[go: up one dir, main page]

JPS62190728A - Method and apparatus for monitoring etching end point - Google Patents

Method and apparatus for monitoring etching end point

Info

Publication number
JPS62190728A
JPS62190728A JP3178386A JP3178386A JPS62190728A JP S62190728 A JPS62190728 A JP S62190728A JP 3178386 A JP3178386 A JP 3178386A JP 3178386 A JP3178386 A JP 3178386A JP S62190728 A JPS62190728 A JP S62190728A
Authority
JP
Japan
Prior art keywords
light
semiconductor substrate
thin film
metal thin
end point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3178386A
Other languages
Japanese (ja)
Inventor
Shigeyuki Tsurumi
重行 鶴見
Juichi Noda
野田 壽一
Ban Nakajima
中島 蕃
Toshitaka Shibata
柴田 俊隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3178386A priority Critical patent/JPS62190728A/en
Publication of JPS62190728A publication Critical patent/JPS62190728A/en
Pending legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To eliminate the influence of contamination of a substance to be etched by introducing an infrared light of a predetermined wavelength to the surface of a semiconductor substrate of the side not formed with a thin metal film of the surface of the substrate, measuring the intensity of the light reflected on the thin film through the substrate of the infrared light, and obtaining the etching end point by the intensity of the reflected light to readily position a detector, thereby improving S/N ratio. CONSTITUTION:The infrared light of 1.3mum of wavelength modulated by a sinusoidal wave of 1kHz from an infrared light emitting unit 5 is passed through a half mirror 4 to an optical fiber 1, and emitted to a silicon substrate 10 formed with the thin metal film as parallel beam via a rod lens 3. Part of the infrared light of 1.3mum of wavelength is reflected on the back surface of the substrate 10, but is passed through the Si, reflected on the metal film surface, again through the lens 3, and returned to the optical fiber 1. The returned infrared light is reflected on the half mirror 4, and detected by an infrared light detector 6. When the metal film is etched and removed by the plasma, the reflected light is erased from the metal film, thereby notifying the etching end point.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、各種デバイスの作製工程において必須の金属
薄膜のエッチング工程中のエッチング終点をモニタする
方法および装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for monitoring the etching end point during the etching process of metal thin films, which is essential in the manufacturing process of various devices.

〔従来の技術〕[Conventional technology]

各種デバイスの作製工程において必須である金属薄膜の
エッチングの終点をエッチング中に正確に知ることは、
精度の良い微細パターンを得る上で極めて重要であり、
これまでいくつかの提案がなされてぎた。それらの中で
実用的な方法および手段を第1表に示す。
Accurately knowing the end point of metal thin film etching during etching, which is essential in the manufacturing process of various devices, is
It is extremely important to obtain fine patterns with high precision.
Several proposals have been made so far. Among them, practical methods and means are shown in Table 1.

第1表 エッチングの終点検出方法及び手段光学的方法
としては、エッチング中に真空槽の窓から人間の目によ
って観察する方法で人間の感覚に頼る方法と、レーザ光
を真空槽の窓からエッチングする面へ照射し、反射光の
変化を検出する方法あるいはエリプソメータにより屈折
率の変化を検出する方法がある。
Table 1 Etching end point detection methods and means Optical methods include a method that relies on human senses by observing with the human eye through the window of the vacuum chamber during etching, and a method that relies on the human senses by observing the end point of the vacuum chamber during etching, and a method that uses laser light to etch through the window of the vacuum chamber. There is a method in which a surface is irradiated with light and a change in reflected light is detected, or a method in which an ellipsometer is used to detect a change in refractive index.

レーザ光を用いる方法は、真空槽の窓の外から光を入射
させ、同じく窓の外から検出するものであり、エッチン
グされた物質が窓に付着することにより、検出能力が低
下する欠点を有していた。
The method using laser light enters the light from outside the window of the vacuum chamber and detects from outside the window, but it has the disadvantage that the detection ability decreases due to the etched material adhering to the window. Was.

また、試料から離れた位置で検出するため、検出部の位
置合せやSN比に問題を残していた。
Furthermore, since the detection is performed at a position far from the sample, there remain problems with the alignment of the detection unit and the signal-to-noise ratio.

分光分析法およびガス分析法は、いずれもエッチングさ
れたガス状の物質を分光法あるいはガス分析法により検
出し、エッチングされた物質が検出されなくなった時点
をエッチングの終点とする方法である。
The spectroscopic analysis method and the gas analysis method are both methods in which an etched gaseous substance is detected by spectroscopy or gas analysis, and the end point of etching is defined as the point in time when the etched substance is no longer detected.

これらの欠点は、上記光学的方法と同様に、真空槽の窓
の外から検出するので窓の付着物による検出能力の低下
があることに加えて、エッチングが終了してもエッチン
グされた物質はしばらく真空槽内に残留するため、実際
のエッチング終点よりも遅れて検出されるという欠点を
有していた。
Similar to the above-mentioned optical method, detection is performed from outside the window of the vacuum chamber, so the detection ability is degraded due to deposits on the window, and even after etching is completed, the etched material remains Since it remains in the vacuum chamber for a while, it has the disadvantage that it is detected later than the actual end point of etching.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

そこで、本発明の目的は、エッチング付着物による真空
槽の窓の汚染により検出能力が低下すること、試料から
離れた位置で検出することにより検出部の位置合せがむ
ずかしいこと、良好なSN比がとれないことの諸欠点を
解決したエッチング終点モニタ法および装置を提供する
ことにある。
Therefore, the purpose of the present invention is to solve the following problems: the detection ability deteriorates due to contamination of the vacuum chamber window with etching deposits, it is difficult to align the detection part due to detection at a position far from the sample, and a good signal-to-noise ratio is achieved. An object of the present invention is to provide a method and device for monitoring the etching end point, which solves the drawbacks of not being able to remove the etching end point.

〔問題点を解決するための手段〕[Means for solving problems]

このような目的を達成するために、本発明では、光ファ
イバを真空槽内に導入し、プラズマを発生させるための
高電圧が印加される電極板の中へ設置し、エッチングさ
れる金属薄膜が形成されているSi基板の裏面からSi
を透過する 1.2μm以上の赤外光を照射し、金属薄
膜面からの反射あるいは透過光と反射光の比を用いてエ
ッチングの終点をモニタする。
In order to achieve such an object, in the present invention, an optical fiber is introduced into a vacuum chamber, and installed in an electrode plate to which a high voltage for generating plasma is applied, so that the metal thin film to be etched is Si from the back side of the Si substrate being formed
Infrared light of 1.2 μm or more is irradiated, and the end point of etching is monitored using reflection from the metal thin film surface or the ratio of transmitted light to reflected light.

すなわち、本発明の第1形態は、半導体基板表面に形成
された金属薄膜をエッチングする際のエッチング終点を
モニタするにあたり、半導体基板の表面のうち、金属薄
膜の形成されていない側の半導体基板表面へ、波長1.
2μm以上2μm以下の赤外光を入射させ、赤外光のう
ち半導体基板中を透過して金属薄膜面で反射された光の
強度を測定し、その反射光強度よりエッチング終点を求
めることを特徴とする。
That is, in the first embodiment of the present invention, when monitoring the etching end point when etching a metal thin film formed on a semiconductor substrate surface, the semiconductor substrate surface on the side of the semiconductor substrate surface where the metal thin film is not formed is monitored. To, wavelength 1.
Infrared light of 2 μm or more and 2 μm or less is incident, the intensity of the infrared light that is transmitted through the semiconductor substrate and reflected on the metal thin film surface is measured, and the etching end point is determined from the intensity of the reflected light. shall be.

本発明の第2形態は、半導体基板表面に形成された金属
薄膜をエッチングする際のエッチング終点をモニタする
にあたり、半導体基板の表面のうち、金属薄膜の形成さ
れていない側の半導体基板表面へ、波長1.2μm以上
2μm以下の赤外光を入射させ、赤外光のうち、半導体
基板中を透過して金属薄膜面で反射された光および金属
薄膜を透過した光の強度を測定し、半導体基板からの反
射光の強度と半導体基板を透過した光の強度とを比較す
ることを特徴とする。
In a second embodiment of the present invention, when monitoring the etching end point when etching a metal thin film formed on the surface of a semiconductor substrate, a method for monitoring the end point of etching when etching a metal thin film formed on the surface of a semiconductor substrate is provided. Infrared light with a wavelength of 1.2 μm or more and 2 μm or less is incident, and the intensity of the light that has passed through the semiconductor substrate and reflected on the metal thin film surface and the light that has passed through the metal thin film is measured. It is characterized by comparing the intensity of light reflected from the substrate and the intensity of light transmitted through the semiconductor substrate.

本発明の第3形態は、赤外光を発光する手段と、その発
光した赤外光を透過させるハーフミラ−と、プラズマを
用いて半導体基板にエッチングを行う真空槽と、真空槽
内に配設され、貫通孔を有し、かつ半導体基板を載置す
る下部電極と、真空槽内に、下部電極と対向して配設さ
れた上部電極と、下部電極の貫通孔に嵌着され、ハーフ
ミラ−からの透過光を半導体基板に導く第1光フアイバ
と半導体基板上に形成された金属薄膜からの反射光な光
導波手段からハーフミラ−を経て受光する受光手段とを
具えたことを特徴とする。
A third embodiment of the present invention includes a means for emitting infrared light, a half mirror for transmitting the emitted infrared light, a vacuum chamber for etching a semiconductor substrate using plasma, and a device disposed in the vacuum chamber. a lower electrode having a through hole and on which a semiconductor substrate is placed; an upper electrode disposed in a vacuum chamber to face the lower electrode; and a half mirror that is fitted into the through hole of the lower electrode. The present invention is characterized by comprising a first optical fiber that guides transmitted light from the semiconductor substrate to the semiconductor substrate, and a light receiving means that receives reflected light from the metal thin film formed on the semiconductor substrate from the optical waveguide means through the half mirror.

本発明の第4形態は、赤外光を発光する手段と、その発
光した赤外光を透過させるハーフミラ−と、プラズマを
用いて半導体基板にエッチングを行う真空槽と、真空槽
内に配設され、貫通孔を有し、かつ半導体基板を載置す
る下部電極と、真空槽内に、下部電極と対向して配設さ
れ、かつ下部電極の貫通孔と対向した貫通孔を有する上
部電極と、下部電極の貫通孔に嵌着され、ハーフミラ−
からの透過光を半導体基板に導く第1光導波手段と半導
体基板上に形成された金属薄膜からの反射光を第1先導
波手段からハーフミラ−を経て受光する第1受光手段と
、上部電極の貫通孔に嵌着され、金属薄膜からの透過光
を受ける第2光導波手段と、第2光導波手段からの光を
受光する第2受光手段と、第1受光手段からの反射光出
力と、第2受光手段からの透過光出力とを比較し、その
比較出力からエッチング終点を求める手段とを具えたこ
とを特徴とする。
A fourth aspect of the present invention provides a means for emitting infrared light, a half mirror for transmitting the emitted infrared light, a vacuum chamber for etching a semiconductor substrate using plasma, and a device disposed in the vacuum chamber. a lower electrode having a through hole and on which a semiconductor substrate is placed; an upper electrode disposed in a vacuum chamber to face the lower electrode and having a through hole facing the through hole of the lower electrode; , is fitted into the through hole of the lower electrode, forming a half mirror.
a first light-receiving means for receiving reflected light from a metal thin film formed on the semiconductor substrate from the first wave-guiding means via a half mirror; a second optical waveguide that is fitted into the through hole and receives the transmitted light from the metal thin film; a second light receiver that receives the light from the second optical waveguide; and a reflected light output from the first light receiver; It is characterized by comprising means for comparing the transmitted light output from the second light receiving means and determining the etching end point from the comparison output.

〔作 用〕[For production]

本発明では、Si基板の裏面に接触した極めて近い位置
から光を入射し、その反射光を検出するので検出部の位
置合せが簡単なこと、良好なSN比が  ”とれること
、およびエッチングされる物質の汚染による影響を受け
ないこと。
In the present invention, light is incident from a very close position in contact with the back surface of the Si substrate, and the reflected light is detected, so alignment of the detection part is easy, a good signal-to-noise ratio can be obtained, and etching is avoided. Not affected by contamination of substances.

〔実施例〕〔Example〕

以下に図面に基づいて本発明の実施例を詳細かつ具体的
に説明する。
Embodiments of the present invention will be described in detail and specifically below based on the drawings.

実施例1゜ 第1図は本発明の第1の実施例を説明する図であって、
ここで、1は光ファイバ、2は光フアイバ真空導入端子
、3はロッドレンズ、4はハーフミラ−15は赤外発光
器、6は赤外光検出器、7は真空槽の窓、8は上部電極
、9は真空槽、10はSi基板、11は下部電極、12
はプラズマ発生用RF電源である。光ファイバ1はハー
フミラ−4から端子2を介して真空槽9内に導き、さら
に下部電極11にあけた貫通孔に導く。この孔にはロッ
ドレンズ3を挿入しておき、シリコン基板lOを下部電
極11上に載置したときにこのロッドレンズの先端が基
板下面と当接するようにしておく。
Embodiment 1 FIG. 1 is a diagram illustrating a first embodiment of the present invention,
Here, 1 is an optical fiber, 2 is an optical fiber vacuum introduction terminal, 3 is a rod lens, 4 is a half mirror, 15 is an infrared emitter, 6 is an infrared light detector, 7 is a window of the vacuum chamber, and 8 is an upper part. Electrode, 9 is a vacuum chamber, 10 is a Si substrate, 11 is a lower electrode, 12
is an RF power source for plasma generation. The optical fiber 1 is led from the half mirror 4 through the terminal 2 into the vacuum chamber 9, and further into the through hole formed in the lower electrode 11. A rod lens 3 is inserted into this hole so that when the silicon substrate IO is placed on the lower electrode 11, the tip of the rod lens comes into contact with the lower surface of the substrate.

この装置を動作するには、赤外発光器5からI KHz
の正弦波に変調した波長1.3μmの赤外光を、ハーフ
ミラ−4を透過させて、光ファイバ1に導入し、ロッド
レンズ3により平行光として金属薄膜の形成されたシリ
コン基板10に照射する。
To operate this device, an infrared emitter 5 to I KHz
Infrared light with a wavelength of 1.3 μm modulated into a sine wave is transmitted through a half mirror 4, introduced into an optical fiber 1, and is irradiated as parallel light by a rod lens 3 onto a silicon substrate 10 on which a metal thin film is formed. .

波長1.3μmの赤外光の一部はシリコン基板lOの裏
面で反射を受けるが一部はSiの内部を透過して金属薄
膜面で反射し再びロッドレンズ3を通り、光ファイバ1
へ戻る。光ファイバ1の中を戻ってきた赤外光はハーフ
ミラ−4で反射され赤外光検出器6で検出される。
A part of the infrared light with a wavelength of 1.3 μm is reflected by the back surface of the silicon substrate 1O, but part of it passes through the inside of the Si, is reflected by the metal thin film surface, passes through the rod lens 3 again, and is connected to the optical fiber 1.
Return to The infrared light returning through the optical fiber 1 is reflected by the half mirror 4 and detected by the infrared light detector 6.

プラズマにより金属薄膜がエッチングされて除去される
と、金属薄膜からの反射光が消滅するため、エッチング
の終点を知ることが可能となる。
When the metal thin film is etched and removed by plasma, the reflected light from the metal thin film disappears, making it possible to know the end point of the etching.

第2図に本実施例の装置を用いた測定結果を示す。第2
図かられかるように、分光分析の結果と比較して正確に
エッチングの終点を知ることができる。
FIG. 2 shows the measurement results using the apparatus of this example. Second
As can be seen from the figure, the end point of etching can be accurately determined by comparing with the results of spectroscopic analysis.

実施例2゜ 第3図は本発明の第2の実施例を説明する図であって、
1 (a) 、 1 (b)は光ファイバ、3 (a)
 、 3 (b)はロッドレンズ、6’ (a) 、 
6 (b)は赤外光検出器、13は演算装置である。ロ
ッドレンズ3(a)および3(b)を、それぞれ、電極
10および8に取りつけ、さらに光ファイバl (a)
および1(b)に結合する。光ファイバ1(a)および
1(b)からの光を赤外光検出器6(a)および6(b
)にそれぞれ導く。
Embodiment 2 FIG. 3 is a diagram illustrating a second embodiment of the present invention,
1 (a) and 1 (b) are optical fibers, 3 (a)
, 3 (b) is a rod lens, 6' (a),
6(b) is an infrared light detector, and 13 is an arithmetic unit. Rod lenses 3(a) and 3(b) are attached to electrodes 10 and 8, respectively, and optical fibers l(a)
and 1(b). The light from optical fibers 1(a) and 1(b) is detected by infrared photodetectors 6(a) and 6(b).
) respectively.

本例においても、実施例1と同様に、波長1.3μmの
赤外光を光ファイバ1 (a)を用いて真空槽9に導入
し、金属薄膜の形成されたSt基板10の裏面から照射
し、その反射光を赤外光検出器6(a)で検出する。こ
れとは別に、上部電極8に貫通孔を設け、ロッドレンズ
3(b)および光ファイバ1(b)を下方から透過光の
光軸に合せて配設して、金属薄膜がエッチングで除去さ
れた際に生じる透過光を受光し、検出器6(b)伝播す
る。以上のようにして検出器6(a)および6(b)で
それぞれ検出された反射光出力と透過光出力を演算装置
13に人力し、ここで、透過光強度を反射光強度で除算
することにより、明確なエッチングの終点を求める。
In this example, as in Example 1, infrared light with a wavelength of 1.3 μm is introduced into the vacuum chamber 9 using the optical fiber 1 (a), and irradiated from the back surface of the St substrate 10 on which the metal thin film is formed. Then, the reflected light is detected by an infrared light detector 6(a). Separately, a through hole is provided in the upper electrode 8, a rod lens 3(b) and an optical fiber 1(b) are arranged from below in alignment with the optical axis of the transmitted light, and the metal thin film is removed by etching. The transmitted light generated when the light is transmitted is received and propagated to the detector 6(b). The reflected light output and the transmitted light output detected by the detectors 6(a) and 6(b) as described above are manually inputted to the arithmetic unit 13, where the transmitted light intensity is divided by the reflected light intensity. Find a clear end point of etching.

本実施例により求めたエッチング終点の測定結果を第4
図に示す。第4図かられかるように、本例によれば、エ
ッチングの終点出力が明確に得られる。
The measurement results of the etching end point obtained in this example were
As shown in the figure. As can be seen from FIG. 4, according to this example, the etching end point output can be clearly obtained.

なお、上述した実施例では、シリコン基板を例にとった
が、本発明はシリコン基板に限定されるものではなく、
金属薄膜の付着したいかなる半導体基板に対しても有効
に適用できる。その場合に、赤外光の波長はかかる半導
体基板を透過できる値、たとえば1.2〜2μmにする
ことはもちろんである。
In addition, in the above-mentioned embodiment, a silicon substrate was taken as an example, but the present invention is not limited to a silicon substrate.
It can be effectively applied to any semiconductor substrate to which a metal thin film is attached. In that case, it goes without saying that the wavelength of the infrared light should be set to a value that allows it to pass through such a semiconductor substrate, for example, 1.2 to 2 μm.

さらにまた、上側では、光を導く手段として光ファイバ
を用いたが、光導波手段はこれにのみ限られず、レンズ
などの光学系や光導波路などを組合せ用いることもでき
る。
Furthermore, although an optical fiber is used as a means for guiding light on the upper side, the optical waveguide means is not limited to this, and an optical system such as a lens, an optical waveguide, etc. can be used in combination.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、真空槽内に光フ
ァイバを導入し、エッチングされる金属薄膜が形成され
ている基板面の裏面から光を導入し、金属薄膜の反射面
からの光を主に検出するようにしたので、検出部の位置
合せが容易なこと、SN比が良いこと、エッチングされ
る物質の汚染の影響を受けないことの利点がある。
As explained above, according to the present invention, an optical fiber is introduced into a vacuum chamber, light is introduced from the back side of the substrate surface on which the metal thin film to be etched is formed, and light is emitted from the reflective surface of the metal thin film. Since it is mainly detected, there are advantages that alignment of the detection part is easy, the signal-to-noise ratio is good, and it is not affected by contamination of the material to be etched.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例を示す構成図、 第2図は第1の実施例における測定結果を示す特性図、 第3図は本発明の第2の実施例を示す構成図、 第4図は第2の実施例の測定結果を示す特性図である。 1・・・光ファイバ、 2・・・光フアイバ真空導入端子、 3・・・ロッドレンズ、 4・・・ハーフミラ−1 5・・・赤外発光器、 6・・・赤外検出器、 7・・・真空槽の窓、 8・・・上部電極、 9・・・真空槽、 10・・・St基板、 11・・・下部電極、 12・・・RF電源、 13・・・演算器。 」11定詰栗と示す才舟性図 第2図 本発明大力色イチ゛It>+*)N図 第3図 FIG. 1 is a configuration diagram showing a first embodiment of the present invention, FIG. 2 is a characteristic diagram showing the measurement results in the first example; FIG. 3 is a configuration diagram showing a second embodiment of the present invention, FIG. 4 is a characteristic diagram showing the measurement results of the second example. 1...optical fiber, 2...Optical fiber vacuum introduction terminal, 3...rod lens, 4...half mirror 1 5... Infrared emitter, 6...Infrared detector, 7...vacuum chamber window, 8... Upper electrode, 9...vacuum chamber, 10...St substrate, 11...lower electrode, 12...RF power supply, 13... Arithmetic unit. ” 11 Chestnuts and talent chart Figure 2 The most powerful aspect of the present invention゛It>+*)N diagram Figure 3

Claims (1)

【特許請求の範囲】 1)半導体基板表面に形成された金属薄膜をエッチング
する際のエッチング終点をモニタするにあたり、 前記半導体基板の表面のうち、前記金属薄膜の形成され
ていない側の半導体基板表面へ、波長1.2μm以上2
μm以下の赤外光を入射させ、該赤外光のうち、前記半
導体基板中を透過して前記金属薄膜面で反射された光の
強度を測定し、その反射光強度よりエッチング終点を求
めることを特徴とするエッチング終点モニタ法。 2)半導体基板表面に形成された金属薄膜をエッチング
する際のエッチング終点をモニタするにあたり、 前記半導体基板の表面のうち、前記金属薄膜の形成され
ていない側の半導体基板表面へ、波長1.2μm以上2
μm以下の赤外光を入射させ、該赤外光のうち、前記半
導体基板中を透過して前記金属薄膜面で反射された光お
よび前記金属薄膜を透過した光の強度を測定し、前記半
導体基板からの反射光の強度と前記半導体基板を透過し
た光の強度とを比較することを特徴とするエッチング終
点モニタ法。 3)赤外光を発光する手段と、 その発光した赤外光を透過させるハーフミラーと、 プラズマを用いて半導体基板にエッチングを行う真空槽
と、 該真空槽内に配設され、貫通孔を有し、かつ前記半導体
基板を載置する下部電極と、 前記真空槽内に、前記下部電極と対向して配設された上
部電極と、 前記下部電極の貫通孔に嵌着され、前記ハーフミラーか
らの透過光を前記半導体基板に導く光導波手段と、 前記半導体基板上に形成された金属薄膜からの反射光を
前記光導波手段から前記ハーフミラーを経て受光する受
光手段と を具えたことを特徴とするエッチング終点モニタ装置。 4)赤外光を発光する手段と、 その発光した赤外光を透過させるハーフミラーと、 プラズマを用いて半導体基板にエッチングを行う真空槽
と、 該真空槽内に配設され、貫通孔を有し、かつ前記半導体
基板を載置する下部電極と、 前記真空槽内に、前記下部電極と対向して配設され、か
つ前記下部電極の貫通孔と対向した貫通孔を有する上部
電極と、 前記下部電極の貫通孔に嵌着され、前記ハーフミラーか
らの透過光を前記半導体基板に導く第1光導波手段と、 前記半導体基板上に形成された金属薄膜からの反射光を
前記光導波手段から前記ハーフミラーを経て受光する第
1受光手段と、 前記上部電極の貫通孔に嵌着され、前記金属薄膜からの
透過光を受ける第2光導波手段と、 該第2光導波手段からの光を受光する第2受光手段と、 前記第1受光手段からの反射光出力と、前記第2受光手
段からの透過光出力とを比較し、その比較出力からエッ
チング終点を求める手段と を具えたことを特徴とするエッチング終点モニタ装置。
[Claims] 1) In monitoring the etching end point when etching a metal thin film formed on a semiconductor substrate surface, the semiconductor substrate surface on the side of the semiconductor substrate surface where the metal thin film is not formed. To, wavelength 1.2 μm or more 2
Infrared light of μm or less is incident, and the intensity of the light transmitted through the semiconductor substrate and reflected by the metal thin film surface is measured, and the etching end point is determined from the intensity of the reflected light. An etching end point monitoring method featuring: 2) In monitoring the etching end point when etching a metal thin film formed on the surface of a semiconductor substrate, a wavelength of 1.2 μm is applied to the surface of the semiconductor substrate on the side of the semiconductor substrate where the metal thin film is not formed. Above 2
Infrared light of μm or less is incident, and among the infrared light, the intensity of the light transmitted through the semiconductor substrate and reflected on the metal thin film surface and the light transmitted through the metal thin film are measured, and the intensity of the light transmitted through the metal thin film is measured. An etching end point monitoring method characterized by comparing the intensity of light reflected from a substrate and the intensity of light transmitted through the semiconductor substrate. 3) a means for emitting infrared light; a half mirror for transmitting the emitted infrared light; a vacuum chamber for etching a semiconductor substrate using plasma; a lower electrode on which the semiconductor substrate is placed; an upper electrode disposed in the vacuum chamber to face the lower electrode; and a light receiving means for receiving reflected light from a metal thin film formed on the semiconductor substrate from the optical waveguide through the half mirror. Features: Etching end point monitoring device. 4) A means for emitting infrared light; a half mirror for transmitting the emitted infrared light; a vacuum chamber for etching a semiconductor substrate using plasma; a lower electrode on which the semiconductor substrate is placed; an upper electrode disposed in the vacuum chamber to face the lower electrode and having a through hole facing the through hole of the lower electrode; a first optical waveguide that is fitted into a through hole of the lower electrode and guides the transmitted light from the half mirror to the semiconductor substrate; and a first optical waveguide that guides the reflected light from the metal thin film formed on the semiconductor substrate. a first light-receiving means that receives light from the upper electrode through the half mirror; a second optical waveguide that is fitted into the through hole of the upper electrode and receives the light transmitted from the metal thin film; and a second optical waveguide that receives light from the second optical waveguide. and means for comparing the reflected light output from the first light receiving means and the transmitted light output from the second light receiving means and determining the etching end point from the comparative output. An etching end point monitor device featuring:
JP3178386A 1986-02-18 1986-02-18 Method and apparatus for monitoring etching end point Pending JPS62190728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3178386A JPS62190728A (en) 1986-02-18 1986-02-18 Method and apparatus for monitoring etching end point

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3178386A JPS62190728A (en) 1986-02-18 1986-02-18 Method and apparatus for monitoring etching end point

Publications (1)

Publication Number Publication Date
JPS62190728A true JPS62190728A (en) 1987-08-20

Family

ID=12340652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3178386A Pending JPS62190728A (en) 1986-02-18 1986-02-18 Method and apparatus for monitoring etching end point

Country Status (1)

Country Link
JP (1) JPS62190728A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994007110A1 (en) * 1992-09-17 1994-03-31 Luxtron Corporation Optical endpoint determination during the processing of material layers
US5891352A (en) * 1993-09-16 1999-04-06 Luxtron Corporation Optical techniques of measuring endpoint during the processing of material layers in an optically hostile environment
US5964643A (en) * 1995-03-28 1999-10-12 Applied Materials, Inc. Apparatus and method for in-situ monitoring of chemical mechanical polishing operations
US6174407B1 (en) * 1998-12-03 2001-01-16 Lsi Logic Corporation Apparatus and method for detecting an endpoint of an etching process by transmitting infrared light signals through a semiconductor wafer
US6537133B1 (en) 1995-03-28 2003-03-25 Applied Materials, Inc. Method for in-situ endpoint detection for chemical mechanical polishing operations
US6570662B1 (en) 1999-05-24 2003-05-27 Luxtron Corporation Optical techniques for measuring layer thicknesses and other surface characteristics of objects such as semiconductor wafers
US6676717B1 (en) 1995-03-28 2004-01-13 Applied Materials Inc Apparatus and method for in-situ endpoint detection for chemical mechanical polishing operations
US6719818B1 (en) 1995-03-28 2004-04-13 Applied Materials, Inc. Apparatus and method for in-situ endpoint detection for chemical mechanical polishing operations
US6849152B2 (en) 1992-12-28 2005-02-01 Applied Materials, Inc. In-situ real-time monitoring technique and apparatus for endpoint detection of thin films during chemical/mechanical polishing planarization
US6876454B1 (en) 1995-03-28 2005-04-05 Applied Materials, Inc. Apparatus and method for in-situ endpoint detection for chemical mechanical polishing operations
US6910944B2 (en) 1995-03-28 2005-06-28 Applied Materials, Inc. Method of forming a transparent window in a polishing pad
US6934040B1 (en) 1999-05-24 2005-08-23 Luxtron Corporation Optical techniques for measuring layer thicknesses and other surface characteristics of objects such as semiconductor wafers
US6994607B2 (en) 2001-12-28 2006-02-07 Applied Materials, Inc. Polishing pad with window
US7001242B2 (en) 2002-02-06 2006-02-21 Applied Materials, Inc. Method and apparatus of eddy current monitoring for chemical mechanical polishing
US7677959B2 (en) 1999-09-14 2010-03-16 Applied Materials, Inc. Multilayer polishing pad and method of making
US7731566B2 (en) 1995-03-28 2010-06-08 Applied Materials, Inc. Substrate polishing metrology using interference signals
US10366899B2 (en) 2016-07-04 2019-07-30 Spts Technologies Limited Method of detecting a condition

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5499733A (en) * 1992-09-17 1996-03-19 Luxtron Corporation Optical techniques of measuring endpoint during the processing of material layers in an optically hostile environment
US5695660A (en) * 1992-09-17 1997-12-09 Luxtron Corporation Optical techniques of measuring endpoint during the processing of material layers in an optically hostile environment
US6077452A (en) * 1992-09-17 2000-06-20 Luxtron Corporation Optical techniques of measuring endpoint during the processing of material layers in an optically hostile environment
US6110752A (en) * 1992-09-17 2000-08-29 Luxtron Corporation Optical techniques of measuring endpoint during the processing of material layers in an optically hostile environment
WO1994007110A1 (en) * 1992-09-17 1994-03-31 Luxtron Corporation Optical endpoint determination during the processing of material layers
US6849152B2 (en) 1992-12-28 2005-02-01 Applied Materials, Inc. In-situ real-time monitoring technique and apparatus for endpoint detection of thin films during chemical/mechanical polishing planarization
US7024063B2 (en) 1992-12-28 2006-04-04 Applied Materials Inc. In-situ real-time monitoring technique and apparatus for endpoint detection of thin films during chemical/mechanical polishing planarization
US5891352A (en) * 1993-09-16 1999-04-06 Luxtron Corporation Optical techniques of measuring endpoint during the processing of material layers in an optically hostile environment
US6426232B1 (en) 1993-09-16 2002-07-30 Luxtron Corporation Optical techniques of measuring endpoint during the processing of material layers in an optically hostile environment
US6910944B2 (en) 1995-03-28 2005-06-28 Applied Materials, Inc. Method of forming a transparent window in a polishing pad
US7011565B2 (en) 1995-03-28 2006-03-14 Applied Materials, Inc. Forming a transparent window in a polishing pad for a chemical mechanical polishing apparatus
US8556679B2 (en) 1995-03-28 2013-10-15 Applied Materials, Inc. Substrate polishing metrology using interference signals
US6676717B1 (en) 1995-03-28 2004-01-13 Applied Materials Inc Apparatus and method for in-situ endpoint detection for chemical mechanical polishing operations
US6719818B1 (en) 1995-03-28 2004-04-13 Applied Materials, Inc. Apparatus and method for in-situ endpoint detection for chemical mechanical polishing operations
US6537133B1 (en) 1995-03-28 2003-03-25 Applied Materials, Inc. Method for in-situ endpoint detection for chemical mechanical polishing operations
US6860791B2 (en) 1995-03-28 2005-03-01 Applied Materials, Inc. Polishing pad for in-situ endpoint detection
US6876454B1 (en) 1995-03-28 2005-04-05 Applied Materials, Inc. Apparatus and method for in-situ endpoint detection for chemical mechanical polishing operations
US6875078B2 (en) 1995-03-28 2005-04-05 Applied Materials, Inc. Apparatus and method for in-situ endpoint detection for chemical mechanical polishing operations
US8506356B2 (en) 1995-03-28 2013-08-13 Applied Materials, Inc. Apparatus and method for in-situ endpoint detection for chemical mechanical polishing operations
US8092274B2 (en) 1995-03-28 2012-01-10 Applied Materials, Inc. Substrate polishing metrology using interference signals
US7841926B2 (en) 1995-03-28 2010-11-30 Applied Materials, Inc. Substrate polishing metrology using interference signals
US7775852B2 (en) 1995-03-28 2010-08-17 Applied Materials, Inc. Apparatus and method for in-situ endpoint detection for chemical mechanical polishing operations
US7731566B2 (en) 1995-03-28 2010-06-08 Applied Materials, Inc. Substrate polishing metrology using interference signals
US5964643A (en) * 1995-03-28 1999-10-12 Applied Materials, Inc. Apparatus and method for in-situ monitoring of chemical mechanical polishing operations
US7255629B2 (en) 1995-03-28 2007-08-14 Applied Materials, Inc. Polishing assembly with a window
US7118450B2 (en) 1995-03-28 2006-10-10 Applied Materials, Inc. Polishing pad with window and method of fabricating a window in a polishing pad
US6174407B1 (en) * 1998-12-03 2001-01-16 Lsi Logic Corporation Apparatus and method for detecting an endpoint of an etching process by transmitting infrared light signals through a semiconductor wafer
US7042581B2 (en) 1999-05-24 2006-05-09 Luxtron Corporation Optical techniques for measuring layer thicknesses and other surface characteristics of objects such as semiconductor wafers
US6570662B1 (en) 1999-05-24 2003-05-27 Luxtron Corporation Optical techniques for measuring layer thicknesses and other surface characteristics of objects such as semiconductor wafers
US6934040B1 (en) 1999-05-24 2005-08-23 Luxtron Corporation Optical techniques for measuring layer thicknesses and other surface characteristics of objects such as semiconductor wafers
US6654132B1 (en) 1999-05-24 2003-11-25 Luxtron Corporation Optical techniques for measuring layer thicknesses and other surface characteristics of objects such as semiconductor wafers
US7677959B2 (en) 1999-09-14 2010-03-16 Applied Materials, Inc. Multilayer polishing pad and method of making
US7198544B2 (en) 2001-12-28 2007-04-03 Applied Materials, Inc. Polishing pad with window
US6994607B2 (en) 2001-12-28 2006-02-07 Applied Materials, Inc. Polishing pad with window
US7001242B2 (en) 2002-02-06 2006-02-21 Applied Materials, Inc. Method and apparatus of eddy current monitoring for chemical mechanical polishing
US10366899B2 (en) 2016-07-04 2019-07-30 Spts Technologies Limited Method of detecting a condition

Similar Documents

Publication Publication Date Title
JPS62190728A (en) Method and apparatus for monitoring etching end point
JP4938948B2 (en) Process monitor and method for determining process parameters in a plasma process
US5208645A (en) Method and apparatus for optically measuring the thickness of a coating
KR100893961B1 (en) Fellows-angle interference process and apparatus for determining real-time etch rate
US6750977B2 (en) Apparatus for monitoring thickness of deposited layer in reactor and dry processing method
JP5752454B2 (en) Plasma processing apparatus and temperature measuring method
RU2512659C2 (en) Method to measure length of distribution of infra-red superficial plasmons on real surface
KR101487519B1 (en) Plasma processing chamber
KR20030000274A (en) Multichannel spectrum analyzer for real time plasma monitoring and thin film analysis in semiconductor manufacturing process
JP2004128113A (en) Method and apparatus for measuring life of semiconductor carrier
KR100250453B1 (en) How to detect the etching of Bragg mirror in real time
GB2379011A (en) Apparatus for measuring the thickness of materials using the focal length of a lensed fibre
JP2023031589A (en) Photothermal conversion analyzer and initial deterioration analysis method
JPH03148118A (en) Semiconductor manufacturing apparatus
CN112557262A (en) Detection method and detection device for single nano-particles
CN1164918C (en) Photocathode multi-information testing system
JPH05158084A (en) Measuring instrument for linear and nonlinear optical sensing rate
JP2005091119A (en) Method and analyzer for analyzing thermal physical property in micro area
RU2077754C1 (en) Method and device for detection of physical characteristics of semiconductor plate
JP2005093524A (en) Monitoring device and monitoring method
CN115184307A (en) A detection fiber and detection fiber sensor
JPH10239028A (en) Etching depth measuring method and its device
CN119000564A (en) Gas concentration detection equipment and detection method based on photon nano jet flow
CN1835199A (en) Etch monitor and method thereof
JPS6034046B2 (en) Thin film generation device