[go: up one dir, main page]

JPS6219004B2 - - Google Patents

Info

Publication number
JPS6219004B2
JPS6219004B2 JP53082687A JP8268778A JPS6219004B2 JP S6219004 B2 JPS6219004 B2 JP S6219004B2 JP 53082687 A JP53082687 A JP 53082687A JP 8268778 A JP8268778 A JP 8268778A JP S6219004 B2 JPS6219004 B2 JP S6219004B2
Authority
JP
Japan
Prior art keywords
metal
layer
compound
stabilizing
partition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53082687A
Other languages
Japanese (ja)
Other versions
JPS5510726A (en
Inventor
Takuya Suzuki
Itaru Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP8268778A priority Critical patent/JPS5510726A/en
Publication of JPS5510726A publication Critical patent/JPS5510726A/en
Publication of JPS6219004B2 publication Critical patent/JPS6219004B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 本発明は安定化金属層の純度低下を防止した化
合物複合超電導体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a compound composite superconductor in which deterioration in purity of a stabilizing metal layer is prevented.

従来の化合物複合超電導体は次の如くして得て
いたものである。すなわち、例えば第1図aに示
されている如く、超電導化合物の構成元素の内融
点の低い方の金属元素(A)とキヤリアー金属との合
金層1中に、上記超電導化合物の構成元素の内融
点の高い方の金属元素(B)の線2を多数本埋め込
み、その外側に隔壁層3を薄く設け、さらにその
外側に安定化金属層4を設けてなる複合体を所望
径の線にまで減面塑性加工し、次にこの線を熱処
理して合金層1中の金属元素(A)とフイラメント状
になつた金属元素(B)とが拡散反応を起して超電導
化合物を形成し第1図bに示す如き化合物複合超
電導体を得ていたものである。すなわち、かくし
て得られた化合物複合超電導体は第1図bに示す
如く、拡散反応によつて金属元素(A)の濃度が減少
した、金属元素(A)とキヤリアー金属との合金層1
中に金属元素(B)のフイラメント2が多数本埋め込
まれており、このフイラメント2と合金層1との
界面に又は場合によつてはフイラメントの金属元
素(B)が完全に金属元素(A)と反応してこのフイラメ
ント2の位置に超電導化合物層5が形成されてお
り、上記合金層1の外側に薄い隔壁層3があり、
さらにその外側に安定化金属層4が設けられた構
造をなしているものである。隔壁層3を設ける理
由は、超電導化合物を拡散反応で生成させるとき
の熱処理によつて、安定化金属層中へ主として金
属元素(A)が拡散侵入するのを防止するためであ
る。したがつて隔壁層3を構成する金属(以下隔
壁材と称する)は安定化金属へ拡散しにくく、さ
らに金属元素(A)ともキヤリアー金属とも反応生成
物を形成しないものが使われる。例えばV3Ga化
合物超電導体の場合にはTa、Nbなどが、Nb3Sn
化合物超電導体の場合には、Ta、Vなどが、そ
れぞれ隔壁材として用いられている。
Conventional compound composite superconductors have been obtained as follows. That is, as shown in FIG. 1a, for example, in an alloy layer 1 of a carrier metal and a metal element (A) having a lower melting point of the constituent elements of the superconducting compound, some of the constituent elements of the superconducting compound are A composite body is formed by embedding a large number of wires 2 of the metal element (B) with a higher melting point, providing a thin partition layer 3 on the outside, and further providing a stabilizing metal layer 4 on the outside, until the wire has a desired diameter. The wire is subjected to surface reduction plastic processing and then heat treated to cause a diffusion reaction between the metal element (A) in the alloy layer 1 and the filament-shaped metal element (B) to form a superconducting compound. A compound composite superconductor as shown in Figure b was obtained. That is, the compound composite superconductor thus obtained is, as shown in FIG.
A large number of filaments 2 of metal element (B) are embedded inside, and in some cases, the metal element (B) of the filament is completely converted to metal element (A) at the interface between the filament 2 and the alloy layer 1. A superconducting compound layer 5 is formed at the position of the filament 2 by reaction with the superconducting compound layer 5, and a thin barrier layer 3 is provided on the outside of the alloy layer 1.
Further, a stabilizing metal layer 4 is provided on the outside thereof. The reason for providing the partition layer 3 is to prevent mainly the metal element (A) from diffusing into the stabilizing metal layer during heat treatment when the superconducting compound is produced by a diffusion reaction. Therefore, the metal constituting the partition layer 3 (hereinafter referred to as partition material) is one that is difficult to diffuse into the stabilizing metal and does not form reaction products with either the metal element (A) or the carrier metal. For example, in the case of a V 3 Ga compound superconductor, Ta, Nb, etc. are used, while Nb 3 Sn
In the case of compound superconductors, Ta, V, and the like are used as barrier rib materials.

しかしながら、上述の如く、化合物複合超電導
体はその製造に当つて第1図aに示す如き構造の
複合体を著しく細線化するために強度の塑性加工
を幾度も施さなければならないが、隔壁材はかか
る塑性加工中に破損することがあり、合金層1と
安定化金属層4とが隔壁層3の破損した場所で直
接接触してしまい、上記拡散反応の熱処理時にこ
の部分の安定化金属層4は金属元素(A)の拡散侵入
によつて合金化され、電気電導度が極度に低下
し、安定化金属層としての機能が阻害されてしま
う。これは本来超電導体がその全長にわたつて均
質でなければならないということからして全く致
命的な欠陥である。しかも、隔壁層は複合体の内
部にあるので塑性加工中には破損してもそれを検
出することができず、加工中に補修することがで
きない。熱処理後検出されたとしても補修する手
段がないものである。したがつて長尺均質性が生
命の超電導体にとつては隔壁層の破損は正に致命
的な欠陥であるが上述の如く従来の化合物複合超
電導体では隔壁層の破損がしばしば発生した。
However, as mentioned above, when manufacturing a compound composite superconductor, it is necessary to perform strong plastic working many times in order to make the composite structure as shown in Figure 1a extremely thin. Damage may occur during such plastic working, and the alloy layer 1 and the stabilizing metal layer 4 come into direct contact with each other at the damaged part of the partition layer 3, and the stabilizing metal layer 4 in this part is damaged during the heat treatment for the above-mentioned diffusion reaction. is alloyed by the diffusion and penetration of the metal element (A), resulting in an extremely low electrical conductivity and inhibiting its function as a stabilizing metal layer. This is a completely fatal defect since a superconductor must be homogeneous over its entire length. Moreover, since the partition layer is located inside the composite, even if it is damaged during plastic working, it cannot be detected and cannot be repaired during processing. Even if it is detected after heat treatment, there is no way to repair it. Therefore, for a superconductor whose life depends on long-length homogeneity, breakage of the barrier layer is a fatal defect, but as mentioned above, breakage of the barrier layer often occurs in conventional compound composite superconductors.

本発明はかかる点にかんがみ鋭意研究した結果
安定化金属層の純度低下を防止した化合物複合超
電導体を見い出したものである。すなわち本発明
は超電導化合物の構成元素の内融点の低い方の金
属元素(A)を含有するキヤリアー金属中に、上記超
電導化合物の構成元素の内融点の高い金属元素(B)
のフイラメントとキヤリアー金属との界面に又は
該フイラメントと置換してもとのフイラメントの
位置に上記超電導化合物を有し、上記キヤリアー
金属に接して安定化金属が設けられており、かつ
キヤリアー金属と安定化金属との接する界面に
は、上記金属元素(A)、キヤリアー金属及び安定化
金属のいずれとも反応しない金属からなる第1の
隔壁層が介在する化合物複合超電導体において、
第1の隔壁層の近傍に、上記金属元素(A)、キヤリ
アー金属及び安定化金属のいずれとも反応しない
金属からなる第2の隔壁層を有することを特徴と
する化合物複合超電導体である。
In view of this point, the present invention has been made through extensive research and has resulted in the discovery of a compound composite superconductor that prevents the purity of the stabilizing metal layer from deteriorating. That is, the present invention provides a carrier metal containing a metallic element (A) having a lower internal melting point among the constituent elements of the superconducting compound, and a metallic element (B) having a higher internal melting point among the constituent elements of the superconducting compound.
The superconducting compound is provided at the interface between the filament and the carrier metal or at the original position of the filament in place of the filament, and a stabilizing metal is provided in contact with the carrier metal, and the stabilizing metal is provided in contact with the carrier metal. In a compound composite superconductor in which a first barrier layer made of a metal that does not react with any of the metal element (A), the carrier metal, and the stabilizing metal is interposed at the interface in contact with the compound metal,
The present invention is a compound composite superconductor characterized in that it has a second barrier layer made of a metal that does not react with any of the metal element (A), the carrier metal, and the stabilizing metal in the vicinity of the first barrier layer.

尚本発明における超電導化合物は拡散反応によ
つて生成されたものならばいかなるものでもよ
く、例えばNb3Sn、V3Ga等がある。したがつて
金属元素(A)はNb3SnではSn、V3GaではGaであ
り、金属元素(B)ではNb3SnではNb、V3GaではV
である。またNb3Sn、V3Gaいずれの場合もキヤ
リアー金属には通常純銅が好ましい。隔壁材とし
てはNb3SnについてはTa、Vが、V3Gaについて
はTa、Nbが通常好ましい。安定化金属としては
高純度銅、アルミニウム、銀金などが好ましい。
The superconducting compound in the present invention may be any compound as long as it is produced by a diffusion reaction, such as Nb 3 Sn, V 3 Ga, etc. Therefore, the metal element (A) is Sn in Nb 3 Sn and Ga in V 3 Ga, and the metal element (B) is Nb in Nb 3 Sn and V in V 3 Ga.
It is. Further, in both cases of Nb 3 Sn and V 3 Ga, pure copper is usually preferred as the carrier metal. As the barrier rib material, Ta and V are generally preferred for Nb 3 Sn, and Ta and Nb are generally preferred for V 3 Ga. Preferred stabilizing metals include high purity copper, aluminum, silver and gold.

次に本発明を図面を用いて説明する。 Next, the present invention will be explained using the drawings.

第2図はキヤリアー金属と金属元素(A)との合金
層1中に金属元素(B)のフイラメント2が多数本埋
込まれ、各フイラメント2と合金層1との界面に
は金属元素(A)と金属元素(B)とからなる超電導化合
物層5が形成されており、上記合金層1の外側に
第1の隔壁層3があり、その外側に薄い安定化金
属層4′があり、さらにその外側に、第1の隔壁
層3と同様の機能を持つ第2の隔壁層3′があ
り、そしてその外側に厚い安定化金属層4が設け
られてなる本発明の化合物複合超電導体の1例の
断面を示す。
Figure 2 shows a large number of filaments 2 of metal element (B) embedded in alloy layer 1 of carrier metal and metal element (A), and the interface between each filament 2 and alloy layer 1 is ) and a metal element (B), a first barrier layer 3 is provided on the outside of the alloy layer 1, a thin stabilizing metal layer 4' is provided on the outside of the first barrier layer 3, and 1 of the compound composite superconductor of the present invention, in which there is a second barrier layer 3' having the same function as the first barrier layer 3 on the outside thereof, and a thick stabilizing metal layer 4 on the outside thereof. An example cross section is shown.

第3図は同様に本発明の化合物複合超電導体の
他の例の断面図であり、キヤリアー金属と金属元
素(A)との合金層1中に金属元素(B)のフイラメント
2が多数本埋込まれ、各フイラメント2と合金層
1との界面には超電導化合物層5が形成されてお
り、上記合金層1の外側に第2の隔壁層3′、薄
い合金層1′、第1の隔壁層3及び安定化金属層
4がそれぞれこの順序で同心円状に設けられたも
のである。
FIG. 3 is a cross-sectional view of another example of the compound composite superconductor of the present invention, in which a large number of filaments 2 of the metal element (B) are embedded in an alloy layer 1 of the carrier metal and the metal element (A). A superconducting compound layer 5 is formed at the interface between each filament 2 and the alloy layer 1, and a second partition layer 3', a thin alloy layer 1', and a first partition wall are formed on the outside of the alloy layer 1. The layer 3 and the stabilizing metal layer 4 are provided concentrically in this order.

また、第4図は本発明による化合物複合超電導
体のさらに別の例の断面図であり、中央に安定化
金属層4があり、その外側に第1の隔壁層3、薄
い合金層1′、第2の隔壁層3′及び厚い合金層1
がそれぞれこの順序で同心円状に設けられてお
り、かつ厚い合金層1中には金属元素(B)のフイラ
メント2が多数本埋込まれており各フイラメント
2と合金層1との界面には超電導化合物層5が形
成されているものである。
Moreover, FIG. 4 is a cross-sectional view of still another example of the compound composite superconductor according to the present invention, in which there is a stabilizing metal layer 4 in the center, and on the outside thereof a first partition layer 3, a thin alloy layer 1', Second barrier layer 3' and thick alloy layer 1
are provided concentrically in this order, and a large number of filaments 2 of metal element (B) are embedded in the thick alloy layer 1, and the interface between each filament 2 and the alloy layer 1 is superconducting. A compound layer 5 is formed thereon.

さらにまた第5図は本発明による化合物複合超
電導体の他の例の断面図であり、中央に安定化金
属層4があり、その外側に第2の隔壁層3′薄い
安定化金属層4′、第1の隔壁層3及び合金層1
がそれぞれこの順序で同心円状に設けられてお
り、かつ合金層1中には金属元素(B)のフイラメン
ト2が多数本埋込まれており、各フイラメント2
と合金層1との界面には超電導化合物層5が形成
されているものである。
Furthermore, FIG. 5 is a cross-sectional view of another example of the compound composite superconductor according to the present invention, in which there is a stabilizing metal layer 4 in the center, and a second barrier layer 3' and a thin stabilizing metal layer 4' on the outside. , first partition layer 3 and alloy layer 1
are provided concentrically in this order, and a large number of filaments 2 of metal element (B) are embedded in the alloy layer 1, and each filament 2
A superconducting compound layer 5 is formed at the interface between the alloy layer 1 and the alloy layer 1.

以上の如く第2図〜第5図に示すいずれの化合
物複合超電導体においても、第1の隔壁層3は、
金属元素(A)とキヤリアー金属とからなる合金層1
と安定化金属層4又は4′との界面に介在してお
り、他方第2の隔壁層3′は第1の隔壁層3の近
傍に設けられている。さらに詳しく述べれば、第
2の隔壁層3′の配置は、第1の隔壁層3の外側
近傍に設けられた場合と内側近傍に設けられた場
合とに分けられる。外側近傍に設けられているの
は第2図と第4図であり、第2図では第2の隔壁
層3′が安定化金属層中に設けられ、第4図では
合金層中に設けられている。他方第1の隔壁層3
の内側近傍に第2の隔壁層3′が設けられている
のは第3図と第5図であり、第3図では第2の隔
壁層3′が合金層中に設けられ、第5図では安定
化金属層中に設けられている。
As described above, in any of the compound composite superconductors shown in FIGS. 2 to 5, the first partition layer 3 is
Alloy layer 1 consisting of metal element (A) and carrier metal
and the stabilizing metal layer 4 or 4', while the second barrier layer 3' is provided near the first barrier layer 3. More specifically, the arrangement of the second partition layer 3' can be divided into two types: one where it is provided near the outside of the first partition layer 3, and the other where it is provided near the inside of the first partition layer 3. 2 and 4, the second barrier layer 3' is provided in the stabilizing metal layer in FIG. 2, and in the alloy layer in FIG. ing. On the other hand, the first partition layer 3
In FIGS. 3 and 5, the second barrier layer 3' is provided in the inner vicinity of the alloy layer, and in FIG. 3, the second barrier layer 3' is provided in the alloy layer, and in FIG. In this case, it is provided in a stabilizing metal layer.

第1の隔壁層3は、互に塑性加工特性の異なる
両層間すなわち合金層と安定化金属層との間に介
在しているので、塑性加工中に破損等の損傷を受
けやすいが、第2の隔壁層3′は第2図〜第5図
いずれにおいても同一材質中すなわち安定化金層
中又は合金層中にあるので塑性加工中に均質な加
工応力を受け、そのため破損等の損傷を受けるこ
とが極めて僅少となる。その理由は、上記の如く
第2の隔壁層3′が同一材質中にあつて加工時に
均質な加工応力を受けるため、加工が均質になさ
れ、隔壁層3′自体の破損等が実質的に起り難く
なるからである。しかも万一いずれか一方の隔壁
層が破損を受けたとしても、その破損部分と同じ
個所で他方の隔壁層も同時に破損するということ
は実質上起り難いことでもあるからである。
Since the first partition layer 3 is interposed between two layers having different plastic working characteristics, that is, between the alloy layer and the stabilizing metal layer, it is susceptible to damage such as breakage during plastic working. Since the partition layer 3' is made of the same material, that is, a stabilizing gold layer or an alloy layer, in all of FIGS. This is extremely rare. The reason for this is that, as mentioned above, the second partition layer 3' is made of the same material and is subjected to uniform processing stress during processing, so processing is uniform and damage to the partition layer 3' itself may substantially occur. This is because it becomes difficult. Moreover, even if one of the partition layers were to be damaged, it is virtually unlikely that the other partition layer would also be damaged at the same location as the damaged part.

したがつて第1の隔壁層3が破損したとしても
安定化金属層4は第2図、第5図では全く汚染さ
れず、高純度が保たれ、第3図、第4図では極め
て薄い合金層1′中の金属元素(A)がわずかに拡散
侵入するだけであり、やはり、実質的に汚染され
ることがなく高純度が保たれる。勿論第2の隔壁
層3′が万が一破損しても何ら影響ないことは明
白である。
Therefore, even if the first partition layer 3 is damaged, the stabilizing metal layer 4 is not contaminated at all as shown in FIGS. 2 and 5, and maintains high purity, and as shown in FIGS. 3 and 4, it is an extremely thin alloy layer. The metal element (A) in the layer 1' only slightly diffuses into the layer 1', so that high purity is maintained without being substantially contaminated. Of course, it is clear that even if the second partition layer 3' is damaged, it will not have any effect.

次に本発明の実施例について説明する。 Next, examples of the present invention will be described.

Cu−10.7重量%Sn合金のインゴツトを直径45
mm、高さ150mmの円柱状に外削し、次にこの円柱
の軸に平行に直径2.8の穴を61個穿孔し、純Nbの
棒を各穴に挿入した。次にこの外側に内径45.3mm
外径46.3mmのTaの管を被せ、さらにその外側に
内径46.6mm外径48mmの高純度銅(OFHC)の管を
被せ、さらにその外側に内径48.3mm外径49.3mmの
Ta管を被せた。最後にその外側に内径49.5mm外
径69.5mmの高純度銅(OFHC)の管を被せて複合
体を得た。かくして得られた複合体の横断面を第
6図に示した。図中1はCu−10.7%Sn合金層、
2は純Nbの棒、3はTaの隔壁層、4は高純度銅
層、3′はTaの第2隔壁層、4′は高純度銅層で
ある。
An ingot of Cu-10.7 wt% Sn alloy with a diameter of 45 mm
A cylindrical shape with a diameter of 150 mm and a height of 150 mm was cut externally, then 61 holes with a diameter of 2.8 mm were drilled parallel to the axis of the cylinder, and a pure Nb rod was inserted into each hole. Next, this outside has an inner diameter of 45.3 mm.
A Ta tube with an outside diameter of 46.3 mm is covered, and then a high-purity copper (OFHC) tube with an inside diameter of 46.6 mm and an outside diameter of 48 mm is placed on the outside, and then a high-purity copper (OFHC) tube with an inside diameter of 48.3 mm and an outside diameter of 49.3 mm is placed on the outside.
Covered with Ta tube. Finally, a high-purity copper (OFHC) tube with an inner diameter of 49.5 mm and an outer diameter of 69.5 mm was placed on the outside to obtain a composite. A cross section of the composite thus obtained is shown in FIG. 1 in the figure is a Cu-10.7%Sn alloy layer,
2 is a bar of pure Nb, 3 is a barrier layer of Ta, 4 is a high-purity copper layer, 3' is a second barrier layer of Ta, and 4' is a high-purity copper layer.

次にこの複合体を直径70mmのコンテナーに挿入
し総荷重500トンの圧力をかけて、この複合体中
の各構成体間の界面の空隙をなくした。次にかく
して得られた複合ビレツトを650℃に加熱し直径
20mmの棒状に押出した。以後80%の冷間加工毎に
600℃1時間の焼鈍を行いながら、直径0.32mmま
で伸線加工した。次にこれにツイストピツチ5mm
のツイスト加工を施し、さらに直径0.3mmの線に
伸線した。しかる後この線を600℃で48時間真空
中で熱処理し、フイラメント状のNb2とCu−Sn
合金層中のSnとを固相拡散反応させた。
Next, this composite was inserted into a container with a diameter of 70 mm, and a total pressure of 500 tons was applied to eliminate voids at the interfaces between each component in the composite. Next, the composite billet thus obtained was heated to 650°C and the diameter
It was extruded into a 20mm rod. After that, every 80% cold working
The wire was drawn to a diameter of 0.32 mm while annealing at 600°C for 1 hour. Next, twist this with a pitch of 5mm.
The wire was twisted into a wire with a diameter of 0.3 mm. This wire was then heat treated in vacuum at 600℃ for 48 hours to form filamentary Nb 2 and Cu−Sn.
A solid phase diffusion reaction was performed with Sn in the alloy layer.

次にこの線の断面を顕微鏡で観察したところ第
2図に示す如く、Cu−Sn合金層1と各Nbフイラ
メント2との界面に約1.3μの超電導化合物
Nb3Snが形成されていた。またTaの隔壁層3,
3′の健全性を確めるために、この線を連続的に
送りながら、一定間隔間に定電流を通電しその間
の電圧変化を測定し、高純度銅層4,4′の抵抗
値の変化を調べたが全く抵抗値の上昇個所は全長
にわたつて認められなかつた。したがつてTaの
隔壁層3,3′は加工中に破損することなく健全
にその目的を達成していることが判明した。さら
にこの線5000mについて500m毎にサンプリング
してTaの隔壁層3,3′を実際に検査したがいず
れも全く隔壁層の損傷は認められなかつた。
Next, when the cross section of this line was observed under a microscope, as shown in Figure 2, a superconducting compound of about 1.3μ was found at the interface between the Cu-Sn alloy layer 1 and each Nb filament 2.
Nb 3 Sn was formed. Also, the partition layer 3 of Ta,
In order to confirm the soundness of the high-purity copper layers 4 and 4', a constant current is applied at regular intervals while this wire is continuously fed, and the voltage change during that time is measured. Although changes were investigated, no areas where the resistance value increased were found over the entire length. Therefore, it was found that the Ta partition layers 3 and 3' were not damaged during processing and successfully achieved their purpose. Furthermore, samples were taken every 500 m along this 5,000 m line to actually inspect the Ta barrier rib layers 3 and 3', but no damage to the barrier rib layers was observed in either case.

なお、以上の化合物複合超電導体の説明では、
その断面形状が円形のものについて説明したが、
本発明の化合物複合超電導体は断面円形に限ら
ず、断面形状が矩形、三角形の如くいかなる形状
でもよいことは言うまでもない。
In addition, in the above explanation of the compound composite superconductor,
I explained that the cross-sectional shape is circular,
It goes without saying that the compound composite superconductor of the present invention is not limited to a circular cross-section, and may have any cross-sectional shape such as a rectangle or a triangle.

以上の如く、本発明は、化合物複合超電導体に
おいて安定化金属層とキヤリアー金属層との界面
に設けられていた従来の隔壁層の他にこの第1の
隔壁層の近傍に第2の隔壁層を設けることによつ
て塑性加工時の隔壁層の破損等の損傷を事実上皆
無となし、その結果安定化金属層の高純度を保持
したものである。
As described above, the present invention provides a compound composite superconductor in which, in addition to the conventional barrier layer provided at the interface between the stabilizing metal layer and the carrier metal layer, a second barrier layer is provided in the vicinity of the first barrier layer. By providing this, damage such as breakage of the partition layer during plastic working is virtually eliminated, and as a result, the high purity of the stabilizing metal layer is maintained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aは従来の化合物複合超電導体の拡散反
応前の複合体の横断面図、第1図bは第1図aに
示す複合体を伸線したものを拡散反応して得た従
来の化合物複合超電導体の横断面図、第2図〜第
5図はいずれも本発明の化合物複合超電導体の
種々の実施例の横断面図、第6図は第2図に示す
化合物複合超電導体の拡散反応前の複合体の横断
面図である。 1,1′……金属元素(A)とキヤリアー金属との
合金層、2……金属元素(B)のフイラメント、3…
…第1の隔壁層、3′……第2の隔壁層、4,
4′……安定化金属層、5……超電導化合物層。
Figure 1a is a cross-sectional view of a conventional compound composite superconductor before diffusion reaction, and Figure 1b is a cross-sectional view of a conventional compound composite superconductor obtained by diffusion reaction of the wire-drawn composite shown in Figure 1a. 2 to 5 are cross-sectional views of various embodiments of the compound composite superconductor of the present invention, and FIG. 6 is a cross-sectional view of the compound composite superconductor shown in FIG. 2. FIG. 3 is a cross-sectional view of the complex before diffusion reaction. 1, 1'... Alloy layer of metal element (A) and carrier metal, 2... Filament of metal element (B), 3...
...first barrier layer, 3'...second barrier layer, 4,
4'... Stabilizing metal layer, 5... Superconducting compound layer.

Claims (1)

【特許請求の範囲】 1 超電導化合物の構成元素の内、融点の低い方
の金属元素(A)を有するキヤリアー金属中に、上記
超電導化合物の構成元素の内、融点の高い方の金
属元素(B)のフイラメントとキヤリアー金属との界
面に、又は該フイラメントと置換してもとのフイ
ラメントの位置に上記超電導化合物を有し、上記
キヤリアー金属に接して安定化金属が設けられて
おり、かつキヤリアー金属と安定化金属との接す
る界面には、上記金属元素(A)、キヤリアー金属及
び安定化金属のいずれとも反応しない金属からな
る第1の隔壁層が介在する化合物複合超電導体に
おいて、第1の隔壁層の近傍に、上記金属元素
(A)、キヤリアー金属及び安定化金属のいずれとも
反応しない金属からなる第2の隔壁層を有するこ
とを特徴とする化合物複合超電導体。 2 上記第2の隔壁層が第1の隔壁層の内側近傍
に位置することを特徴とする特許請求の範囲第1
項記載の化合物複合超電導体。 3 上記第2の隔壁層が第1の隔壁層の外側近傍
に位置することを特徴する特許請求の範囲第1項
記載の化合物複合超電導体。
[Scope of Claims] 1. A carrier metal containing a metal element (A) with a lower melting point among the constituent elements of the superconducting compound, and a metal element (B) with a higher melting point among the constituent elements of the superconducting compound. ) has the superconducting compound at the interface between the filament and the carrier metal or at the original position of the filament by replacing the filament, and a stabilizing metal is provided in contact with the carrier metal, and the carrier metal In a compound composite superconductor, a first barrier layer made of a metal that does not react with any of the metal element (A), the carrier metal, and the stabilizing metal is interposed at the interface between the metal element (A), the carrier metal, and the stabilizing metal. In the vicinity of the layer, the above metal elements
(A) A compound composite superconductor characterized by having a second partition layer made of a metal that does not react with either a carrier metal or a stabilizing metal. 2. Claim 1, wherein the second partition layer is located near the inside of the first partition layer.
The compound composite superconductor described in Section 1. 3. The compound composite superconductor according to claim 1, wherein the second barrier layer is located near the outside of the first barrier layer.
JP8268778A 1978-07-07 1978-07-07 Compound superconductor Granted JPS5510726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8268778A JPS5510726A (en) 1978-07-07 1978-07-07 Compound superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8268778A JPS5510726A (en) 1978-07-07 1978-07-07 Compound superconductor

Publications (2)

Publication Number Publication Date
JPS5510726A JPS5510726A (en) 1980-01-25
JPS6219004B2 true JPS6219004B2 (en) 1987-04-25

Family

ID=13781321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8268778A Granted JPS5510726A (en) 1978-07-07 1978-07-07 Compound superconductor

Country Status (1)

Country Link
JP (1) JPS5510726A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020070820A1 (en) * 2018-10-03 2020-04-09 オリンパス株式会社 Power supply device for endoscopes

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0310666A4 (en) * 1987-04-21 1989-06-27 Nobuhiko Iwasa Wave dissipating caisson and producing method thereof.
US5127149A (en) * 1990-02-26 1992-07-07 Advanced Superconductors, Inc. Method of production for multifilament niobium-tin superconductors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020070820A1 (en) * 2018-10-03 2020-04-09 オリンパス株式会社 Power supply device for endoscopes

Also Published As

Publication number Publication date
JPS5510726A (en) 1980-01-25

Similar Documents

Publication Publication Date Title
US3958327A (en) Stabilized high-field superconductor
US3838503A (en) Method of fabricating a composite multifilament intermetallic type superconducting wire
US6543123B1 (en) Process for making constrained filament niobium-based superconductor composite
US4665611A (en) Method of fabricating superconductive electrical conductor
US4205119A (en) Wrapped tantalum diffusion barrier
US6918172B2 (en) Process for manufacturing Nb3Sn superconductor
US3509622A (en) Method of manufacturing composite superconductive conductor
US3778894A (en) PROCESS FOR MAKING A V{11 Ga SUPERCONDUCTIVE COMPOSITE STRUCTURE
US4224735A (en) Method of production multifilamentary intermetallic superconductors
JPH06338228A (en) Compound superconducting wire and manufacture thereof
US4135293A (en) Superconducting members and methods of manufacturing thereof
US20020020051A1 (en) Constrained filament niobium-based superconductor composite and process of fabrication
EP1556906B1 (en) Constrained filament niobium-based superconductor composite and process of fabrication
JPS6219004B2 (en)
US4153986A (en) Method for producing composite superconductors
US4285740A (en) Wrapped tantalum diffusion barrier
US3996662A (en) Method for the manufacture of a superconductor having an intermetallic two element compound
EP0357657A1 (en) Fabrication methods of ceramic superconducting composite wires
US3763553A (en) Method of fabricating intermetallic type superconductors
US3437459A (en) Composite superconductor having a core of superconductivity metal with a nonsuperconductive coat
US4860431A (en) Fabrication of multifilament intermetallic superconductor using strengthened tin
JP3061630B2 (en) Method for producing superconducting wire made of Nb (3) Sn compound
RU2815890C1 (en) Blank for producing long superconducting wire based on nb3sn
JPS602728B2 (en) Method for manufacturing compound composite superconductor
JPH063691B2 (en) Copper-coated ΝbTi superconducting wire