JPS62194650A - Semiconductor device - Google Patents
Semiconductor deviceInfo
- Publication number
- JPS62194650A JPS62194650A JP3777786A JP3777786A JPS62194650A JP S62194650 A JPS62194650 A JP S62194650A JP 3777786 A JP3777786 A JP 3777786A JP 3777786 A JP3777786 A JP 3777786A JP S62194650 A JPS62194650 A JP S62194650A
- Authority
- JP
- Japan
- Prior art keywords
- support plate
- semiconductor substrate
- thermal expansion
- semiconductor device
- brazing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3735—Laminates or multilayers, e.g. direct bond copper ceramic substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Die Bonding (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分舒〕
この発明は、半導体装置に係り、特に大容量の半導体装
置の基板支持構造に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application] The present invention relates to a semiconductor device, and particularly to a substrate support structure for a large-capacity semiconductor device.
第6図は従来のこの種の半導体装置を示す断面図であり
、図において、1はPN接合を有する半導体基板、2は
この半導体基板1を支持する支持板、3は前記半導体基
板1と支持板2とを接着するろう材層、4は前記半導体
基板1上に形成された電極層である。FIG. 6 is a sectional view showing a conventional semiconductor device of this type. In the figure, 1 is a semiconductor substrate having a PN junction, 2 is a support plate that supports this semiconductor substrate 1, and 3 is a support plate that supports the semiconductor substrate 1. A brazing material layer 4 that adheres to the plate 2 is an electrode layer formed on the semiconductor substrate 1.
一般にこのような半導体装置を構成する場合は、半導体
基板1に不純物拡散を行い、所望のPN接合を形成した
後、半導体基板1と支持板2の間にろう材層3をはさん
で、真空中あるいは不活性ガス中あるいは還元性ガス中
で高温処理を行い、半導体基板1と支持板2をろう材層
3でろう付けして一体化した後、蒸着、スパック等の手
法を用いて電極層4を形成する。この場合、前記の高温
処理はろう材層3の融点以上で行うが、例えばろう材と
してklまたはA I −S iを用いた場合は、この
温度は600〜650℃となり、ろう付は時の温度と室
温との温度差および半導体基板1.支持板2およびろう
材層3の熱膨張係数の差により、三重バイメタル効果が
生じ、ろう付は後の室温での半導体装置は若干のそりを
生じることとなる。Generally, when configuring such a semiconductor device, after impurity diffusion is performed on the semiconductor substrate 1 to form a desired PN junction, a brazing material layer 3 is sandwiched between the semiconductor substrate 1 and the support plate 2, and After performing high-temperature treatment in medium, inert gas, or reducing gas and brazing the semiconductor substrate 1 and support plate 2 together with a brazing material layer 3, an electrode layer is formed using a method such as vapor deposition or spacing. form 4. In this case, the above-mentioned high-temperature treatment is carried out at a temperature higher than the melting point of the brazing material layer 3. For example, when kl or A I-S i is used as the brazing material, this temperature is 600 to 650°C, and the brazing is performed at a temperature of 600 to 650°C. Temperature difference between temperature and room temperature and semiconductor substrate1. Due to the difference in thermal expansion coefficients between the support plate 2 and the brazing material layer 3, a triple bimetal effect occurs, and the semiconductor device after brazing at room temperature will be slightly warped.
例えば半導体基板1として厚さ900μ−のシリコン、
支持板2として厚さ5ffII11のモリブデン、ろう
材として厚さ20μ■のアルミニウムを用い、それぞれ
の材料が円板状である場合、直径とそりとの関係を計算
すると、第7図のようになる。この図によれば、直径が
1000111の時、そりは120μmとなり実測値と
ほぼ一致している。For example, as the semiconductor substrate 1, silicon having a thickness of 900 μ-
If molybdenum with a thickness of 5ffII11 is used as the support plate 2 and aluminum with a thickness of 20μ■ as the brazing material, and each material is disc-shaped, the relationship between diameter and warpage is calculated as shown in Figure 7. . According to this figure, when the diameter is 1000111, the warpage is 120 μm, which almost matches the actual measurement value.
大容量の半導体装置では、電極の取り出し方法として圧
接構造を用いることが一般的であるが、この時、半導体
装置の電極と、外部電極の電気的な接触抵抗による電圧
降下は半導体装置の電気的特性上、非常に重要なファク
タとなっている。第6図に示したようなそりの生じた半
導体装置の場合、オン特性や熱抵抗は圧接時の加圧力に
大きく依存する。 第8図は従来の大電力ダイオードの
順方向電圧降下(以下VFMという)の圧接力依存性を
示す図である。VFMは圧接を増すとともに低下するが
、圧接力に対してVFMが飽和傾向を示すのは単位面積
あたり300 kg / c+J以上であった。In large-capacity semiconductor devices, it is common to use a pressure contact structure as a method for taking out electrodes. At this time, the voltage drop due to the electrical contact resistance between the electrodes of the semiconductor device and the external electrode is This is a very important factor in terms of characteristics. In the case of a warped semiconductor device as shown in FIG. 6, the on-state characteristics and thermal resistance largely depend on the pressure applied during press-welding. FIG. 8 is a diagram showing the dependence of forward voltage drop (hereinafter referred to as VFM) on pressure contact force of a conventional high power diode. VFM decreases as the pressure increases, but VFM tends to saturate with pressure when the pressure is 300 kg/c+J or more per unit area.
この圧接力依存性は、カソード電極の小さい高速サイリ
スクやトランジスタ、あるいはゲートターンオフサイリ
スク等ではさらに大きくなり、同一径のゲートターンオ
フサイリスクでは、VFMの飽和が見られる圧接力は6
00 kg / cTi以上となっていた。圧接力を増
加させるためには圧接力を供給するための加圧機構を大
型化しなければならないばかりでなく、外部電極の変形
を生じ、均一な圧接状態が得られなくノiる等の問題点
があった。This pressure contact force dependence becomes even greater in high-speed silicon risks with small cathode electrodes, transistors, gate turn-off silicon risks, etc. For gate turn-off silicon risks of the same diameter, the pressure contact force at which VFM saturation is observed is 6.
00 kg/cTi or more. In order to increase the pressure contact force, it is not only necessary to increase the size of the pressure mechanism for supplying the pressure contact force, but also causes problems such as deformation of the external electrode and the inability to obtain a uniform pressure contact state, resulting in noise. was there.
第9図は従来の大電力ダイオードの圧接時の外部電極の
変形のりれきを示す図である。第9図(a)は圧接の初
期状態、第9図(b)は圧接完了時の状態を示している
。FIG. 9 is a diagram showing the extent of deformation of the external electrode during press-contact of a conventional high-power diode. FIG. 9(a) shows the initial state of pressure welding, and FIG. 9(b) shows the state when pressure welding is completed.
第9図(a)の初期では、半導体装置のそりのために、
カソード電極9の中央部とアノード電極10の外周部が
加圧されるので、この部分が変形するが、圧接完了時に
は加圧力によって半導体装置のそりが矯正されるために
、圧接の初期状態で変形した外部電極直下の加圧力が低
下して圧接力の分布が不均一となる。In the early stage of FIG. 9(a), due to the warpage of the semiconductor device,
Since the central part of the cathode electrode 9 and the outer peripheral part of the anode electrode 10 are pressurized, these parts are deformed, but when the pressure welding is completed, the warpage of the semiconductor device is corrected by the pressure force, so the deformation occurs in the initial state of the pressure welding. The pressing force directly under the external electrode decreases, and the distribution of the pressing force becomes uneven.
このような圧接力の不均一性は、初期的にはVFMの増
大となって現れるが、長期に使用した場合、電気的特性
の経時変化の原因にもなり好ましくない。Such non-uniformity in the pressure contact force initially appears as an increase in VFM, but when used for a long period of time, it also causes changes in electrical characteristics over time, which is undesirable.
また前述したように、VFMや熱抵抗の圧接力依存性が
大きいために、圧接力のばらつきによってVFMや熱抵
抗の変動幅が大きくなるので、半導体装置の特性上のガ
ートバンドを大きくとる必要がある等の問題点があった
。Furthermore, as mentioned above, since VFM and thermal resistance are highly dependent on pressure contact force, variation in pressure contact force increases the fluctuation range of VFM and thermal resistance, so it is necessary to have a large guard band due to the characteristics of semiconductor devices. There were some problems.
この発明は、上記のような問題点を解決するためになさ
れたもので、半導体装置の電、気的および熱的特性の圧
接力依存性を小さくできるとともに、圧接のりれきに伴
う外部電極の変形をな(すことができ、信頼性の高い半
導体装置を°得ることを目的とする。This invention was made to solve the above-mentioned problems, and it is possible to reduce the dependence of the electrical, thermal, and thermal characteristics of a semiconductor device on pressure contact force, and to reduce the deformation of the external electrode due to cracking during pressure contact. The objective is to obtain a highly reliable semiconductor device that can perform
この発明に係る半導体装置は、半導体基板と、この半導
体基板よりも熱膨張係数の大きい第1の支持板と、この
第1の支持板の熱膨張係数より小さく、前記半導体基板
より熱膨張係数の大きい第2の支持板とを有し、前記半
導体基板と第1の支持板、および前記第1の支持板と第
2の支持板をそれぞれろう材層によりろう付けしたもの
である。A semiconductor device according to the present invention includes a semiconductor substrate, a first support plate having a coefficient of thermal expansion larger than that of the semiconductor substrate, and a coefficient of thermal expansion smaller than that of the first support plate and a coefficient of thermal expansion smaller than that of the semiconductor substrate. It has a large second support plate, and the semiconductor substrate and the first support plate, and the first support plate and the second support plate are each brazed with a brazing material layer.
この発明においては、支持板が上記のように2層に分か
れており、半導体基板に直接ろう付けされる第1の支持
板と、この第1の支持板にろう付けされる第2の支持板
とからなっており、第1および第2の支持板はともに半
導体基板よりも熱膨張係数が大きいが、第1の支持板は
第2の支持板よりもさらに熱膨張係数が大きく設定され
ており、第1の支持板と第2の支持板との熱膨張係数の
差によって生じるバイメタル効果を、第1の支持板と半
導体基板との熱膨張係数の差によって生じるバイメタル
効果によってキャンセルすることからろう付は後の半導
体装置のそりが小さくなる。In this invention, the support plate is divided into two layers as described above, the first support plate being directly brazed to the semiconductor substrate, and the second support plate being brazed to the first support plate. The first and second support plates both have a larger coefficient of thermal expansion than the semiconductor substrate, but the first support plate has an even larger coefficient of thermal expansion than the second support plate. This is because the bimetallic effect caused by the difference in coefficient of thermal expansion between the first support plate and the second support plate is canceled by the bimetallic effect caused by the difference in the coefficient of thermal expansion between the first support plate and the semiconductor substrate. This reduces the warpage of the subsequent semiconductor device.
第1図はこの発明の一実施例を示す半導体装置の断面図
である。第1図において、1および4は第6図と同じも
のであり、5は前記半導体基板1よりも熱膨張係数の大
きい第1の支持板、6は前記半導体基板1よりも熱膨張
係数が大きく、第1の支持板5よりも小さい第2の支持
板、7は前記第1の支持板5と半導体基板1とをろう付
けするろう材層、8は前記第1の支持板5と第2の支持
板6とをろう付けするろう材層である。FIG. 1 is a sectional view of a semiconductor device showing an embodiment of the present invention. In FIG. 1, 1 and 4 are the same as in FIG. 6, 5 is a first support plate whose coefficient of thermal expansion is larger than that of the semiconductor substrate 1, and 6 is a support plate whose coefficient of thermal expansion is larger than that of the semiconductor substrate 1. , a second support plate smaller than the first support plate 5; 7 a brazing material layer for brazing the first support plate 5 and the semiconductor substrate 1; 8 a brazing material layer for brazing the first support plate 5 and the second support plate 5; This is a brazing material layer that is used to braze the supporting plate 6.
半導体基板1は直径100mm、厚さ900μIのシリ
コンウェハ、第1の支持板5は直径100鴫、厚さ10
0μmのニッケルまたは銀板、第2の支持板6は直径1
00mm、厚さ5 mmのモリブデンまたはタングステ
ン板、ろう材層7は直径100 mm 、厚さ20μm
のアルミニウム板、ろう材層8 ハ直径100 rms
、 厚さ20μmのアルミニウム板である。電極H4は
厚さ10μmのアルミニウム蒸着層で形成されている。The semiconductor substrate 1 is a silicon wafer with a diameter of 100 mm and a thickness of 900 μI, and the first support plate 5 is a silicon wafer with a diameter of 100 mm and a thickness of 10 μI.
0 μm nickel or silver plate, second support plate 6 has a diameter of 1
00 mm, 5 mm thick molybdenum or tungsten plate, brazing metal layer 7 has a diameter of 100 mm and a thickness of 20 μm.
aluminum plate, brazing metal layer 8, diameter 100 rms
, is an aluminum plate with a thickness of 20 μm. The electrode H4 is formed of an aluminum vapor deposited layer with a thickness of 10 μm.
このような半導体装置を得るためには、半導体基板1.
第1の支持板5.第2の支持板6.ろう材層7,8をト
リクロルエチレンによる超音波脱脂処理後、アセトン置
換処理を行い、酸処理後、高純水にてクエンチし、アセ
トンで脱水処理、乾燥する。その後、真空中で600〜
650℃に加熱後冷却する。In order to obtain such a semiconductor device, a semiconductor substrate 1.
First support plate 5. Second support plate 6. The brazing filler metal layers 7 and 8 are subjected to ultrasonic degreasing treatment using trichlorethylene, followed by acetone substitution treatment, followed by acid treatment, quenching with high purity water, dehydration treatment with acetone, and drying. After that, 600 ~
Cool after heating to 650°C.
半導体基板1であるシリコンに比べて第1の支持板5の
ニッケルまたは銀は熱膨張係数が大きく、第2の支持板
6のモリブデンまたはタングステンがなければシリコン
基板1およびニッケルまたは銀からなる第1の支持板5
とろう材層7からなる構成体は第2図に示すように大き
くそりを生じる。Nickel or silver of the first support plate 5 has a larger coefficient of thermal expansion than silicon of the semiconductor substrate 1, and if molybdenum or tungsten of the second support plate 6 were not present, the silicon substrate 1 and the first support plate made of nickel or silver would be support plate 5
The structure made of the brazing material layer 7 is largely warped as shown in FIG.
またシリコン基板1がなく第1の支持板5と第2の支持
板6およびろう材層8からなる構成体では第3図に示す
ように第2図と逆向きにそりを・生じる。しかし、第1
図のように半導体基板1.第1の支持板5.第2の支持
板6およびろう材層7゜8からなる構成体では第2図の
バイメタル効果と第3図のバイメタル効果がキャンセル
し合って1、そりを非常に小さくすることができる。Further, in a structure without the silicon substrate 1 and consisting of the first support plate 5, the second support plate 6, and the brazing material layer 8, warping occurs in the opposite direction to that shown in FIG. 2, as shown in FIG. However, the first
As shown in the figure, semiconductor substrate 1. First support plate 5. In the structure consisting of the second support plate 6 and the brazing material layer 7.8, the bimetal effect shown in FIG. 2 and the bimetal effect shown in FIG.
また半導体基板1と第2の支持板6およびろう材層7,
8の厚みを固定して、第1の支持板5の厚みを変えてろ
う付は後のそりを測定すると第4図に示すように、そり
の量およびそりの向きを任意にコントロールすることが
できた。したがって、半導体基板1の厚さや第2の支持
板6の厚さを変化させた場合でも、第1の支持板5の厚
さを最適化することによって、そりのないものを得るこ
とが可能である。また電極4はろう付は後に蒸着法によ
って形成した。このようにこの発明によれば、第1の支
持板5の厚みの調整によって、大口径にもかかわらず、
そりの全くない、あるいはそりの極めて小さい半導体装
置を得ることができる。Also, the semiconductor substrate 1, the second support plate 6, the brazing material layer 7,
If the thickness of the first support plate 5 is fixed and the thickness of the first support plate 5 is changed and the warpage after brazing is measured, the amount of warpage and the direction of the warpage can be arbitrarily controlled, as shown in Fig. 4. did it. Therefore, even if the thickness of the semiconductor substrate 1 or the thickness of the second support plate 6 is changed, it is possible to obtain a product without warpage by optimizing the thickness of the first support plate 5. be. Further, the electrode 4 was formed by vapor deposition after brazing. As described above, according to the present invention, by adjusting the thickness of the first support plate 5, despite the large diameter,
A semiconductor device with no warpage or extremely small warpage can be obtained.
第5図はこの発明による大電力ダイオードのV FMの
圧接力依存性を示すものである。この図から明らかなよ
うに、第8図の従来のものに比べて、Vpvの圧接力依
存性が小さく、圧接力を100kg/ ca1以上にす
ればVp−は飽和傾向を示した。FIG. 5 shows the pressure contact force dependence of V FM of the high power diode according to the present invention. As is clear from this figure, the dependence of Vpv on the pressing force was smaller than that of the conventional one shown in FIG. 8, and when the pressing force was increased to 100 kg/ca1 or more, Vp- showed a tendency to saturate.
なお、上記実施例では、大電力ダイオードについて説明
したが、この発明は、半導体基板と支持板とをろう付け
する大電力半導体装置全般に適用することが可能であり
、特に、高速サイリスクやトランジスタ、ゲートターン
オフサイリスク等カソード面積がアノード面積に比べて
極めて小さい半導体装置に適用した場合、大きな効果を
得ることができる。Although the above embodiment describes a high-power diode, the present invention can be applied to general high-power semiconductor devices in which a semiconductor substrate and a support plate are brazed together, and is particularly applicable to high-speed silicon risks, transistors, When applied to a semiconductor device in which the cathode area is extremely small compared to the anode area, such as a gate turn-off risk, great effects can be obtained.
この発明は以上説明したとおり、半導体基板と、この半
導体基板よりも熱膨張係数の大きい第1の支持板と、こ
の第1の支持板の熱膨張係数より小さく、半導体基板よ
り熱膨張係数の大きい第2の支持板とを有し、半導体基
板と第1の支持板および第1の支持板と第2の支持板と
をそれぞれろう材層によりろう付けしたので、同一径の
半導体装置に対して、この発明は従来のものに比べて小
さな圧接力で良好な電気的接触を得ることが可能である
。As explained above, the present invention includes a semiconductor substrate, a first supporting plate having a coefficient of thermal expansion larger than that of the semiconductor substrate, and a coefficient of thermal expansion smaller than that of the first supporting plate and larger than that of the semiconductor substrate. Since the semiconductor substrate and the first support plate and the first support plate and the second support plate are each brazed with a brazing material layer, the semiconductor device has the same diameter. According to the present invention, it is possible to obtain good electrical contact with a smaller pressure contact force than that of the conventional method.
また外部加圧機構を小形化することが可能であり、さら
にそりがないために、外部電場の異常な変形を防ぐこと
ができ、従来例のような電気的特性や熱的特性上の問題
点を解決でき、信頼度の高い半導体装置を得ることがで
きる利点がある。In addition, it is possible to downsize the external pressure mechanism, and since there is no warpage, it is possible to prevent abnormal deformation of the external electric field, which eliminates problems in electrical and thermal characteristics as in conventional examples. This method has the advantage of being able to solve the problem and obtain a highly reliable semiconductor device.
第1図はこの発明の一実施例を示す半導体装置の断面図
、第2図はこの発明における半導体基板と第1の支持板
およびろう材層のみの構成の場合のそりの状態を示す断
面図、第3図はこの発明における第1の支持板と第2の
支持板およびろう材層のみの構成の場合のそりの状態を
示す断面図、第4図はこの発明における第1の支持板の
厚みを変化させた場合のそりを示す図、第5図はこの発
明における半導体装置のV FMの圧接力依存性を示す
図、第6図は従来の半導体装置を示す断面図、第7図は
従来の半導体装置の直径とそりを示す図、第8図は従来
の半導体装置のVFMの圧接力依存性を示す図、第9図
(a)は従来の半導体装置を外部電極を介して加圧した
場合の圧接初期状態における外部電極の変形の様子を示
す図、第9図(b)は同じく外部電極を介して加圧した
場合の圧接完了状態における外部電極の変形の様子を示
す図である。
図において、1は半導体基板、5は第1の支持板、6は
第2の支持板、7,8はろう材層である。
なお、各図中の同一符号は同一または相当部分を示す。
代理人 大 岩 増 雄 (外2名)第1図
第3図
第4図
一第1の支杆極5の1ざQ斤θ
第5図
第6図
ム
第7図
一直径(mm)
一圧櫓力(にg/cm2)FIG. 1 is a cross-sectional view of a semiconductor device showing one embodiment of the present invention, and FIG. , FIG. 3 is a cross-sectional view showing the state of warpage in the case of the structure of only the first support plate, the second support plate, and the brazing material layer in this invention, and FIG. 4 is a cross-sectional view showing the warpage state of the first support plate in this invention. FIG. 5 is a diagram showing the warping when the thickness is changed. FIG. 5 is a diagram showing the pressure contact force dependence of V FM of the semiconductor device according to the present invention. FIG. 6 is a cross-sectional view showing the conventional semiconductor device. Figure 8 is a diagram showing the diameter and warpage of a conventional semiconductor device. Figure 8 is a diagram showing the pressure contact force dependence of VFM of a conventional semiconductor device. Figure 9 (a) is a diagram showing the pressure applied to a conventional semiconductor device via an external electrode. FIG. 9(b) is a diagram showing the deformation of the external electrode in the initial state of pressure welding when pressure is applied through the external electrode. FIG. . In the figure, 1 is a semiconductor substrate, 5 is a first support plate, 6 is a second support plate, and 7 and 8 are brazing metal layers. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent: Masuo Oiwa (2 others) Fig. 1 Fig. 3 Fig. 4 Fig. 1 First support pole 5-1 Q θ Fig. 5 Fig. 6 M Fig. 7 Diameter (mm) Pressure force (g/cm2)
Claims (6)
、前記半導体基板の熱膨張係数よりも大きい熱膨張係数
を有する第1の支持板と、前記半導体基板よりも熱膨張
係数が大きく、前記第1の支持板よりも熱膨張係数の小
さい第2の支持板を有し、前記半導体基板と第1の支持
板、および前記第1の支持板と第2の支持板とをそれぞ
れろう材層でろう付けしたとこと特徴とする半導体装置
。(1) a semiconductor substrate having at least one PN junction; a first support plate having a coefficient of thermal expansion larger than that of the semiconductor substrate; and a first support plate having a coefficient of thermal expansion larger than that of the semiconductor substrate; a second support plate having a coefficient of thermal expansion smaller than that of the support plate, and the semiconductor substrate and the first support plate, and the first support plate and the second support plate are each soldered with a brazing material layer. A semiconductor device characterized by the attached.
許請求の範囲第(1)項記載の半導体装置。(2) The semiconductor device according to claim (1), wherein the semiconductor substrate is silicon.
特許請求の範囲第(1)項記載の半導体装置。(3) The semiconductor device according to claim (1), wherein the first support plate is made of nickel.
求の範囲第(1)項記載の半導体装置。(4) The semiconductor device according to claim (1), wherein the first support plate is made of silver.
る特許請求の範囲第(1)項記載の半導体装置。(5) The semiconductor device according to claim (1), wherein the second support plate is made of molybdenum.
する特許請求の範囲第(1)項記載の半導体装置。(6) The semiconductor device according to claim (1), wherein the second support plate is made of tungsten.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3777786A JPS62194650A (en) | 1986-02-20 | 1986-02-20 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3777786A JPS62194650A (en) | 1986-02-20 | 1986-02-20 | Semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62194650A true JPS62194650A (en) | 1987-08-27 |
Family
ID=12506913
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3777786A Pending JPS62194650A (en) | 1986-02-20 | 1986-02-20 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62194650A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02257660A (en) * | 1989-03-30 | 1990-10-18 | Mitsubishi Electric Corp | Semiconductor device |
FR2725305A1 (en) * | 1994-09-12 | 1996-04-05 | Nec Corp | CONNECTION ASSEMBLY OF AN ELECTRONIC DEVICE WITH A SUBSTRATE |
-
1986
- 1986-02-20 JP JP3777786A patent/JPS62194650A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02257660A (en) * | 1989-03-30 | 1990-10-18 | Mitsubishi Electric Corp | Semiconductor device |
FR2725305A1 (en) * | 1994-09-12 | 1996-04-05 | Nec Corp | CONNECTION ASSEMBLY OF AN ELECTRONIC DEVICE WITH A SUBSTRATE |
US5753974A (en) * | 1994-09-12 | 1998-05-19 | Nec Corporation | Electronic device assembly |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3657611A (en) | A semiconductor device having a body of semiconductor material joined to a support plate by a layer of malleable metal | |
JP2983486B2 (en) | Semiconductor substrate having a brazing material layer | |
US3664874A (en) | Tungsten contacts on silicon substrates | |
JPS62194650A (en) | Semiconductor device | |
JP3192911B2 (en) | Ceramic circuit board | |
US12185629B2 (en) | Thermoelectric module and method for manufacturing thermoelectric module | |
JPH09213719A (en) | Method for brazing a semiconductor substrate on a support plate | |
JP2005158270A (en) | Heater member for placing object to be heated and heat treatment apparatus | |
US3416048A (en) | Semi-conductor construction | |
JP2708798B2 (en) | Method of forming electrode of silicon carbide | |
RU2803020C1 (en) | Method for soldering semiconductor crystals | |
JPH065546A (en) | Structure and method for brazing junction | |
JPS592175B2 (en) | semiconductor equipment | |
JPS6364345A (en) | Semiconductor device | |
JPS5936822B2 (en) | Pressure contact type semiconductor device | |
JPS6226582B2 (en) | ||
JPS6258648A (en) | Semiconductor device | |
JPS6227547B2 (en) | ||
US3173816A (en) | Method for fabricating alloyed junction semiconductor assemblies | |
JPS5929142B2 (en) | semiconductor equipment | |
JPH0478171B2 (en) | ||
JPH05218397A (en) | Pressure-welded semiconductor element | |
JPS5846671A (en) | semiconductor equipment | |
JPH05226764A (en) | Semiconductor laser | |
JPS6118190A (en) | Semiconductor laser device |