JPS62189777A - Gas laser oscillator - Google Patents
Gas laser oscillatorInfo
- Publication number
- JPS62189777A JPS62189777A JP3072286A JP3072286A JPS62189777A JP S62189777 A JPS62189777 A JP S62189777A JP 3072286 A JP3072286 A JP 3072286A JP 3072286 A JP3072286 A JP 3072286A JP S62189777 A JPS62189777 A JP S62189777A
- Authority
- JP
- Japan
- Prior art keywords
- laser
- discharge
- cathode
- shape
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 44
- 230000001154 acute effect Effects 0.000 claims description 5
- 230000010355 oscillation Effects 0.000 abstract description 16
- 230000005284 excitation Effects 0.000 description 13
- 230000007423 decrease Effects 0.000 description 3
- 230000000087 stabilizing effect Effects 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/02—Constructional details
- H01S3/03—Constructional details of gas laser discharge tubes
- H01S3/038—Electrodes, e.g. special shape, configuration or composition
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Lasers (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明はレーザ光軸、放電、ガス流の方向力℃互いに直
角に構成されている横流型ガスレーザ発振器に係り、特
にレーザ出力の大小に依らず、一定の発振モードが得ら
れるにしたガスレーザ発振器に関する。[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a cross-flow gas laser oscillator in which the directional forces of a laser optical axis, a discharge, and a gas flow are perpendicular to each other. The present invention relates to a gas laser oscillator that can obtain a constant oscillation mode regardless of the magnitude of output.
(従来の技術)
一般に大出力の横流型ガスレーザ発振器におし)ては、
送風機によリレーザ媒質ガスを陰極及び陽極からなる放
電励起部に高速循環させて励起し。(Prior art) Generally speaking, in a high-output cross-flow gas laser oscillator,
A blower circulates and excites the laser medium gas at high speed through a discharge excitation section consisting of a cathode and an anode.
レーザ媒質ガスのガス流方向と直角方向に光軸を有する
光共振器によりレーザ出力を取り出している。この種の
横流型ガスレーザ発振器のうち放電方向が上記ガス流方
向及び上記光軸方向と互いに直交する放電励起部の例を
第3図(例えば、特公昭56−44595号公報に示さ
れた方式)に示す。第3図に示すように放電励起部↓は
、複数個に分割されたピン状の陰極2とこれに対抗配置
された一体形状の陽極3およびこの電極間に循環するレ
ーザ媒体ガスのガス流4の方向と直角方向に光軸を持つ
光共振器5a、 5bとで構成されている。また各分割
陰極2は放電安定化抵抗6を介して電源(図示せず)に
接続されている。レーザ媒質ガスとして程度の圧力で使
用する。又、放電励起部上を循環するレーザ媒質ガスの
ガス流4の速度は数10m八〜へ100m/、程度であ
る。動作時においては電源から上記陰極2陽極3間に数
1000V以上の高電圧が印加されてグロー放電7が発
生し、この放電エネルギーによってレーザ媒質ガスは励
起される。このとき光共振器5a、5bの作用によりレ
ーザ発振がおこリレーザ媒質ガスのガス流方向及び放電
方向と直角方向にレーザ出力8が得られる。即ち、これ
らの各方向は三軸直交を成している。Laser output is extracted by an optical resonator having an optical axis perpendicular to the gas flow direction of the laser medium gas. FIG. 3 shows an example of a discharge excitation part of this type of cross-flow type gas laser oscillator in which the discharge direction is orthogonal to the gas flow direction and the optical axis direction (for example, the system shown in Japanese Patent Publication No. 56-44595). Shown below. As shown in FIG. 3, the discharge excitation section ↓ consists of a pin-shaped cathode 2 divided into a plurality of parts, an integrally shaped anode 3 disposed opposite to the cathode 2, and a gas flow 4 of the laser medium gas circulating between the electrodes. It is composed of optical resonators 5a and 5b having optical axes perpendicular to the direction. Further, each divided cathode 2 is connected to a power source (not shown) via a discharge stabilizing resistor 6. It is used as a laser medium gas at a certain pressure. Further, the velocity of the gas flow 4 of the laser medium gas circulating above the discharge excitation part is about several tens of m/8 to 100 m/. During operation, a high voltage of several thousand volts or more is applied from the power supply between the cathode 2 and anode 3 to generate glow discharge 7, and the laser medium gas is excited by this discharge energy. At this time, laser oscillation occurs due to the action of the optical resonators 5a and 5b, and a laser output 8 is obtained in a direction perpendicular to the gas flow direction and discharge direction of the laser medium gas. In other words, these directions are perpendicular to the three axes.
(発明が解決しようとする問題点)
第3図に示した従来の検流型ガスレーザ発振器において
は、レーザ出力8の発振しきい値数電電力から最大レー
ザ出力の得られる放電電力までの間で放電電力を変化さ
せると、グロー放電7の点弧範囲は主としてレーザ媒質
のガス流4の方向に増減する。この際レーザ媒質のガス
流4方向と直交する方向すなわち光共振器5a、 5b
光軸8と平行な方向には、グロー放電7の点弧範囲は差
程変化しない、一般に光共振器5a、 5bの光軸8は
、レーザ出力が最大となり且つ空間的強度分布の対称性
が良好となるようにその位置が決定されているが。(Problems to be Solved by the Invention) In the conventional galvanometric gas laser oscillator shown in FIG. By varying the discharge power, the ignition range of the glow discharge 7 increases or decreases primarily in the direction of the gas flow 4 of the laser medium. At this time, the direction perpendicular to the four gas flow directions of the laser medium, that is, the optical resonators 5a and 5b
In the direction parallel to the optical axis 8, the ignition range of the glow discharge 7 does not change much. Generally, the optical axis 8 of the optical resonators 5a, 5b is the one where the laser output is maximum and the spatial intensity distribution is symmetrical. Its location has been determined to be in good condition.
第4図に示すように放電電力にともなってグロー放電の
点弧範囲のピーク位置が主としてレーザ媒質ガスのガス
流方向4に変化する場合には光共振器5a、 5bの最
適な光軸位置8も主としてレーザ媒質ガスのガス流方向
に変化する。然るに、第3図に示される光共振器5a、
5bは放電励起部上の両側に固定配置されているため
光共振器5a、 5bの光軸は一定位置である。このた
めレーザ出力O近傍より最大レーザ出力の範囲でレーザ
発振モードが変化したリレーザ発振効率が低下するとい
った問題が生じていた。とくに放電電力を時間的に変化
させパルス状のレーザ出力を得るいわゆるパルス運転時
には、パルスの1周期間に上記の問題が生じ。As shown in FIG. 4, when the peak position of the ignition range of glow discharge changes mainly in the gas flow direction 4 of the laser medium gas with the discharge power, the optimum optical axis position 8 of the optical resonators 5a and 5b is determined. Also changes mainly in the gas flow direction of the laser medium gas. However, the optical resonator 5a shown in FIG.
Since the optical resonators 5b are fixedly arranged on both sides of the discharge excitation section, the optical axes of the optical resonators 5a and 5b are at fixed positions. For this reason, a problem has arisen in that the relay laser oscillation efficiency, in which the laser oscillation mode changes from the vicinity of the laser output O to the maximum laser output range, decreases. In particular, during so-called pulse operation in which the discharge power is changed over time to obtain a pulsed laser output, the above-mentioned problem occurs during one pulse period.
レーザ出力の発振モードの安定性に問題があった。There was a problem with the stability of the oscillation mode of the laser output.
さらに、レーザ発振モードが変化すると光共振器、5a
、 5bを構成する反射鏡の熱負荷が変化するためレー
ザ光が所定の方向からずれて光共振器5a、 5bの安
定性が低下する場合があった。Furthermore, when the laser oscillation mode changes, the optical resonator, 5a
, 5b changes, the laser beam may deviate from a predetermined direction and the stability of the optical resonators 5a, 5b may deteriorate.
そこで1本発明はレーザ出力の大小によらず。Therefore, the present invention does not depend on the magnitude of the laser output.
安定なモードで発振可能な検流型ガスレーザ発振器を提
供することを目的とする。The purpose of this invention is to provide a galvanometric gas laser oscillator that can oscillate in a stable mode.
(問題点を解決するための手段)
上記目的を達成するために、本発明は光共振器5a、
5b光軸方向に分割した陰極2を上記光軸8と平行にレ
ーザ光方向とは逆方向に折れ曲ったL字形の電極からな
る負グロー点弧部を備えたことを特徴とする。(Means for solving the problem) In order to achieve the above object, the present invention provides an optical resonator 5a,
5b The cathode 2 divided in the optical axis direction is provided with a negative glow ignition part made of an L-shaped electrode bent parallel to the optical axis 8 and in a direction opposite to the laser beam direction.
(作 用)
以上のように放電励起部を構成すると、放電電力にとも
なって変化する放電励起範囲の変化方向を先具振器光軸
方向と平行にさせることができ。(Function) By configuring the discharge excitation section as described above, the direction of change in the discharge excitation range that changes with discharge power can be made parallel to the optical axis direction of the tip shaker.
放flfr1力を変化させた場合にも光弁振器光軸と直
交する方向の放電励起分布は変化しないのでレーザ発振
モードがレーザ出力の大小によらず一定となる。Even when the emitted flfr1 force is changed, the discharge excitation distribution in the direction perpendicular to the optical axis of the light valve oscillator does not change, so the laser oscillation mode remains constant regardless of the magnitude of the laser output.
(実施例の構成)
以下に図面に示した一実施例を用いて本発明の説明を行
う。(Configuration of Example) The present invention will be explained below using an example shown in the drawings.
第1゛図は本発明の一実施例で、横流型ガスレーザ発振
器の概略構成を示す斜視図である。レー゛ザ風洞9内に
は放電励起部よと、熱交換器10及び送風機11がレー
ザ媒質ガスが循環されるように配置されている。放電励
起部上の内部にはL字形を成すビン状の分割陰極2と板
状の陽極3とが対向配置されており、各分割陰極2は放
電安定化抵抗6を介して図示していない電源に夫々接続
されている。光共振器5・、5bは放1i@起部圭の両
側に固定配置されている。第2図を用いて放電励起部上
を詳細に説明すると陰極2は直径数m−程度のピン状陰
極で耐熱性、耐スパツタリング性に優れたモリブデン、
タングステン等の材料で構成され絶縁板12に取り付け
られている。また陰極2のL字形電極13端部に設けた
鋭角部14を光共振器5a、 5b光軸8と平行な方向
向けている。L字形電極部ち負グロー点弧部13は陽極
3と平行に配置され且つ光共振器5a、 5bの光軸及
びレーザ出力8と平行である。FIG. 1 is a perspective view showing a schematic configuration of a cross-flow type gas laser oscillator, which is an embodiment of the present invention. In the laser wind tunnel 9, a discharge excitation section, a heat exchanger 10, and a blower 11 are arranged so that the laser medium gas is circulated. Inside the discharge excitation section, an L-shaped bottle-shaped divided cathode 2 and a plate-shaped anode 3 are arranged facing each other, and each divided cathode 2 is connected to a power source (not shown) via a discharge stabilizing resistor 6. are connected to each other. The optical resonators 5 and 5b are fixedly arranged on both sides of the radiator 1i@Oibe Kei. To explain the discharge excitation part in detail using FIG. 2, the cathode 2 is a pin-shaped cathode with a diameter of several meters, made of molybdenum with excellent heat resistance and sputtering resistance.
It is made of a material such as tungsten and is attached to an insulating plate 12. Further, the acute angle portion 14 provided at the end of the L-shaped electrode 13 of the cathode 2 is oriented in a direction parallel to the optical axis 8 of the optical resonators 5a, 5b. The L-shaped electrode part or negative glow ignition part 13 is arranged parallel to the anode 3 and parallel to the optical axes of the optical resonators 5a, 5b and the laser output 8.
陰極上の負グロー点弧部13の形状は最大放電入力時に
必要な負グロー面積を確保できる径及び長さとしている
。負グロー面積は放電電流値の関数であるが同一電流値
においてもガス成分、ガス圧力。The shape of the negative glow ignition part 13 on the cathode is set to a diameter and length that can ensure the necessary negative glow area at the time of maximum discharge input. The negative glow area is a function of the discharge current value, but even at the same current value it changes depending on the gas component and gas pressure.
ガス流速等に影響されるので陰極形状の決定に当たって
は、放電パラメータの諸条件を考慮して行われる。Since the cathode shape is affected by gas flow rate, etc., various discharge parameter conditions are taken into consideration when determining the cathode shape.
(実施例の作用)
次に上記第1図及び第2図に示す実施例の構成における
動作について説明する。(Operation of the embodiment) Next, the operation of the structure of the embodiment shown in FIGS. 1 and 2 will be described.
一般的なレーザ発振動作は上述した第3図に示二従来例
。も、7)2Iii1様1、陰極2゜19極、4ユ数1
000V以上の高電圧が印加されてグロー放電7が発生
し、この放電エネルギーによってレーザ媒質ガスは励起
される。このとき光共振器5a、 5bの作用によりレ
ーザ発振がおこリレーザ媒質ガスのガス流方向及び放電
方向と直角方向にレーザ出力8が得られる。またレーザ
媒質ガスを熱交換器10によって冷却し、さらに送風機
11の作用で高速循環させることによってグロー放電7
の放電エネルギーによる陰極2陽極3間のガス温度上昇
を100℃程度に抑えレーザ発振を効率よく行わせてい
る。A typical laser oscillation operation is shown in FIG. 3, which is a conventional example. Also, 7) 2Iii1 like 1, cathode 2゜19 pole, 4 U number 1
A high voltage of 000V or more is applied to generate glow discharge 7, and the laser medium gas is excited by this discharge energy. At this time, laser oscillation occurs due to the action of the optical resonators 5a and 5b, and a laser output 8 is obtained in a direction perpendicular to the gas flow direction and discharge direction of the laser medium gas. In addition, the laser medium gas is cooled by the heat exchanger 10 and further circulated at high speed by the action of the blower 11, so that the glow discharge 7
The gas temperature rise between the cathode 2 and anode 3 due to the discharge energy is suppressed to about 100° C., and laser oscillation is performed efficiently.
本実施例においては、陰極2および陽極3間に高電圧が
印加されると安定化抵抗6の作用によって各分割陰極2
毎にグロー放電7が生ずる。レーザ発振しきい値前後の
放電電力では陰極1本当りの放電電流値は小さい。この
ためグロー放電部に荷電粒子を供給する負グロー面積は
小さく第2図に示した負グロー点弧部13上の一部にの
み点弧するだけである。第2図では各陰極2の一箇所非
支持側端14を鋭角に加工しているのでこの部分の電界
強度は他の陰極上の部分よりも大きく陰極先端部にのみ
負グローが点弧する。しかし鋭角加工する箇所を複数に
すると負グローの安定性が低下する。グロー放電領域は
第1図に示すようにガス流4の作用によってガス流下流
方向に広がった形状をしている。最大レーザ出力発振時
では、放電電力を大きく陰極1本当りの放電電流値も太
きb4のので陰極2上の負グロー面積も大きい、この場
合は第2図に示した負グロー点弧範囲13全面にわたっ
て負グローが点弧する。グロー放電領域はガス流4の作
用によってガス流下流方向に広がった形状となるが、第
5図に示すように放電電力の低い場合と比較すると負グ
ロー面積は陰極2の負グロー点弧部13上を光軸8と平
行方向に増加するので光軸8と平行方向の放電密度は増
加しているが。In this embodiment, when a high voltage is applied between the cathode 2 and the anode 3, each divided cathode 2
A glow discharge 7 occurs each time. At discharge power around the laser oscillation threshold, the discharge current value per cathode is small. Therefore, the negative glow area for supplying charged particles to the glow discharge section is small and ignition occurs only on a portion of the negative glow ignition section 13 shown in FIG. 2. In FIG. 2, the unsupported side end 14 of each cathode 2 is machined to have an acute angle in one place, so that the electric field strength at this part is greater than that on the other cathodes, and a negative glow is ignited only at the cathode tip. However, if a plurality of locations are formed with acute angles, the stability of the negative glow decreases. As shown in FIG. 1, the glow discharge area has a shape that expands in the downstream direction of the gas flow due to the action of the gas flow 4. At the time of maximum laser output oscillation, the discharge power is increased and the discharge current value per cathode is also large (b4), so the negative glow area on the cathode 2 is also large. In this case, the negative glow ignition range 13 shown in FIG. A negative glow ignites over the entire surface. The glow discharge area has a shape that expands in the downstream direction of the gas flow due to the action of the gas flow 4, but as shown in FIG. Since the upper part increases in the direction parallel to the optical axis 8, the discharge density in the direction parallel to the optical axis 8 increases.
光軸8と直角方向即ちガス流4の放電分布は変化してい
ない、このため光共振器5a、 5b光軸8と直交する
方向の放電励起分布は変化しない0本実施例では陰極2
を分割して配置しているため電流値の時間的変化に対す
る負グロー面積の追随性が良く、以上述べてきた現像は
放電電力を時間的に高速変化させるパルス運転動作時で
も同様に見られている。The discharge distribution in the direction perpendicular to the optical axis 8, that is, the discharge distribution of the gas flow 4, does not change. Therefore, the discharge excitation distribution in the direction perpendicular to the optical axis 8 of the optical resonators 5a, 5b does not change. In this embodiment, the cathode 2
Because the area is divided and arranged, the negative glow area follows the temporal changes in the current value well, and the development described above can be observed even during pulse operation where the discharge power changes rapidly over time. There is.
以上述べてきたように、本発明においては放電電力を変
化させた場合にグロー放電の点弧範囲は光共振器の光軸
と平行な方向に変化するため、先兵振器光軸と直交する
方向のレーザ発振の空間的利得分布は一定であり、レー
ザ出力の大小に依らず一定の発振モードがえられる。さ
らに、パルス運転動作時における発振モードも良好とな
る横流型ガスレーザ発振器を提供することができる。As described above, in the present invention, when the discharge power is changed, the ignition range of the glow discharge changes in a direction parallel to the optical axis of the optical resonator. The spatial gain distribution of the laser oscillation is constant, and a constant oscillation mode can be obtained regardless of the magnitude of the laser output. Furthermore, it is possible to provide a cross-flow type gas laser oscillator that has a good oscillation mode during pulse operation.
の要部拡大図、第3図は従来装置の要部斜視図、第4図
は第3図の陰極部拡大説明図、第5図は第1図の陰極部
拡大説明図である。3 is a perspective view of the main part of the conventional device, FIG. 4 is an enlarged explanatory view of the cathode part of FIG. 3, and FIG. 5 is an enlarged explanatory view of the cathode part of FIG. 1.
1:放電励起部、 2:陰極、
3:陽極、 4:ガス流、5a、5b:光
共振器、 6:放電安定化抵抗、7:グロー放電、
8:レーザ出力。1: Discharge excitation part, 2: Cathode, 3: Anode, 4: Gas flow, 5a, 5b: Optical resonator, 6: Discharge stabilizing resistor, 7: Glow discharge,
8: Laser output.
13:負グロー点弧部、 14:鋭角部。13: Negative glow ignition part, 14: Acute angle part.
代理人 弁理士 則 近 憲 佑 同 三俣弘文 第1図 第2図 第 3 図 第4tl¥I 第5図Agent: Patent Attorney Noriyuki Chika Same as Hirofumi Mitsumata Figure 1 Figure 2 Figure 3 4th tl¥I Figure 5
Claims (3)
電極列を配置し、かつ陽極・陰極間にそれに直交する方
向にガスを流通させるようにした横流型ガスレーザ発掘
器において、前記陰極は前記レーザ光軸と平行に負グロ
ー点弧部を備えたことを特徴とするガスレーザ発振器。(1) In a cross-flow gas laser excavator in which an electrode array consisting of an anode and a plurality of cathodes is arranged parallel to the laser optical axis, and gas is caused to flow between the anode and the cathode in a direction perpendicular thereto, the cathode The gas laser oscillator is characterized in that it includes a negative glow ignition part parallel to the laser optical axis.
折れ曲ったL字形の電極であることを特徴とする特許請
求の範囲第1項記載のガスレーザ発振器。(2) The gas laser oscillator according to claim 1, wherein the negative glow ignition part is an L-shaped electrode bent in a direction opposite to the direction of the laser beam.
角部に形成されていることを特徴とする特許請求の範囲
第2項記載のガスレーザ発掘器。(3) The gas laser excavator according to claim 2, wherein the tip of the L-shaped electrode is formed at an acute angle with an internal angle of 90 degrees or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3072286A JPS62189777A (en) | 1986-02-17 | 1986-02-17 | Gas laser oscillator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3072286A JPS62189777A (en) | 1986-02-17 | 1986-02-17 | Gas laser oscillator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62189777A true JPS62189777A (en) | 1987-08-19 |
Family
ID=12311540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3072286A Pending JPS62189777A (en) | 1986-02-17 | 1986-02-17 | Gas laser oscillator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62189777A (en) |
-
1986
- 1986-02-17 JP JP3072286A patent/JPS62189777A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4841538A (en) | CO2 gas laser device | |
US4080578A (en) | D.C. Excitation of high pressure gas lasers | |
JPS62189777A (en) | Gas laser oscillator | |
JPH0373151B2 (en) | ||
JPH06105812B2 (en) | High-speed axial laser oscillator | |
US4740980A (en) | Gas laser device | |
JPS62199081A (en) | Gas laser oscillator | |
JPS63216394A (en) | Co2 gas laser equipment | |
JPS631086A (en) | Gas laser oscillator | |
JPS6281781A (en) | Carbon dioxide laser device | |
JPH03248583A (en) | Gas laser oscillator | |
JPS5917986B2 (en) | gas laser equipment | |
JPS639177A (en) | Gas laser oscillator | |
JPH0626269B2 (en) | Gas laser device | |
JPS62214685A (en) | Discharger for gas laser oscillator | |
JPS5855653Y2 (en) | gas laser equipment | |
JPS62213182A (en) | Gas laser device | |
RU2146409C1 (en) | Transverse-flow electrooptical laser unit | |
JPS5848487A (en) | Gas laser oscillator | |
JPH02260583A (en) | Laser oscillator | |
JPS62213181A (en) | Co2 gas laser device | |
JPS6341233B2 (en) | ||
JPH0661558A (en) | Gas laser device | |
JPS6295884A (en) | gas laser oscillator | |
JPS6328086A (en) | Gas laser oscillator |