during the intake stroke of the relevant cylinder. When the fuel is injected and supplied to the cylinder, the required amount of fuel is supplied to the relevant cylinder by the first fuel amount supplied earlier and this acceleration fuel amount.

(実施例) 以下本発明の実施例を第1図及び第3図を参照して説明
する。
(Example) Examples of the present invention will be described below with reference to FIGS. 1 and 3.

先ず、第2図を参照して本発明方法を実施する燃料供給
制御装置の概略構成を説明すれば、符号10は多気筒内
燃エンジン、例えば4気筒のエンジンを示し、符号12
は各気筒の吸気ポートに接続される吸気管を示す。吸気
管12の大気側開口端部にはエアクリーナ13が取り付
けられると共に、カルマン渦式のエアフローセンサ14
が取り付けられている。このエアフローセンサ14は電
子制御装置(ECIJ) 16の入力側に電気的に接続
され、カルマン渦発生周期信号を電子制御装置16に供
給する。吸気管12途中にはスロットル弁18が配設さ
れ、スロットル弁12と各気筒の吸気弁(図示せず)と
の間には、各吸気弁の直ぐ上流に噴射弁20が夫々配設
され、各噴射弁20は電子制御装置16に接続されて電
子制御装置16から駆動信号により駆動される。
First, the schematic configuration of a fuel supply control device for carrying out the method of the present invention will be described with reference to FIG.
indicates an intake pipe connected to the intake port of each cylinder. An air cleaner 13 is attached to the open end of the intake pipe 12 on the atmosphere side, and a Karman vortex type air flow sensor 14 is installed.
is installed. This air flow sensor 14 is electrically connected to the input side of an electronic control unit (ECIJ) 16 and supplies a Karman vortex generation periodic signal to the electronic control unit 16. A throttle valve 18 is disposed in the middle of the intake pipe 12, and an injection valve 20 is disposed immediately upstream of each intake valve between the throttle valve 12 and the intake valve (not shown) of each cylinder. Each injection valve 20 is connected to an electronic control device 16 and driven by a drive signal from the electronic control device 16.

電子制御装置16の入力側には前記スロットル弁18の
弁開度を検出するスロットルセンサ(θt)19、各気
筒の所定クランク角度位置(例えば、吸気行程の上死点
位置)を検出するクランク角度位置センサ(N)22、
及びエンジン水温、大気圧等の他のエンジン運転パラメ
ータ値を検出するセンサ24が夫々電気的に接続されて
いる。
On the input side of the electronic control device 16, there is a throttle sensor (θt) 19 that detects the opening degree of the throttle valve 18, and a crank angle sensor that detects a predetermined crank angle position of each cylinder (for example, the top dead center position of the intake stroke). position sensor (N) 22,
and sensors 24 that detect other engine operating parameter values such as engine water temperature and atmospheric pressure are electrically connected to each other.

次に、上述のように構成される燃料供給制御装置の作用
を説明する。
Next, the operation of the fuel supply control device configured as described above will be explained.

電子制御装置16は前記クランク角度位置センサ22か
らの所定クランク角度位置信号(以下これをr TDC
信号」という)の入力を待ち、TDC信号が入力すると
上記種々のセンサからの検出信号を読み込むと共に、前
回TDC信号の入力時から今回Te1C信号の入力時ま
での時間間隔からエンジンの回転数Nを演算する。又、
エアフローセンサ14からのカルマン渦発生周期信号に
より吸気管12の空気流量へを演算し、回転数N及び空
気流量Aからエンジンが一吸気行程当たりに吸入する吸
気量に対応する値A/Nを得る(第1の手法)。そして
、この値へハに所定の係数を乗算すると共に、エンジン
水温等の種々の補正係数及び補正変数を乗算又は/及び
加算して噴射弁20の燃料噴射時間TIを決定する。電
子制御装置16は斯く決定した燃料噴射時間T1に基づ
いて駆動信号を当該気筒、例えば第1気筒の噴射弁20
に供給して正規噴射S1を実行する。尚、この正規噴射
S1は、詳細は後述するように、前記TDC信号の発生
により実行される燃料噴射時間の演算の後、所定クラン
ク角度位置、・例えば当該気筒の吸気行程上死点(TD
C)前110CAで実行される(第1図(bl参照)。
The electronic control unit 16 receives a predetermined crank angle position signal (hereinafter referred to as rTDC) from the crank angle position sensor 22.
When the TDC signal is input, it reads the detection signals from the various sensors mentioned above, and calculates the engine rotation speed N from the time interval from the previous TDC signal input to the current Te1C signal input. calculate. or,
The air flow rate in the intake pipe 12 is calculated based on the Karman vortex generation period signal from the air flow sensor 14, and the value A/N corresponding to the amount of intake air that the engine takes in per intake stroke is obtained from the rotational speed N and air flow rate A. (First method). Then, this value is multiplied by a predetermined coefficient, and the fuel injection time TI of the injection valve 20 is determined by multiplying and/or adding various correction coefficients and correction variables such as engine water temperature. The electronic control device 16 sends a drive signal to the injection valve 20 of the relevant cylinder, for example, the first cylinder, based on the fuel injection time T1 determined in this manner.
is supplied to execute normal injection S1. As will be described in detail later, this normal injection S1 is performed at a predetermined crank angle position, for example, at the intake stroke top dead center (TD
C) Executed in the previous 110CA (see Figure 1 (bl)).

エンジンが定常状態で運転されている場合の燃料噴射は
各気筒に対応するTDC信号の発生毎に上述のようにし
て実行されるが、例えば第1の気筒の正規噴射Sl後当
該気筒の吸気行程が開始される前にスロットル弁が大き
く開弁され、エンジンが急加速された場合には以下のよ
うにして、本発明に係る燃料供給制御が実行される。
When the engine is operating in a steady state, fuel injection is executed as described above every time a TDC signal corresponding to each cylinder is generated. For example, after normal injection Sl of the first cylinder, the intake stroke of the cylinder When the throttle valve is opened wide and the engine is suddenly accelerated before the engine starts, the fuel supply control according to the present invention is executed as follows.

即ち、電子制御装置16は第1の気筒の正規噴射後火に
正規噴射する気筒、即ち第3気筒に対応するTDC信号
の発生を待ち、5irpc信号が発生すると前述した第
1の手法で第3気筒に対する正規噴射S3の燃料噴射時
間T1を演算するとともに、スロットルセンサ19から
のスロットル開度θtとエンジン回転数Nから、電子制
御装置16の記憶装置に予め記憶されている模擬値A/
N  ’を読み出す。第3図は電子制御装置16に記憶
されているI擬A/Nマツプを示し、スロットル開度に
ついてはθl〜θiの1段階に、エンジン回転数につい
てはN1〜Njのj段階に設定されており、検出された
スロットル開度θtとエンジン回転数Nに応じて、公知
の4点補間法等により模擬値A/N  ’が決定される
(第2の手法)。スロットル弁が急激に開弁されたとき
、実際のAバ値は第1図(a)の実線に示すように変化
するのに対して、第1の手法によるA/N値は、センサ
の検出遅れ等により第1図+a+の破線で示すように変
化し、スロットル開度が急激に変化するときには実際の
A/N値より大幅に小さい値(A/Nl)に設定されて
しまう。一方、第2の手法ではスロットル開度θtの変
化に対してこれをリアルタイムに検出することができる
ので、第2の手法により読み出される模擬値A/N  
“は第1図(a)の一点鎖線で示すように変化し、実際
のA/N値変比変化随して実際に近い値(値A/Nl“
)に設定することができる。
That is, the electronic control unit 16 waits for the generation of the TDC signal corresponding to the cylinder in which regular injection is performed after the regular injection in the first cylinder, that is, the third cylinder, and when the 5irpc signal is generated, the third cylinder is activated by the first method described above. The fuel injection time T1 of the normal injection S3 for the cylinder is calculated, and from the throttle opening θt from the throttle sensor 19 and the engine rotation speed N, a simulated value A/pre-stored in the storage device of the electronic control unit 16 is calculated.
Read N'. FIG. 3 shows the I pseudo A/N map stored in the electronic control unit 16, in which the throttle opening is set in one stage from θl to θi, and the engine speed is set in j stages from N1 to Nj. Then, a simulated value A/N' is determined by a known four-point interpolation method or the like according to the detected throttle opening degree θt and engine speed N (second method). When the throttle valve is suddenly opened, the actual A value changes as shown by the solid line in Figure 1 (a), whereas the A/N value obtained by the first method is based on the sensor detection. Due to delays, etc., the A/N value changes as shown by the broken line +a+ in FIG. 1, and when the throttle opening changes rapidly, the A/N value is set to a value (A/Nl) that is significantly smaller than the actual A/N value. On the other hand, the second method can detect changes in the throttle opening θt in real time, so the simulated value A/N read out by the second method
" changes as shown by the dashed line in FIG.
).

そこで、電子制御装ff16は上述のようにして求めた
前回TDC信号の発生時に演算した第1の手法による値
A/Noと、今回TDC信号の発生時に読出した第2の
手法による値A/Nl ’との偏差ΔA/N(=A/N
l  ’−A/No)を求め、偏差ΔA/Nが所定値よ
り大きいとき、エンジンが加速状態にあると判定する。
Therefore, the electronic control unit ff16 calculates the value A/No calculated as described above using the first method when the TDC signal was generated last time, and the value A/Nl calculated using the second method when the TDC signal was generated this time. ' deviation ΔA/N (=A/N
l'-A/No), and when the deviation ΔA/N is larger than a predetermined value, it is determined that the engine is in an accelerating state.

尚、判別に用いられる上記所定値はエンジンの定常運転
状態時に第2の手法により設定される模擬値A/N  
’と実際の値A/Nの誤差等を考慮して設定される。
Note that the above-mentioned predetermined value used for the determination is a simulated value A/N that is set by the second method when the engine is in a steady operating state.
' and the error between the actual value A/N and the like.

次いで、電子制御装置16は、上述のようにしてエンジ
ンの加速が判定されたならば、前記偏差ΔA/Nに前記
所定の係数を乗算すると共に、エンジン水温等の種々の
補正係数及び補正変数を乗算又は/及び加算して第1の
気筒に対する追加燃料噴射時間ΔTを決定し、第3の気
筒に対する前記正規噴射S3を実行すると同時に吸気行
程中にある第1の気筒に追加燃料噴射時間ΔTで加速燃
料噴射Slaを実行する(第1図中)及び(cl参照)
。斯くして、第1気筒には急加速により増量された吸気
量に見合う燃料量が供給されたことになり、エンジンの
加速応答性の向上が図られる。
Next, if the acceleration of the engine is determined as described above, the electronic control unit 16 multiplies the deviation ΔA/N by the predetermined coefficient, and also adjusts various correction coefficients and correction variables such as engine water temperature. The additional fuel injection time ΔT for the first cylinder is determined by multiplication and/or addition, and at the same time as the normal injection S3 is executed for the third cylinder, the additional fuel injection time ΔT is applied to the first cylinder during the intake stroke. Executing accelerated fuel injection Sla (in Fig. 1) and (see cl)
. In this way, the first cylinder is supplied with an amount of fuel commensurate with the amount of intake air increased due to the sudden acceleration, and the acceleration response of the engine is improved.

尚、上記加速燃料噴射Slaは電子制御装置16の演算
処理能力に余裕が有り、十分に短い時間で追加燃料噴射
時間ΔTを決定することができれば、第3の気筒に対す
る正規噴射S3とは別個に演算及び噴射処理を実行する
ようにしても良いが、いずれの場合であっても加速燃料
噴射Slaは第1気筒の吸気行程が終了する前に気筒内
に供給されている必要がをるので、加速燃料噴射Sla
の噴射終了時点から吸気行程下死点(BDC)まで時間
t (第1図(bl参照)は、最高エンジン回転速度且
つ最大量の加速燃料量を噴射した場合を想定し、燃料が
噴射弁から噴出した後気筒内に輸送されるに要する時間
等を考慮して所定の時間に設定される。
Note that the accelerated fuel injection Sla can be performed separately from the regular injection S3 for the third cylinder if the electronic control unit 16 has sufficient arithmetic processing capacity and the additional fuel injection time ΔT can be determined in a sufficiently short time. The calculation and injection process may be executed, but in either case, the accelerated fuel injection Sla needs to be supplied into the cylinder before the intake stroke of the first cylinder ends. Accelerated fuel injection Sla
Time t from the end of injection to bottom dead center (BDC) of the intake stroke The predetermined time is set in consideration of the time required for the fuel to be transported into the cylinder after being ejected.

又、上述の第3の気筒に対する正規噴射S3は前記第1
の手法により求めた値A/Nに基づき燃料噴射時間TI
を設定したが、前記偏差Δ^/N値によりエンジンの加
速を検出したときには第1の手法に代えて第2の手法に
より求めた値A/N  ’に基づいて演算した燃料噴射
時間T2 (第1図(C)の実線に破線で示す部分を加
えた時間)で正規噴射S3を実行するようにしてもよい
Further, the normal injection S3 for the third cylinder described above is the same as that for the first cylinder.
Based on the value A/N obtained by the method of
However, when acceleration of the engine is detected based on the deviation Δ^/N value, the fuel injection time T2 calculated based on the value A/N' obtained by the second method instead of the first method is The regular injection S3 may be executed during the time period obtained by adding the portion shown by the broken line to the solid line in FIG. 1(C).

更に、第3図に示す模擬A/Nマツプは加速時の燃料量
を設定するために使用するだけでなく、例えばエアフロ
ーセンサ14の故障時にこれをバンクアップするものと
して使用することができ、エアフローセンサ等の故障を
バックアップするものとして他に特別の手段を準備する
必要がなくなる。
Furthermore, the simulated A/N map shown in FIG. 3 can be used not only to set the fuel amount during acceleration, but also to bank up when the air flow sensor 14 fails, for example, and to adjust the air flow. There is no need to prepare any other special means to back up failures of sensors and the like.

更に又、上述の実施例では第1の手法として、カルマン
渦方式のエアフローセンサが検出する吸気管内空気流量
とエンジン回転数を用いて値A/Nを求めたが、本発明
はこれに限定されず、第1の手法に適用されるエンジン
の負荷を表すパラメータとしてはこれ以外に吸気管内圧
力等であっても良い。
Furthermore, in the above embodiment, as a first method, the value A/N was determined using the air flow rate in the intake pipe and the engine rotation speed detected by the Karman vortex type air flow sensor, but the present invention is not limited to this. First, the parameter representing the engine load applied to the first method may be the intake pipe internal pressure or the like.

(発明の効果) 以上詳述したように本発明の多気筒内燃エンジンの加速
時の燃料供給制御方法に依れば、多気筒内燃エンジンの
各気筒の所定クランク角度位置信号の発生毎に、エンジ
ンの負荷を表すパラメータ値とエンジン回転数に基づく
第1の手法により演算した第1の燃料量を当該気筒に噴
射供給する燃料供給制御方法において、前記所定クラン
ク角度位置信号の発生毎に、スロットル開度を検出し、
検出したスロットル開度とエンジン回転数に基づく第2
の手法により第2の燃料供給量を演算し、今回所定クラ
ンク角度位置信号の発生時に演算した第2の燃料量と前
回所定クランク角度位置信号の発生時に演算した第1の
燃料量の偏差量を求め、該偏差量が所定値以上のとき、
該偏差量に対応する加速燃料量を前回発生した所定クラ
ンク角度位置信号に対応する気筒に噴射・供給するよう
にしたので、エンジンのいかなる運転状態からの急加速
であっても夫々の加速運転状態に最適な燃料量を各気筒
に供給することが出来、加速性能の向上を図ることがで
き、しかも各加速運転状態間のマツチング調整が省略乃
至は簡略化できるという優れた効果を奏する。
(Effects of the Invention) As detailed above, according to the fuel supply control method during acceleration of a multi-cylinder internal combustion engine of the present invention, the engine In the fuel supply control method for injecting a first amount of fuel calculated by a first method based on a parameter value representing a load on a cylinder and an engine speed into a corresponding cylinder, the throttle is opened every time the predetermined crank angle position signal is generated. detect the degree,
The second one is based on the detected throttle opening and engine speed.
Calculate the second fuel supply amount using the method described above, and calculate the deviation amount between the second fuel amount calculated when the current predetermined crank angle position signal was generated and the first fuel amount calculated when the previous predetermined crank angle position signal was generated. and when the deviation amount is greater than a predetermined value,
Since the amount of accelerating fuel corresponding to the deviation amount is injected and supplied to the cylinder corresponding to the predetermined crank angle position signal generated last time, no matter what operating condition of the engine there is sudden acceleration, no matter what operating condition the engine It is possible to supply the optimal amount of fuel to each cylinder, improve acceleration performance, and omit or simplify matching adjustment between acceleration operating states.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法に係る加速時の燃料制御方法を説明
するため、値A/Nの時間変化、第1及び第3気筒の燃
料噴射タイミングを示すグラフ、第2図は本発明の方法
を実施する燃料供給制御装置の概略構成図、第3図は第
2図に示す電子制御装置16に記憶された模擬A/N値
マツプ図、第4図は従来の加速時の燃料供給制御方法を
説明するため、スロットル開度θtの時間変化、燃料噴
射タイミング及び吸気弁リフト量の時間変化を示すグラ
フである。 10・・・内燃エンジン、12・・・吸気管、14・・
・エアフローセンサ、16・・・電子制御装置、18・
・・スロットル弁、19・・・スロットル開度センサ、
20・・・燃料噴射弁、22・・・クランク角度位置セ
ンサ。
Fig. 1 is a graph showing the time change of the value A/N and the fuel injection timing of the first and third cylinders in order to explain the fuel control method during acceleration according to the method of the present invention, and Fig. 2 is a graph showing the fuel injection timing of the first and third cylinders. 3 is a schematic diagram of a fuel supply control device that implements this, FIG. 3 is a simulated A/N value map diagram stored in the electronic control device 16 shown in FIG. 2, and FIG. 4 is a conventional fuel supply control method during acceleration. In order to explain this, it is a graph showing the time change of the throttle opening θt, the fuel injection timing, and the time change of the intake valve lift amount. 10... Internal combustion engine, 12... Intake pipe, 14...
・Air flow sensor, 16...Electronic control device, 18・
... Throttle valve, 19... Throttle opening sensor,
20...Fuel injection valve, 22...Crank angle position sensor.

Claims (2)

【特許請求の範囲】[Claims] (1)多気筒内燃エンジンの各気筒の所定クランク角度
位置信号の発生毎に、エンジンの負荷を表すパラメータ
値とエンジン回転数に基づく第1の手法により演算した
第1の燃料量を当該気筒に噴射・供給する燃料供給制御
方法において、前記所定クランク角度位置信号の発生毎
に、スロットル開度を検出し、検出したスロットル開度
とエンジン回転数に基づく第2の手法により第2の燃料
量を演算し、今回所定クランク角度位置信号の発生時に
演算した第2の燃料量と前回所定クランク角度位置信号
の発生時に演算した第1の燃料量の偏差量を求め、該偏
差量が所定値以上のとき、該偏差量に対応する加速燃料
量を前回発生した所定クランク角度位置信号に対応する
気筒に噴射・供給することを特徴とする多気筒内燃エン
ジンの加速時の燃料供給制御方法。
(1) Every time a predetermined crank angle position signal for each cylinder of a multi-cylinder internal combustion engine is generated, the first fuel amount calculated by the first method based on the parameter value representing the engine load and the engine speed is applied to that cylinder. In the fuel injection/supply control method, a throttle opening degree is detected every time the predetermined crank angle position signal occurs, and a second fuel amount is determined by a second method based on the detected throttle opening degree and engine rotation speed. and calculate the amount of deviation between the second fuel amount calculated when the current predetermined crank angle position signal was generated and the first fuel amount calculated when the previous predetermined crank angle position signal was generated, and determine whether the deviation amount is greater than or equal to a predetermined value. 1. A fuel supply control method during acceleration of a multi-cylinder internal combustion engine, comprising: injecting and supplying an acceleration fuel amount corresponding to the deviation amount to a cylinder corresponding to a previously generated predetermined crank angle position signal.
(2)前記加速燃料量は、少なくとも当該気筒の吸気行
程終了下死点前の所定クランク角度位置までに噴射され
ることを特徴とする特許請求の範囲第1項記載の多気筒
内燃エンジンの加速時の燃料供給制御方法。
(2) Acceleration of the multi-cylinder internal combustion engine according to claim 1, wherein the acceleration fuel amount is injected at least up to a predetermined crank angle position before the bottom dead center at the end of the intake stroke of the cylinder. fuel supply control method.
JP3373186A 1986-02-20 1986-02-20 Fuel supply control method during acceleration of a multi-cylinder internal combustion engine Expired - Lifetime JPH081144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3373186A JPH081144B2 (en) 1986-02-20 1986-02-20 Fuel supply control method during acceleration of a multi-cylinder internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3373186A JPH081144B2 (en) 1986-02-20 1986-02-20 Fuel supply control method during acceleration of a multi-cylinder internal combustion engine

Publications (2)

Publication Number Publication Date
JPS62195431A true JPS62195431A (en) 1987-08-28
JPH081144B2 JPH081144B2 (en) 1996-01-10

Family

ID=12394546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3373186A Expired - Lifetime JPH081144B2 (en) 1986-02-20 1986-02-20 Fuel supply control method during acceleration of a multi-cylinder internal combustion engine

Country Status (1)

Country Link
JP (1) JPH081144B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6357832A (en) * 1986-08-27 1988-03-12 Daihatsu Motor Co Ltd Fuel injection quantity controlling method for engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6357832A (en) * 1986-08-27 1988-03-12 Daihatsu Motor Co Ltd Fuel injection quantity controlling method for engine

Also Published As

Publication number Publication date
JPH081144B2 (en) 1996-01-10

Similar Documents

Publication Publication Date Title
EP2458183B1 (en) Apparatus for controlling internal combustion engine
KR100445852B1 (en) Control device for internal combustion engine
US6397830B1 (en) Air-fuel ratio control system and method using control model of engine
JPH0518287A (en) Fuel injection type internal combustion engine
JP2001050090A (en) Intake air volume calculation system for variable valve timing engine
US4785785A (en) Fuel injection control device for an internal combustion engine with throttle opening detection means
US5569847A (en) Air-fuel ratio estimator for internal combustion engine
JP3314294B2 (en) Control device for internal combustion engine
JP2564990B2 (en) Engine fuel control device
JPS6256342B2 (en)
JPWO2003038262A1 (en) Apparatus and method for detecting atmospheric pressure of 4-stroke engine
US4957086A (en) Fuel controller for an internal combustion engine
US4718388A (en) Method of controlling operating amounts of operation control means for an internal combustion engine
US4520784A (en) Method of and apparatus for controlling fuel injection
JPS62195431A (en) Fuel supply control method in accelerating of multiple cylinder internal combustion engine
JPS60249645A (en) Fuel feed control in internal-combustion engine
JP3078008B2 (en) Engine fuel control device
JP2827491B2 (en) Fuel injection amount control device for internal combustion engine
JPH0559994A (en) Control device for engine
JPH0325622B2 (en)
JPS60261947A (en) Accelerative correction of fuel injector
JPH02259251A (en) Combustion control device for internal combustion engine
JP3397584B2 (en) Electric throttle type internal combustion engine
JPH01142233A (en) Fuel control method at acceleration time for electronic control fuel injection engine
JPH0692770B2 (en) Engine controller