JPS62193227A - Manufacture of voltage nonlinear device - Google Patents
Manufacture of voltage nonlinear deviceInfo
- Publication number
- JPS62193227A JPS62193227A JP61036001A JP3600186A JPS62193227A JP S62193227 A JPS62193227 A JP S62193227A JP 61036001 A JP61036001 A JP 61036001A JP 3600186 A JP3600186 A JP 3600186A JP S62193227 A JPS62193227 A JP S62193227A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- powder
- inorganic
- zno
- paint
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 239000000843 powder Substances 0.000 claims description 38
- 239000004065 semiconductor Substances 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 11
- 239000011230 binding agent Substances 0.000 claims description 10
- 239000011521 glass Substances 0.000 claims description 10
- 239000003973 paint Substances 0.000 claims description 9
- 239000000758 substrate Substances 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 150000002484 inorganic compounds Chemical class 0.000 claims description 4
- 229910044991 metal oxide Inorganic materials 0.000 claims description 4
- 150000004706 metal oxides Chemical class 0.000 claims description 4
- 239000000853 adhesive Substances 0.000 claims description 3
- 230000001070 adhesive effect Effects 0.000 claims description 3
- 238000007598 dipping method Methods 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 150000002894 organic compounds Chemical class 0.000 claims description 2
- 238000005507 spraying Methods 0.000 claims description 2
- 238000007639 printing Methods 0.000 claims 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 59
- 239000011787 zinc oxide Substances 0.000 description 29
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 13
- 239000000463 material Substances 0.000 description 10
- 229910000428 cobalt oxide Inorganic materials 0.000 description 8
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 7
- 239000000126 substance Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 239000004973 liquid crystal related substance Substances 0.000 description 4
- UPWOEMHINGJHOB-UHFFFAOYSA-N oxo(oxocobaltiooxy)cobalt Chemical compound O=[Co]O[Co]=O UPWOEMHINGJHOB-UHFFFAOYSA-N 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 239000007767 bonding agent Substances 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000009719 polyimide resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 235000004936 Bromus mango Nutrition 0.000 description 1
- 239000004641 Diallyl-phthalate Substances 0.000 description 1
- 240000007228 Mangifera indica Species 0.000 description 1
- 235000014826 Mangifera indica Nutrition 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 235000009184 Spondias indica Nutrition 0.000 description 1
- 241000270666 Testudines Species 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- HDNHWROHHSBKJG-UHFFFAOYSA-N formaldehyde;furan-2-ylmethanol Chemical compound O=C.OCC1=CC=CO1 HDNHWROHHSBKJG-UHFFFAOYSA-N 0.000 description 1
- 239000007849 furan resin Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Landscapes
- Thermistors And Varistors (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
産業上の利用分野
本発明は印加電圧によって抵抗値が変化する電圧非直線
性素子に関するもので、電圧安定化、異常電圧制御、さ
らにはマトリックス駆動の液晶、KL7iどの表示デバ
イスのスイッチング素子などに利用されるものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a voltage non-linear element whose resistance value changes depending on an applied voltage, and is used for voltage stabilization, abnormal voltage control, and matrix-driven liquid crystal displays such as KL7i. It is used in switching elements of devices, etc.
従来の技術
従来の電圧非直線性素子は、酸化亜鉛(ZnO)に酸化
ビスヤス(BizOs ) 、酸化コバルト(CO2
05)、酸化マンゴy (MnO2)、酸化アンチモン
(5b203 )などの酸化物を添加して、100C
)〜1350°Cで焼結したZnOバリスタなど、種々
のものがある。その中で、ZnOバリスタは?E圧非直
線指数α、サージ耐量が大きいことから、最も一般的に
使われている。(特公昭46−19472号公報参照)
発明が解決しようとする問題点
このような従来の電圧非直線性素子は、ZnOバリスタ
を初めとして、素子厚みを薄く(数十μm以下)するこ
とに限界があるため、バリスタ電圧(バリスタに電流1
mAを流しまた時の電圧VilllAで表される)を
低くすることに限界があり、低電圧用ICの保護素子や
低い電圧における電圧安定化素子として使えないもので
あった。また、上述したように焼成する際に1000’
C以上の高温プロセスを必要とするため、ガラス基板上
あるいは回路基板上に電圧非直線性素子を直接形成でき
ないという問題があった。さらに、従来のものは並列静
電容量が大きく、例えば液晶などのスイッチング素子と
しては不適当なものであるなどの問題点を有していた。Prior Art Conventional voltage nonlinear elements are made of zinc oxide (ZnO), bisyas oxide (BizOs), cobalt oxide (CO2), etc.
05), mango oxide (MnO2), antimony oxide (5b203), etc.
) to 1350°C, including ZnO varistors. Among them, what about ZnO barista? It is the most commonly used because it has a large E-pressure non-linearity index α and surge resistance. (Refer to Japanese Patent Publication No. 46-19472) Problems to be Solved by the Invention Conventional voltage non-linear elements such as these, including ZnO varistors, have limitations in making the element thickness thin (several tens of μm or less). Therefore, the varistor voltage (current 1 in the varistor)
There is a limit to how much mA can be passed and the current voltage (expressed as VillA) can be lowered, and it cannot be used as a protection element for low-voltage ICs or as a voltage stabilizing element at low voltages. In addition, as mentioned above, when firing
Since this method requires a high-temperature process of C or higher, there is a problem in that a voltage nonlinear element cannot be directly formed on a glass substrate or a circuit board. Furthermore, conventional devices have a large parallel capacitance, making them unsuitable for use as switching elements for liquid crystals, for example.
問題点を解決するだめの手段
この問題点を解決するために本発明は、無機質半導体の
微粉末に無機または有機化合物を添加し、混合した後、
600〜1360°Cで熱処理を行い、無機質半導体微
粉末の表面に無機質絶縁被膜を形成させると共に、その
絶縁性被膜を表面に有した微粉末状の上記無機質半導体
の全部またはほとんどがそれぞれ複数個集まった状態と
なるようにし、その後微粉末状無機質半導体が複数個集
まった状態の粉末または一部に上記微粉末を含む粉末と
金属または導電性の金属酸化物の微粉末を加えたものに
絶縁性の有機接着剤かまたはガラス粉末と有機バインダ
ー全部え、ペイント状にし、次いで上記ペイントを電極
を配した絶縁基板上に印刷、スプレー−!たは浸mなど
によって塗布した後、熱処理を行って硬化させることを
特徴とするものである。Means for solving the problem In order to solve this problem, the present invention adds an inorganic or organic compound to a fine powder of an inorganic semiconductor, and after mixing,
Heat treatment is performed at 600 to 1360°C to form an inorganic insulating film on the surface of the inorganic semiconductor fine powder, and all or most of the fine powdered inorganic semiconductors having the insulating film on the surface are collected in plural pieces. After that, a powder containing a plurality of fine powdered inorganic semiconductors or a powder containing the above fine powder and a fine powder of a metal or conductive metal oxide is added to an insulating powder. Prepare the organic adhesive or glass powder and organic binder, make it into a paint form, then print and spray the paint onto the insulating substrate on which the electrodes are arranged! It is characterized in that it is applied by coating or dipping and then hardened by heat treatment.
作用
この方法によれば、低電流域においても電圧非直線指数
αの大きなものが得られ、また粉末状の導電性物質を介
在させていることによって、粉末状の半導体物質間の電
気的接続を安定にし、特性バラツキの少ない素子が得ら
れ、かつこの導電性物質の介在量によってバリスタ電圧
を制御することもできること左なるため、電極間距離に
制約されることなく、上記のように極端に狭く(数十μ
m以下)して素子を形成しなくても、低電圧化に適した
素子がきわめて容易に得られることとなる。Effect: According to this method, a large voltage nonlinearity index α can be obtained even in a low current range, and by interposing a powdery conductive material, electrical connections between powdery semiconductor materials can be established. Because it is possible to obtain a stable device with less variation in characteristics, and also to control the varistor voltage depending on the amount of intervening conductive material, there is no need to be constrained by the distance between the electrodes, and the device can be extremely narrow as described above. (several tens of μ
Even if the device is not formed by using a dielectric film of less than m), an element suitable for lowering the voltage can be obtained very easily.
また、塗布したペイントを低い温度で硬化させて作るこ
とができるため、回路基板上に素子を直接形成すること
ができ、ZnOバリスタなどでは考えられない幅広い用
途が期待できるものである。Furthermore, since it can be made by curing the applied paint at a low temperature, it is possible to form elements directly on a circuit board, and it is expected to have a wide range of applications unimaginable for ZnO varistors and the like.
さらに、得られた素子は粉末状の半導体物質を固めたも
のであるため、それぞれの半導体物質の粉末間は粉末状
導電性物質が介在されているものの点接触となり、接触
面積が基本的に小さいことから並列静電容量の小さなも
のが得られ、液晶などのデバイスのスイッチング素子と
して最適な素子が提供できることとなる。Furthermore, since the obtained device is made of solidified powdery semiconductor material, the powdery conductive material is interposed between the powders of each semiconductor material, but there is point contact, and the contact area is basically small. Therefore, an element with small parallel capacitance can be obtained, and an element optimal as a switching element for devices such as liquid crystals can be provided.
実施例 以下、本発明を実施例にもとづいて詳細に説明する。Example Hereinafter, the present invention will be explained in detail based on examples.
@1図は本発明の製造方法による製造工程の一実施例を
示している。まず、粒子径が0.05〜1/Zmの微粒
子状の酸化亜鉛を700〜1300℃で焼成した後、そ
の焼結されたZnOを0.5〜601tmの粒子径(平
均粒子径1〜10μm)に粉砕し、そのZnO微粉末に
酸化コバルトヲ。、06〜10mo1%添加し、6oo
〜135o℃で1゜〜6o分間、熱処理し、そのZnO
微粉末表面に酸化コバルトの絶縁被膜を形成した。この
時、微粉末状のZnOの表面にはco2o5絶縁被膜が
ほぼ数十〜数百人の厚さで薄く形成されていることが認
められた。次いで、このようにして作成したC o 2
05 絶縁被膜が表面についたZnO微粉末は弱い力で
互いに接着しているので、これを乳鉢あるいはボットミ
ルでほぐし、上記ZnO微粉末がそれぞれ複数個集まっ
た微粉末群の状態とした(以下、この状態のものを粉末
状という)。この時、一部に上記ZnO微粉末が単独で
存在しても差支えないものであり、このようなZnO微
粉末を一部に含んでの状態のものも粉末状という。次に
、上記のようにして得られたCo2O3絶縁被膜が表面
に形成された粉末状のZnOに、粉末状の導電性物質と
して銀粉末とそれら粉末間の結合を図る絶縁性の結合剤
(バインダー)としてポリイミド樹脂を添加し、混合し
た。ここで、結合剤としてはポリイミド樹脂の固形分が
溶剤(例えばn−メチル−2−ピロリドン)に対してS
wt%となるように薄めたものとし、それをZnO粉
末と銀粉末との合計分に対して例えば等重量で混合し、
ペイント状とした。@1 Figure shows an example of the manufacturing process according to the manufacturing method of the present invention. First, fine particulate zinc oxide with a particle size of 0.05 to 1/Zm is fired at 700 to 1300°C, and then the sintered ZnO is heated to a particle size of 0.5 to 601 tm (average particle size of 1 to 10 μm). ) and add cobalt oxide to the ZnO fine powder. , 06-10mo1% added, 6oo
Heat treated at ~135°C for 1° to 6°C,
An insulating film of cobalt oxide was formed on the surface of the fine powder. At this time, it was observed that a thin CO2O5 insulating film was formed on the surface of the finely powdered ZnO to a thickness of approximately several tens to several hundreds of layers. Next, the C o 2 created in this way
05 The ZnO fine powders with the insulating coating attached to their surfaces adhered to each other with weak force, so they were loosened in a mortar or bot mill to form a fine powder group in which a plurality of each of the above ZnO fine powders were gathered (hereinafter, this (The state is called powder). At this time, there is no problem even if the ZnO fine powder is present alone in a part, and a state containing such ZnO fine powder in a part is also referred to as powder. Next, powdered ZnO on which the Co2O3 insulating film obtained as described above is formed is coated with silver powder as a powdered conductive material and an insulating binder (binder) for bonding between the powders. ) was added and mixed. Here, as a binder, the solid content of polyimide resin is S
wt%, and mix it in an equal weight to the total amount of ZnO powder and silver powder,
It was made into a paint form.
次いで、上記のようにして得られたベイン[r第3図に
示すようにITO(インジウム・スズ酸化物)を極1の
設けられたガラス基板3上に例えばスクリーン印刷で塗
布し、その上に同じ(ITO電極2の設けられたガラス
基板4を載置し、280〜400°Cで30分間、大気
中で硬化させ、電極1.2間に電圧非直線性素子6を設
は友。第2図は、電圧非直線性素子6の拡大断面図であ
り、eはZnO粉末、7は粉末状の導電性物質としての
銀粉末で、ZnO粉末6問およびそのZnO粉末6と電
極1.2との間の電気的接続を良好にしている。8はそ
れら粉末6.7間を機械的に結合している絶縁性の結合
剤であり、この結合剤8でもって粉末6.7は互いに固
められている。9はZnO粉末6の表面に施されたCo
2O3絶縁被膜である。第4図はITO電極11L、1
bが設けられたガラス基板3a上に電圧非直線性素子6
を構成した場合を示している。Next, as shown in FIG. 3, the vane obtained as described above is coated with ITO (indium tin oxide) on the glass substrate 3 provided with the pole 1 by screen printing, for example. Same as above (a glass substrate 4 provided with an ITO electrode 2 is placed and cured in the air at 280 to 400°C for 30 minutes, and a voltage nonlinear element 6 is installed between the electrodes 1 and 2. Figure 2 is an enlarged sectional view of the voltage nonlinear element 6, where e is a ZnO powder, 7 is a silver powder as a powdered conductive substance, and the ZnO powder 6 and the electrode 1.2 are 8 is an insulating binder that mechanically connects the powders 6 and 7, and the binder 8 solidifies the powders 6 and 7 together. 9 is Co applied to the surface of ZnO powder 6.
It is a 2O3 insulating film. Figure 4 shows ITO electrodes 11L, 1
Voltage nonlinear element 6 is placed on glass substrate 3a provided with
This shows the case where .
次に、上記のようにして作成された電圧非直線性素子の
電圧−電流特性について説明する。まず、第6図は第3
図の構成における電圧−電流特性を従来のZnOバリス
タのそれと比較して示している。本発明の素子は、まず
酸化亜鉛を700’Cで焼成1−これにOo 205全
0.5mo1%添加したものを900 ’C、80分間
熱処理した後、この平均粒子径5〜10μmのZnO粉
末と銀粉末(平均粒子径6μm)との合計分(銀粉末は
全体の20F+。Next, the voltage-current characteristics of the voltage nonlinear element created as described above will be explained. First, Figure 6 shows the 3rd
The voltage-current characteristics of the configuration shown in the figure are compared with those of a conventional ZnO varistor. The element of the present invention is produced by first firing zinc oxide at 700'C, then heat-treating the resultant to which 0.5 mo1% of Oo 205 is added at 900'C for 80 minutes, and then producing ZnO powder with an average particle size of 5 to 10 μm. and silver powder (average particle size 6 μm) (the total silver powder is 20F+).
チ)に等重量の上記結合剤をいれ、混合したものにおい
て、素子面積を1−1電極間距離を30μmとした場合
における特性を示している。さて、電圧非直線性素子の
電圧−電流特性は、よく知られているように近似的に次
式で示されている。In the case where an equal weight of the above-mentioned binder was added to h) and mixed, the characteristics are shown when the element area is 1-1 and the distance between the electrodes is 30 μm. Now, as is well known, the voltage-current characteristics of a voltage nonlinear element are approximately expressed by the following equation.
X=KV“
ここで、工は素子に流れる電流、■は素子の電極間の電
圧、Kは固有抵抗の抵抗値に相当する定数、αは上述し
た電圧非直線特性の指数を示しており、この電圧非直線
指数αは大きい程、電圧非直線性が優れていることにな
る。X=KV" Here, E is the current flowing through the element, ■ is the voltage between the electrodes of the element, K is a constant corresponding to the resistance value of the specific resistance, and α is the exponent of the voltage nonlinear characteristic mentioned above. The larger the voltage nonlinearity index α, the better the voltage nonlinearity.
第5図の特性に示されるように、特性Bで示される従来
のZnOバリスタは低電流域において電圧非直線指数α
が小さく、1o−4A以下の電流では良好な電圧非直線
性素子としての機能を発揮し得ない。一方、特性ムで示
される本発明の素子では低電流域においても電圧非直線
指数αが大きく、10−”A程度の電流域でも十分に電
圧非直線性素子としての機能を発揮することができるこ
とを示している。また、通常、ZnOバリスタにおいて
はバリスタ特性を表わすのに、例えば素子に1mAの電
流を流した時の電極間に現れる電圧をバリスタ電圧v
+mAと呼び、このバリスタ電圧V1mAと上記電圧非
直線指数αとを使用している。本発明の素子では、上述
したように、低電流域においても電圧非直線指数αが大
きく、バリスタ電圧を第5図に示すように例えばv1μ
Aで表わすことができる。As shown in the characteristics in Figure 5, the conventional ZnO varistor shown in characteristic B has a voltage nonlinearity index α in the low current region
is small, and cannot function as a good voltage nonlinear element at a current of 10-4 A or less. On the other hand, in the device of the present invention shown by the characteristic curve, the voltage nonlinearity index α is large even in the low current range, and the device can sufficiently function as a voltage nonlinear device even in the current range of about 10-”A. In addition, to express the varistor characteristics of a ZnO varistor, for example, the voltage that appears between the electrodes when a current of 1 mA is passed through the element is expressed as the varistor voltage v.
+mA, and this varistor voltage V1mA and the voltage non-linearity index α are used. As mentioned above, in the device of the present invention, the voltage non-linearity index α is large even in the low current range, and the varistor voltage is, for example, v1μ as shown in FIG.
It can be represented by A.
このように本発明において、バリスタ電圧を低いものと
することができるのは、銀粉末を素子内に分散させてい
るため、これが電気的短絡路を作ることになり、実質的
に電極間距離が短くなったことに相当する、いわゆる橋
渡しの効果(電気的バイパス効果)をしているためであ
る。従−て、導電性物質を適当な量で添加すれば、電極
間距離に制約されることなく、たとえば電極間距離を極
度に狭くしないでも素子を形成することができる。In this way, in the present invention, the varistor voltage can be made low because the silver powder is dispersed within the element, which creates an electrical short circuit and substantially reduces the distance between the electrodes. This is because it has a so-called bridging effect (electrical bypass effect), which corresponds to shortening the length. Therefore, by adding an appropriate amount of a conductive substance, an element can be formed without being restricted by the distance between the electrodes, for example, without making the distance between the electrodes extremely narrow.
また、本発明素子において低電流域でも電圧非直線指数
αが大きい理由は、現在のところ理由は明確とはなって
いないが、粉末状の半導体物質(ZnO)i絶縁性の結
合剤でもって固めたものであるため、それぞれの半導体
物質の間は点接触となり、接触面積が小さいこと、また
結合剤が絶縁性のため、漏れ電流が小さくなっているこ
とによるものと考えられる。Furthermore, although the reason why the voltage nonlinearity index α is large even in the low current range in the device of the present invention is not clear at present, This is thought to be due to the fact that there is a point contact between the respective semiconductor materials, and the contact area is small, and that the bonding agent is insulating, so the leakage current is small.
第6図は本発明において、粉末状の導電性物質としての
銀粉末の添加量を変えた場合のバリスタ電圧v1μA1
電圧非直線指数αおよび並列静電容量Cの変化する様子
を示している。ここで、酸化亜鉛の焼成温度など、その
他の条件は第5図の場合の条件と同一とした。第6図に
示されるように、本発明素子においては並列静電容量が
従来のZnOバリスタが1o○0〜20000PFであ
るのに対して非常に小さいものとなっている。この並列
静電容量Cが本発明素子において小さい理由は、上述し
たように半導体物質間の接触面積が小さいことによるも
のである。また、第6図より銀粉末の添加量によってバ
リスタ電圧が変化する様子が認められるが、これは上述
しtように銀粉末の添加量によって電気的なバイパスが
変るためと考えられる。Figure 6 shows the varistor voltage v1μA1 when the amount of silver powder added as a powdery conductive substance is changed in the present invention.
It shows how the voltage non-linearity index α and the parallel capacitance C change. Here, other conditions such as the firing temperature of zinc oxide were the same as those in the case of FIG. 5. As shown in FIG. 6, in the device of the present invention, the parallel capacitance is much smaller than that of the conventional ZnO varistor, which is 1000 to 20,000 PF. The reason why this parallel capacitance C is small in the device of the present invention is that the contact area between the semiconductor materials is small, as described above. Furthermore, from FIG. 6, it can be seen that the varistor voltage changes depending on the amount of silver powder added, but this is thought to be because the electrical bypass changes depending on the amount of silver powder added, as described above.
才た、下記に示す第1表は本発明において酸化コバルト
の添加量と熱処理温度を変えた場合のバリスタ電圧v1
μA1電圧非直線指数αおよび並列静電容量Cの変化す
る様子を示した表である。Table 1 below shows the varistor voltage v1 when the amount of cobalt oxide added and the heat treatment temperature are changed in the present invention.
It is a table showing how μA1 voltage nonlinear index α and parallel capacitance C change.
(以下余 白)
上記第1表および第6図より明らかなように、各特性値
は酸化コバルトおよび銀粉末の添加量と熱処理温度に依
存していることがわかる。ここで酸化コバルトの添加量
は0.05〜3mo1%で特に良好な特性を示した。ま
t1熱熱処理度は酸化コバルトの添加量にもよるが60
0〜1350’Cの範囲で良好な特性を示した。この熱
処理温度が上記温度範囲以外、例えば600°C未満で
は十分な絶縁被膜の形成が困難であることや136o℃
を超えた温度では電圧非直線指数αが必要とする値以下
になるなどの原因で良好な特性が得られないのである。(The following is a blank space) As is clear from Table 1 and FIG. 6 above, each characteristic value is dependent on the amounts of cobalt oxide and silver powder added and the heat treatment temperature. Here, especially good characteristics were exhibited when the amount of cobalt oxide added was 0.05 to 3 mo1%. The degree of heat treatment in t1 is 60, although it depends on the amount of cobalt oxide added.
It showed good characteristics in the range of 0 to 1350'C. If the heat treatment temperature is outside the above temperature range, for example below 600°C, it may be difficult to form a sufficient insulating film;
At temperatures exceeding this temperature, good characteristics cannot be obtained because the voltage nonlinearity index α becomes less than the required value.
なお、上記の実施例においては、半導体物質としては、
ZnOを例にとり説明したが、それ以外の半導体物質で
あっても差支えないことはもちろんである。また、同様
に絶縁被膜を構成する材料としては、Co2O3に限ら
れることはな(、Bi。In addition, in the above embodiment, the semiconductor material is
Although ZnO has been described as an example, it goes without saying that other semiconductor materials may be used. Similarly, the material constituting the insulating film is not limited to Co2O3 (Bi, Bi, etc.).
Mn、Sb 、Al 、Ti 、Sr 0Mg 、Mi
、Cr。Mn, Sb, Al, Ti, Sr0Mg, Mi
, Cr.
Sl、などの金属酸化物またはこれら金属の有機金属酸
化物などでもよいもので多・す、それらを単独1fcは
組合せて使用することができるものである。また、導電
性物質としては本実施例の銀単独以外に、たとえばxu
、 Al 、Zn 、 Ni 、 w 。The material may be a metal oxide such as Sl or an organic metal oxide of these metals, and these may be used alone or in combination. Further, as the conductive substance, in addition to silver alone in this example, for example, xu
, Al, Zn, Ni, w.
Cu 、 Sn 、 In 、 Mn 、 Or 、
fr、どの金属またはこれら金属の酸化物を単独また
は組合せて使用することもできる。Cu, Sn, In, Mn, Or,
fr, any metal or oxides of these metals can be used alone or in combination.
さらに、粉末状の半導体物質を固める結合剤としては、
ポリイミド樹脂以外の絶縁性の有機接着剤でもよく、熱
硬化性樹脂、たとえばフェノール樹脂、フラン樹脂、ユ
リア樹脂、メラミン樹脂。Furthermore, as a binder for solidifying powdered semiconductor materials,
Insulating organic adhesives other than polyimide resins may also be used, such as thermosetting resins such as phenolic resins, furan resins, urea resins, and melamine resins.
不飽和ポリエステル樹脂、ジアリルフタレート樹脂、エ
ポキシ樹脂、ポリウレタン樹脂、ケイ素樹脂などでも良
いものであり、さらにはガラス粉末と有機バインダーと
を組合せ几形で用いてもよいものである。Unsaturated polyester resins, diallyl phthalate resins, epoxy resins, polyurethane resins, silicone resins, etc. may also be used, and furthermore, glass powder and organic binders may be used in combination.
また、上記の実施例では素子の形成をスクリーン印刷法
により行ったが、それ以外の塗布法、例えばスプレー、
浸漬などの方法で行ってもよいものである。In addition, although the elements were formed by screen printing in the above examples, other coating methods such as spraying,
A method such as immersion may also be used.
さらにまた、上記実施例による製造方法では、まず最初
に無機質半導体である微粒子状のZnOを熱処理、粉砕
し、粉末とした後に、絶縁性の無機質化合物であるCo
2O3を添加し、その後熱処理を行ったが、これは無機
質半導体の粉末に直接無機質化合物を添加するようにし
、上記無機質半導体微粒子の焼成、粉砕という処理工程
を省略しても差支えないものである。Furthermore, in the manufacturing method according to the above embodiment, first, fine particle ZnO, which is an inorganic semiconductor, is heat-treated and pulverized to powder, and then Co, which is an insulating inorganic compound, is
Although 2O3 was added and then heat treatment was performed, it is possible to add the inorganic compound directly to the inorganic semiconductor powder and omit the processing steps of firing and pulverizing the inorganic semiconductor fine particles.
発明の効果
以上の説明より明らかなように本発明方法により得られ
た電圧非直線性素子は、低電流域における電圧非直線指
数αが大きく、また並列静電容量の小さな素子が得られ
ることから、消費電流の小さい液晶、KLなどのデバイ
スのスイッチング素子として最適な素子を提供できるも
のである。まt、粉末状の導電性物質を介在させている
ことによって粉末状の半導体物質間の電気的接続を安定
にし、特性バラツキの少ない素子を得ることができ、か
つこの導電性物質の介在量によってハIJスタ電圧を制
御することができるという利点が得られるため、電極間
距離に制約されることなく、たとえば電極間距離を極度
に狭くしないでも、バリスタ電圧の低いものが得られ、
上記電圧非直線指数αが大きいことと相まって従来のZ
nOバリスタでは対応することのできなかった低電圧用
ICの保護素子や低い電圧における電圧安定化素子とし
て使用することができる。さらに、塗布したペイント’
を低い温度で硬化させて簡単にして作ることができるた
め、回路基板上やガラス基板上に素子を直接形成するこ
とができるものである。このように種々の特徴を有する
本発明の電圧非直線性素子は、今までのZnOバリスタ
などでは考えられない幅広い用途が期待できるものであ
り、その産業性は大なるものである。Effects of the Invention As is clear from the above explanation, the voltage nonlinear element obtained by the method of the present invention has a large voltage nonlinearity index α in the low current region, and also has a small parallel capacitance. It is possible to provide an element that is optimal as a switching element for devices such as liquid crystal, KL, etc., which has low current consumption. In addition, by interposing a powdery conductive substance, the electrical connection between the powdery semiconductor substances can be stabilized, and an element with less variation in characteristics can be obtained. Since the advantage of being able to control the high IJ varistor voltage is obtained, a low varistor voltage can be obtained without being restricted by the distance between the electrodes, for example, without making the distance between the electrodes extremely narrow.
Combined with the large voltage nonlinearity index α mentioned above, the conventional Z
It can be used as a protection element for low-voltage ICs or as a voltage stabilizing element at low voltages, which could not be done with nO varistors. Furthermore, the applied paint'
Because it can be easily manufactured by curing at low temperatures, elements can be directly formed on circuit boards or glass substrates. The voltage nonlinear element of the present invention having such various characteristics can be expected to have a wide range of applications unimaginable for conventional ZnO varistors, and has great industrial potential.
第1図は本発明方法による電圧非直線性素子の製造方法
の工程を示す図、第2図は本発明方法により得られた電
圧非直線性素子の一実施例を示す拡大断面図、第3図お
よび第4図はそれぞれ本発明の素子をガラス基板上に設
けた実施例を示す断面図、第5図は本発明方法により得
られた素子と従来のZnOバリスタの電圧−電流特性を
示す図、第6図は本発明方法による素子において銀粉末
の添加量を変えた場合の電圧非直線指数α、バリスタ電
圧LztAおよび並列静電容量Cの変化する様子を示す
図である。
1.1&、1b、2・・・・・・ITOTL極、3,3
亀。
4・・・・・ガラス基板、5・・・・・・電圧非直線性
素子、6・・・・・・ZnO粉末、7・・・・・・銀粉
末、8・・・・・・結合剤、9・・・・・・CO2O3
絶縁被膜。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第
】(21
第2図
第 5 図
一力 電圧(1’)
第 6 図FIG. 1 is a diagram showing the steps of a method for manufacturing a voltage nonlinear element according to the method of the present invention, FIG. 2 is an enlarged sectional view showing an example of a voltage nonlinear element obtained by the method of the present invention, and FIG. 4 and 4 are cross-sectional views showing examples in which the device of the present invention is provided on a glass substrate, respectively, and FIG. 5 is a diagram showing the voltage-current characteristics of the device obtained by the method of the present invention and a conventional ZnO varistor. , FIG. 6 is a diagram showing how the voltage nonlinearity index α, the varistor voltage LztA, and the parallel capacitance C change when the amount of silver powder added is changed in the device according to the method of the present invention. 1.1&, 1b, 2...ITOTL pole, 3,3
turtle. 4... Glass substrate, 5... Voltage nonlinear element, 6... ZnO powder, 7... Silver powder, 8... Bonding agent, 9...CO2O3
Insulating coating. Name of agent: Patent attorney Toshio Nakao and 1 other person
](21 Figure 2 Figure 5 Figure 1 Voltage (1') Figure 6
Claims (1)
し、混合した後、600〜1350℃で熱処理を行い、
無機質半導体微粉末の表面に無機質絶縁被膜を形成させ
ると共に、その絶縁性被膜を表面に有した微粉末状の上
記無機質半導体の全部またはほとんどがそれぞれ複数個
集まった状態となるようにし、その後微粉末状無機質半
導体が複数個集まった状態の粉末または一部に上記微粉
末を含む粉末と金属または導電性の金属酸化物の粉末を
加えたものに絶縁性の有機接着剤かまたはガラス粉末と
有機バインダーを加え、ペイント状にし、次いで上記ペ
イントを電極を配した絶縁基板上に印刷、スプレーまた
は浸漬などによって塗布した後、熱処理を行って硬化さ
せることを特徴とする電圧非直線性素子の製造方法。After adding an inorganic or organic compound to a fine powder of an inorganic semiconductor and mixing, heat treatment is performed at 600 to 1350°C,
An inorganic insulating film is formed on the surface of the inorganic semiconductor fine powder, and all or most of the fine powdered inorganic semiconductors having the insulating film on the surface are gathered together, and then the fine powder is A powder in which a plurality of inorganic semiconductors are assembled together or a powder containing the above-mentioned fine powder and a metal or conductive metal oxide powder, an insulating organic adhesive, or a glass powder and an organic binder. A method for manufacturing a voltage non-linear element, which comprises: adding the paint to form a paint, applying the paint by printing, spraying or dipping onto an insulating substrate on which electrodes are arranged, and then heat-treating and curing the paint.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61036001A JPS62193227A (en) | 1986-02-20 | 1986-02-20 | Manufacture of voltage nonlinear device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61036001A JPS62193227A (en) | 1986-02-20 | 1986-02-20 | Manufacture of voltage nonlinear device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62193227A true JPS62193227A (en) | 1987-08-25 |
Family
ID=12457547
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61036001A Pending JPS62193227A (en) | 1986-02-20 | 1986-02-20 | Manufacture of voltage nonlinear device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62193227A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02161881A (en) * | 1989-08-03 | 1990-06-21 | Minolta Camera Co Ltd | Electronic still camera |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5358695A (en) * | 1976-11-08 | 1978-05-26 | Taiyo Yuden Kk | Film varistor |
-
1986
- 1986-02-20 JP JP61036001A patent/JPS62193227A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5358695A (en) * | 1976-11-08 | 1978-05-26 | Taiyo Yuden Kk | Film varistor |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02161881A (en) * | 1989-08-03 | 1990-06-21 | Minolta Camera Co Ltd | Electronic still camera |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS62193227A (en) | Manufacture of voltage nonlinear device | |
JPS62193228A (en) | Voltage nonlinear device | |
JPS62190816A (en) | Manufacture of voltage nonlinear device | |
JPS62190817A (en) | Manufacture of voltage nonlinear device | |
JPS62193210A (en) | Manufacture of voltage nonlinear device | |
JPS62190802A (en) | Manufacture of voltage nonlinear device | |
JPS62190807A (en) | Manufacture of voltage nonlinear device | |
JPS62242310A (en) | Voltage nonlinear device | |
JPS62193225A (en) | Manufacture of voltage nonlinear device | |
JPS62190820A (en) | Manufacture of voltage nonlinear device | |
JPS62193217A (en) | Manufacture of voltage nonlinear device | |
JPS62193212A (en) | Manufacture of voltage nonlinear device | |
JPS62190815A (en) | Manufacture of voltage nonlinear device | |
JPS62242303A (en) | Voltage nonlinear device | |
JPS62190803A (en) | Manufacture of voltage nonlinear device | |
JPS62190821A (en) | Manufacture of voltage nonlinear device | |
JPS62242302A (en) | Voltage nonlinear device | |
JPS62190801A (en) | Manufacture of voltage nonlinear device | |
JPS62193209A (en) | Voltage nonlinear device | |
JPS62190810A (en) | Voltage nonlinear device | |
JPS62193221A (en) | Manufacture of voltage nonlinear device | |
JPS62193222A (en) | Manufacture of voltage nonlinear device | |
JPS62193219A (en) | Manufacture of voltage nonlinear device | |
JPS62242307A (en) | Voltage nonlinear device | |
JPS62193224A (en) | Manufacture of voltage nonlinear device |