[go: up one dir, main page]

JPS62187131A - Method for preparing base material for quartz optical fiber - Google Patents

Method for preparing base material for quartz optical fiber

Info

Publication number
JPS62187131A
JPS62187131A JP2601186A JP2601186A JPS62187131A JP S62187131 A JPS62187131 A JP S62187131A JP 2601186 A JP2601186 A JP 2601186A JP 2601186 A JP2601186 A JP 2601186A JP S62187131 A JPS62187131 A JP S62187131A
Authority
JP
Japan
Prior art keywords
base material
alkoxide
optical fiber
hollow porous
sol solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2601186A
Other languages
Japanese (ja)
Inventor
Makoto Shimizu
誠 清水
Yasuji Omori
保治 大森
Fumiaki Hanawa
文明 塙
Shuichi Shibata
修一 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2601186A priority Critical patent/JPS62187131A/en
Publication of JPS62187131A publication Critical patent/JPS62187131A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/016Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by a liquid phase reaction process, e.g. through a gel phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/32Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/40Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • C03B2201/42Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn doped with titanium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To prepare a high-quality base material for quartz optical fiber by filling the sol liquid of metallic alkoxide in a hollow porous vessel consisting of the fine glass particles and hydrolyzing it to gelatinize it and thereafter dehydrating all parts and making these transparent. CONSTITUTION:A hollow porous base material 41 consisting of the fine glass particles is formed by a vapor phase synthetic method. An alkoxide sol liquid wherein metallic alkoxide, water and alcohol are made to an essential component is filled in the hollow part of the above-mentioned base material 41. As the above-mentioned metallic alkoxide, one or more kinds of Si(OR)4 (where R is alkyl group) and Ge(OR)4, Sn(OR)4, Pb(OR)2, Al(OR)3, Sb(OR)4, Ti(OR)4, Nd(OR)3, Er(OR)3 and Tb(OR)3 are suitably used. The above-mentioned alkoxide sol liquid is hydrolyzed to gelatinize it and thereafter dried. The porous base material 45 obtained thereby is introduced into a reactor core pipe 42 made of quartz and heated in the atmosphere mixed with He, Cl2 and O2, and all parts are dehydrated and made transparent. Thereby the base material for optical fiber contg. a dopant material such as Ge is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、スート・プロセスとゾル・ゲル法の両者の利
点を合わせて用いることにより、高品質な石英系光ファ
イバ用母材を作製する方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention combines the advantages of both the soot process and the sol-gel method to produce a high-quality silica-based optical fiber base material. It is about the method.

[従来の技術] 従来、高品質な石英系光ファイバ用母材を作製する方法
としては、外付は法(OVD法)や気相軸付は法(VA
D法)に代表される気相合成法と、金属アルコキシドを
加水分解してガラスを作製するゾル・ゲル法とがある。
[Conventional technology] Conventionally, methods for producing high-quality silica-based optical fiber base materials include the external method (OVD method) and the vapor phase shaft method (VA method).
There are two methods: a gas phase synthesis method, typified by Method D), and a sol-gel method, in which glass is produced by hydrolyzing metal alkoxides.

外付は法では、出発棒周囲に火炎加水分解法により合成
したガラス微粒子を堆積させ、次いで出発棒を除去した
多孔質体をガラス化処理する中空の多孔質母材を脱水・
透明化、すなわち透明ガラス化する際に、屈折率制御用
に多孔質母材に添加したGeO2等のドーパントが揮散
するので、コア中心部に屈折率のくぼみ(ディップ)が
生じてしまうという欠点がある。
In the external method, glass fine particles synthesized by flame hydrolysis are deposited around the starting rod, and then the porous body from which the starting rod is removed is vitrified.The hollow porous matrix is dehydrated and
When making it transparent, that is, making it transparent vitrification, dopants such as GeO2 added to the porous base material for refractive index control volatilize, resulting in a dip in the refractive index at the center of the core. be.

気相軸付は法においては、軸方向に多孔質母材を成長す
るので、屈折率分布の精密な制御、特に完全なステップ
型の屈折率分布の形成が難しいという欠点がある。
In the vapor phase axial growth method, since a porous base material is grown in the axial direction, it is difficult to precisely control the refractive index distribution, especially to form a complete step-type refractive index distribution.

さらにまた、これら気相合成法に共通の問題点として、
原料を気相で供給して、組成の異なるガラス微粒子を火
炎加水分解反応によりコア・クラッド構造を形成するよ
うに堆積させるので、作製できるガラス材料が限定され
、高融点原料(NdCIL3 、ErCj! 3など)
を使用できないという欠点がある。さらにまた、ガラス
材料として、石英ガラスより高ヤング率であり、屈折率
も高いなどの物性上の利点から、コア材料としての適用
が考えられるSiOxNy (オキシナイトライドガラ
ス、O<x<2 0<y<473 )の合成は、前述の
外付は法や気相軸付は法では困難である。
Furthermore, as a common problem with these vapor phase synthesis methods,
Since the raw materials are supplied in a gas phase and glass fine particles with different compositions are deposited to form a core-clad structure through a flame hydrolysis reaction, the glass materials that can be manufactured are limited, and high melting point raw materials (NdCIL3, ErCj!3) are used. Such)
The disadvantage is that it cannot be used. Furthermore, as a glass material, SiOxNy (oxynitride glass, O<x<20<y<473) is difficult to synthesize using the above-mentioned external method or vapor phase method.

これに対して、ゾル・ゲル法では、金属アルコキシドの
加水分解反応と脱水縮合反応とにより多孔質ガラス母材
を作製するのであるから、気相合成法では使用不可能で
あった希土類原料の使用が可能となるため、幅広いドー
パント材料を含む石英系光ファイバの合成が可能となる
。ざらに、金属アルコキシドとして例えばS i (O
CH3) 4とSi(OChh CH3の混合物を用い
、ガラス化する際にN113中で処理することによりS
iOxNy (オキシナイトライドガラス)の合成も可
能であることが報告されている。
On the other hand, in the sol-gel method, a porous glass base material is produced through a hydrolysis reaction and a dehydration condensation reaction of metal alkoxides, so rare earth raw materials, which cannot be used in the gas phase synthesis method, can be used. This makes it possible to synthesize silica-based optical fibers containing a wide variety of dopant materials. In general, metal alkoxides such as S i (O
Using a mixture of CH3) 4 and Si (OChh CH3, S by treatment in N113 during vitrification
It has been reported that it is also possible to synthesize iOxNy (oxynitride glass).

t /I\ また、ゾル液組成の制御(特に9Hの制御)によりガラ
ス微粒子の精糸やゲル化後の乾燥工程での堆積変化等を
任意に定めることができる。現在、ゾル・ゲル法により
純石英ガラスよりなるコアを合成し、その外側に外付は
法によりフッ素添加石英ガラスより成るクラッドを形成
する方法で2 dB/kmの最低伝送損失値をもつ光フ
ァイバの作製が実現された。
t /I\ In addition, by controlling the sol composition (in particular, controlling 9H), it is possible to arbitrarily determine the fine fibers of glass particles and the deposition change in the drying process after gelation. Currently, optical fibers with a minimum transmission loss value of 2 dB/km have been developed by synthesizing a core made of pure silica glass using the sol-gel method, and forming an external cladding made of fluorine-doped silica glass using the sol-gel method. was realized.

しかし、その反面、ゲル化直後の多孔質体は非常に軟か
ぐ、しかも乾燥時のゲル体の収縮が大きいことなどに起
因してコア・クラッド界面でのゲル体の割れが生じるこ
とにより、コア・クラッド構造を有する母材をゾル・ゲ
ル法のみで同時に合成することは困難であった。
However, on the other hand, the porous material is very soft immediately after gelling, and the gel material shrinks greatly during drying, which can cause cracks in the gel material at the core-clad interface.・It was difficult to simultaneously synthesize a base material with a clad structure using only the sol-gel method.

[発明が解決しようとする問題点] そこで、本発明の目的は、高品質な母材を高効率で作製
でき、かつ幅広く種々のドーパント材料を添加すること
が可能というゾル・ゲル法の利点を活かすと共に、ゲル
化後の母材を支持する構造物として、気相合成法による
中空の多孔質母材を使用し、かつガラス化後にクラッド
部として用いることにより、従来のゾル・ゲル法では困
難であったコア・クラッドの一体形成を可能とし、さら
に気相合成法では困難であった完全なステップ状屈折率
分布の形成と各種のドーパント材料の添加が可能な石英
系光ファイバ用母材の作製方法を提供することにある。
[Problems to be Solved by the Invention] Therefore, the purpose of the present invention is to exploit the advantages of the sol-gel method in that it is possible to produce a high-quality base material with high efficiency and to add a wide variety of dopant materials. In addition, by using a hollow porous base material produced by vapor phase synthesis as a structure to support the base material after gelation, and using it as a cladding part after vitrification, it is possible to overcome problems that would be difficult to achieve using the conventional sol-gel method. We have developed a base material for silica-based optical fibers that enables the integral formation of the core and cladding, which was previously difficult to achieve, as well as the formation of a complete step-like refractive index distribution and the addition of various dopant materials, which was difficult with vapor phase synthesis. The object of the present invention is to provide a manufacturing method.

[問題点を解決するための手段] このような目的を達成するために、本発明では、クラッ
ド部に気相合成法による中空の多孔質母材を使用し、そ
の中空部にゾル・ゲル法によりコア部を作製する。
[Means for Solving the Problems] In order to achieve such an object, the present invention uses a hollow porous base material produced by a vapor phase synthesis method in the cladding part, and a hollow porous base material produced by a sol-gel synthesis method in the hollow part. A core part is prepared by.

すなわち、本発明は、ガラス微粒子からなる中空の多孔
質容器を形成し、その多孔質容器の中空部に金属アルコ
キシド、水、アルコールを主成分とするアルコキシド・
ゾル液を充填してから、その充填されているゾル溶液を
加水分解反応によりゲル化させ、そのゲル化した全体を
脱水・透明化する。
That is, the present invention forms a hollow porous container made of glass fine particles, and fills the hollow part of the porous container with an alkoxide containing metal alkoxide, water, and alcohol as main components.
After filling the sol solution, the filled sol solution is gelled by a hydrolysis reaction, and the gelled whole is dehydrated and made transparent.

ここで、金属アルコキシドとして、Si(OR)4(但
し、Rはアルキル基を示す)、および、(Ge(OR)
4 、Sn(OR)4 、 Pb(OR)2 、AJZ
 (OR)3 。
Here, the metal alkoxides include Si(OR)4 (wherein R represents an alkyl group) and (Ge(OR)
4, Sn(OR)4, Pb(OR)2, AJZ
(OR)3.

5b(OR)4 、 Ti(OR)z 、 Nd(OR
)3. Er(OR)3゜Tb (OR) 3よりなる
アルコキシド化合物のうち少なくとも1種類以上を含む
のが好適である。ここで示したアルコキシド化合物は、
ゲル化し脱水透明化したときの屈折率を高めるためのド
ーパントとなる物質である。
5b(OR)4, Ti(OR)z, Nd(OR
)3. It is preferable that at least one kind of alkoxide compound consisting of Er(OR)3°Tb(OR)3 is included. The alkoxide compound shown here is
It is a substance that becomes a dopant to increase the refractive index when gelatinized and dehydrated to become transparent.

アルコキシド・ゾル液は、Si3N4微粒子を含有する
こともできる。
The alkoxide sol can also contain Si3N4 fine particles.

さらにまた、金属アルコキシドとして、5t(OR)4
とSi(OR)3Rとの混合物を使用し、アルコキシド
・ゾル液を中空多孔質母材に充填した後にゲル化し、次
いでNH3を含む雰囲気下でガラス化処理するのも好適
である。
Furthermore, as a metal alkoxide, 5t(OR)4
It is also suitable to use a mixture of Si(OR)3R and Si(OR)3R, fill a hollow porous matrix with an alkoxide sol solution, gel it, and then vitrify it in an atmosphere containing NH3.

本発明の第2の形態では、ガラス微粒子からなる中空の
多孔質容器を形成し、金属アルコキシド、水、アルコー
ルを主成分とし、金属アルコキシドとしてS 1(OR
) 4のみを含み、かつゲル化後の比表面積が中空多孔
質母材の比表面積より大きくなるように調製された、換
言すると、ガラス化処理時において、各種処理温度での
ゲル体のかさ密度が前記中空多孔質母材のかさ密度より
大きくなるように調整されたゾル液を、中空多孔質母材
の中空部に充填し、加水分解反応によりアルコキシド・
ゾル溶液をゲル化させ、そのゲル化した全体を、フッ素
を含む雰囲気中で脱水・透明化する。
In the second embodiment of the present invention, a hollow porous container made of glass particles is formed, and the main components are metal alkoxide, water, and alcohol, and the metal alkoxide is S 1 (OR
) 4 and prepared so that the specific surface area after gelation is larger than the specific surface area of the hollow porous base material, in other words, the bulk density of the gel body at various processing temperatures during vitrification treatment. A sol solution adjusted so that the bulk density is larger than the bulk density of the hollow porous base material is filled into the hollow part of the hollow porous base material, and alkoxide
The sol solution is gelled, and the gelled whole is dehydrated and made transparent in an atmosphere containing fluorine.

[作用] 本発明はコア・クラッド合成方法を分離したという点で
従来の技術とは異なる。
[Operation] The present invention differs from conventional techniques in that the core and cladding synthesis methods are separated.

本発明で用いる中空多孔質母材は、気相軸付は法により
かさ密度0.5〜1.5g/cm3の範囲で作製した多
孔質母材にドリル等で穴をあける方法、炭素や石英等の
棒のまわりに外付は法、気相軸付は法等によりガラス微
粒子を付着させた後に中心部の棒を引き抜く方法等によ
り作製できる。
The hollow porous base material used in the present invention can be prepared by drilling a hole in a porous base material with a bulk density of 0.5 to 1.5 g/cm3 using a method such as carbon or quartz. It can be produced by attaching glass particles around a rod on the outside by a method, or by attaching glass particles around a gas phase shaft by a method, etc., and then pulling out the rod at the center.

一方、アルコキシド・ゾル液を注入する容器として前述
の中空多孔質母材を用い、かつアルコキシド・ゾル液の
組成を制御することによってゲル化後の粒径を0.1μ
■程度と気相合成によるガラス微粒子と同程度とするこ
とで乾燥時のゲル体収縮とガラス化時のコア・クラッド
間の収縮率の差異による構造不整の形成を最小限にでき
るので、これにより、ゲル化乾燥時の収縮に伴う容器内
壁からの剥離を防止でき、また、ガラス化時に、外側多
孔質母材も収縮するため、ゲル体との界面に不整を生じ
ることなしに、クラッド部として用いることかできる。
On the other hand, by using the hollow porous base material described above as a container for injecting the alkoxide sol and controlling the composition of the alkoxide sol, the particle size after gelation was reduced to 0.1μ.
■By setting the degree of the glass particles to the same level as that of glass fine particles produced by vapor phase synthesis, it is possible to minimize the formation of structural irregularities due to the shrinkage of the gel body during drying and the difference in the shrinkage rate between the core and cladding during vitrification. , it is possible to prevent peeling from the inner wall of the container due to shrinkage during gel drying, and since the outer porous base material also shrinks during vitrification, it can be used as a cladding part without causing irregularities at the interface with the gel body. It can be used.

ゲル化・乾燥時にゲル体が剥離しない原因については、
ゾル液が注入後、中空多孔質母材内壁へわずかに浸透し
た状態でゲル化することによりコアとクラッド間の結合
を強固にすることが考えられる。
Regarding the reasons why the gel body does not peel off during gelation and drying,
It is conceivable that after the sol solution is injected, it slightly penetrates into the inner wall of the hollow porous matrix and gels, thereby strengthening the bond between the core and the cladding.

本発明によれば、コア部とクラッド部を別個に作り、さ
らにコア部をゾル・ゲル法により作製するので、従来の
気相合成法では困難であった完全なステップ状屈折率分
布を実現できる。さらにまた、本発明は、ゾル・ゲル法
自体がもつ特長である幅広いドーパント材料が使用でき
るという利点も併せもつことができる。特に、ドーパン
ト材料としては、実施例に示したGe、 Nの他に、A
JZ 、Pb、Sb等のように従来気相合成法で用いら
れている物質以外にNd、Er等の希土類元素等を使用
してもよい。
According to the present invention, since the core part and the cladding part are made separately, and the core part is produced by the sol-gel method, it is possible to achieve a complete step-like refractive index distribution, which is difficult with conventional vapor phase synthesis methods. . Furthermore, the present invention can also have the advantage that a wide range of dopant materials can be used, which is a feature of the sol-gel method itself. In particular, as dopant materials, in addition to Ge and N shown in the examples, A
In addition to materials conventionally used in vapor phase synthesis methods such as JZ, Pb, and Sb, rare earth elements such as Nd and Er may also be used.

[実施例] 以下、図面を参照して本発明の詳細な説明する。[Example] Hereinafter, the present invention will be described in detail with reference to the drawings.

実施例1゜ 第1図は本発明の第1の実施例を説明する図であって、
ここで、41は気相合成法により作製した中空の多孔質
母材、42は石英製炉芯管、43はヒータ、44は母材
を支持する台、45は中空多孔質母材41の中空部にゾ
ル液を注入し、ゲル化させて作製した多孔質母材である
Embodiment 1 FIG. 1 is a diagram illustrating a first embodiment of the present invention,
Here, 41 is a hollow porous base material prepared by a vapor phase synthesis method, 42 is a quartz furnace core tube, 43 is a heater, 44 is a stand that supports the base material, and 45 is a hollow part of the hollow porous base material 41. This is a porous base material made by injecting a sol solution into a part and allowing it to gel.

まず、気相合成法により全体のかさ密度が1.0g/c
m3になるように中空の多孔質母材41を合成した。そ
の中空部に、Si(OR)4としての5t(0(:83
)4アルコキシド化合物Ge (OR) 4としてのG
e(OCH3)4.  (St(OCH3)tに対して
鮪のモル比)。
First, the overall bulk density was 1.0 g/c using the vapor phase synthesis method.
A hollow porous base material 41 having a size of m3 was synthesized. In the hollow part, 5t(0(:83
)4 alkoxide compound Ge (OR) G as 4
e(OCH3)4. (Molar ratio of tuna to St(OCH3)t).

H20、CH30HおよびNH4OHより成るゾル液を
注入した。次に、70℃でゲル化させた後、十分に乾燥
させた。次に、電気炉の均熱部に母材を位置させ、He
(5J2/分) 、  Cj22 (70cc/分)の
混合雰囲気下で50℃/時の昇温速度で1500℃まで
昇温し、1500℃で1時間保持した後、 100℃/
時の速度で冷却した。
A sol solution consisting of H20, CH30H and NH4OH was injected. Next, the mixture was gelatinized at 70° C. and then sufficiently dried. Next, the base material is placed in the soaking section of the electric furnace, and He
(5J2/min) and Cj22 (70cc/min) at a heating rate of 50°C/hour to 1500°C, held at 1500°C for 1 hour, and then heated to 100°C/hour.
Cooled at a rate of 100 hrs.

なお、ゲル体中の未反応アルキル基等の有機物およびカ
ーボンを除去するために、昇温時0〜1000℃までは
、前述の混合気体に、さらに02をH2/分混合した。
In addition, in order to remove organic substances such as unreacted alkyl groups and carbon in the gel body, 02 was further mixed with the above-mentioned mixed gas at a rate of H2/min while the temperature was rising from 0 to 1000°C.

透明化後の母材においては、コア・クラッド間での界面
不整は見られず、また、比屈折率差も0.27%の値を
実現した。
In the base material after transparentization, no interface irregularities were observed between the core and cladding, and a relative refractive index difference of 0.27% was achieved.

実施例2゜ 第2図、第3図および第4図は、本発明の第2の実施例
を説明する図であって、ここで、50は母材支持台、5
1は気相合成法により作製した中空の多孔質母材、52
はヒータ、53は炉芯管、54は中空多孔質母材51の
内側にゾル液を注入後にゲル化・乾燥させた多孔質体で
ある。
Embodiment 2 FIGS. 2, 3, and 4 are diagrams for explaining a second embodiment of the present invention, in which 50 is a base material support;
1 is a hollow porous base material produced by a vapor phase synthesis method, 52
53 is a heater, 53 is a furnace core tube, and 54 is a porous body in which a sol solution is injected into the inside of the hollow porous base material 51 and then gelled and dried.

第3図はガラス化処理時の温度プログラムを示すもので
あり、ここで、時間55の間は0〜800℃(50℃/
時の昇温速度)でHeおよびNH3雰囲気、時間56の
間は800℃で5時間、雰囲気はHeおよびNH3、時
間57の間は800℃〜1000℃で50℃/時の昇温
速度、He、NH3、CAL 2混合雰囲気、時間58
の間は1000℃〜1500℃で50℃/時の昇温速度
、 He、02混合雰囲気、時間59の間は1500℃
、1時間、He雰囲気、時間60の間は100℃/時の
降温速度での冷却過程を示す。
Figure 3 shows the temperature program during the vitrification process, where the temperature is 0 to 800°C (50°C/50°C) during time 55.
During time 56, the atmosphere was He and NH3 at 800°C for 5 hours; during time 57, the heating rate was 50°C/hour from 800°C to 1000°C; , NH3, CAL 2 mixed atmosphere, time 58
Heating rate: 50°C/hour from 1000°C to 1500°C, He, 02 mixed atmosphere, 1500°C during time 59
, 1 hour, He atmosphere, time 60 shows a cooling process at a temperature decreasing rate of 100° C./hour.

第4図はプリフォーム・アナライザによって測定した比
屈折率差の分布をコア部およびクラッド部の範囲につい
て示したものである。
FIG. 4 shows the distribution of the relative refractive index difference measured by a preform analyzer in the range of the core portion and the cladding portion.

まず、気相合成法により作製した中空多孔質母材(かさ
密度1.0g/am3)の中空部に金属アルコキシドS
i(OR)4とSi(OR)3 Rとの混合物としての
5t(QC)Is)t 、(SL(QCH3h ) C
1(3(St(OCH3)4040%のモル比)および
CH30H、H20、CH40Hの次に、全体を70℃
に保持してゲル化させた後、徐々に110℃まで昇温し
て乾燥させた。
First, a metal alkoxide S
5t(QC)Is)t, (SL(QCH3h)C as a mixture of i(OR)4 and Si(OR)3R)
1 (mole ratio of 3(St(OCH3) 4040%) and CH30H, H20, CH40H, then the whole was heated to 70°C
After gelatinization was performed by maintaining the temperature at 110° C., the temperature was gradually raised to 110° C. to dry it.

次に、電気炉均熱部にセットし、第3図に示す温度プロ
グラムでガラス化した。特に、0〜800℃まではHe
2Jl/分、NH32IL/分で、800℃〜1000
℃まではHe2fL/分、NH3211/分、 c12
50cc/分の雰囲気で処理することにより、下記の反
応に従ってコア部のみにNを添加した。
Next, it was set in the soaking section of an electric furnace and vitrified using the temperature program shown in FIG. In particular, He
2Jl/min, NH32IL/min, 800℃~1000
Up to ℃ He2fL/min, NH3211/min, c12
By processing in an atmosphere of 50 cc/min, N was added only to the core portion according to the following reaction.

Si ガラス化後の母材では、コア・クラッド間に界面不整は
見られず、比屈折率差は第4図に示すように約0.35
%であった。
In the base material after Si vitrification, no interface irregularity was observed between the core and cladding, and the relative refractive index difference was approximately 0.35 as shown in Figure 4.
%Met.

実施例3゜ 第5図は、本発明の第3の実施例を示す図であり、ここ
で71は気相合成法により作製したかさ密度0.8g/
cm3の中空多孔質母材、72はゾル液注入後にゲル化
させて乾燥させた多孔質母材、73は炉芯管、74はヒ
ータ、75は母材支持台である。
Example 3 FIG. 5 is a diagram showing the third example of the present invention, in which 71 is a bulk density 0.8 g/g produced by vapor phase synthesis method.
cm3 hollow porous base material; 72 is a porous base material gelled and dried after injecting a sol solution; 73 is a furnace core tube; 74 is a heater; 75 is a base material support stand.

これまでに説明したように、中空の多孔質母材に5l(
OCH3)4 、 C1130H、H20、NH4OH
より成るゾル液を注入した。このゾル液は乾燥後のかさ
密度が1.3g/cm3程度になるように調整しておい
た。このようにして得られた多孔質母材を11e51/
分02 11/分の混合雰囲気下で電気炉中で1000
℃まで昇温(昇温速度50℃/時間)し、問)  II
e5u/分 SF6200cc/分の混合雰囲気下で加
熱した。
As explained above, 5L (
OCH3)4, C1130H, H20, NH4OH
A sol solution consisting of This sol solution was adjusted to have a bulk density of approximately 1.3 g/cm 3 after drying. The porous base material thus obtained was 11e51/
1000 min in an electric furnace under a mixed atmosphere of 02 11/min
Raise the temperature to ℃ (temperature increase rate 50℃/hour), Question) II
It was heated under a mixed atmosphere of e5u/min and SF6200cc/min.

これまでにフッ素添加において母材のかさ密度の差異に
よりフッ素添加量が変わるということが知られているが
、本実施例でも外側多孔質部と中心部コア部でのかさ密
度差に応じた比屈折率差0.2%が得られた。
It has been known that the amount of fluorine added changes depending on the difference in the bulk density of the base material, but in this example, the ratio is also determined according to the difference in bulk density between the outer porous part and the central core part. A refractive index difference of 0.2% was obtained.

実施例4 これまでに説明したように、中空多孔質母材に5t(O
CH3)4 、 C)130H、H20、NH4叶。
Example 4 As explained above, 5t (O
CH3)4, C)130H, H20, NH4 Kano.

Ge (OCH3) 4および希土類元素を含むアルコ
キシド化合物としてのNd (OCH3) 3を含む混
合ゾル液を注入した。但し、5t(OCh)4に対する
Ge(OCH3)4のモル分率は3机51(OCH3)
4に対するNd (QC)13) 3のモル分率は0.
003零(Ndの濃度は30ppbとなる)とした。こ
のような組成のゾル液を用い、実施例1に示す手順でゲ
ル化、乾燥、ガラス化の各処理を行った。
A mixed sol solution containing Ge (OCH3) 4 and Nd (OCH3) 3 as an alkoxide compound containing a rare earth element was injected. However, the molar fraction of Ge(OCH3)4 to 5t(OCh3)4 is 3 units51(OCH3)
The mole fraction of Nd (QC) 13) 3 relative to 4 is 0.
003 zero (Nd concentration is 30 ppb). Using a sol solution having such a composition, gelation, drying, and vitrification were performed according to the procedures shown in Example 1.

それにより得られた母材は、コア部がわずかにNdによ
り着色しており、コア・クラッド間の比屈折率差は0.
27!にであった。このようにして得られ外母材を用い
、単一モード光ファイバとして線引き処理し、損失波長
特性を測定した結果を第6図に示す。Nd2O3による
吸収のため、0.9μm以下の短波長では、大変大きな
損失値をもつが、一方、1μmx1.4μmでは低損失
な値が得られた。
The core of the resulting base material is slightly colored with Nd, and the relative refractive index difference between the core and cladding is 0.
27! It was. Using the outer base material thus obtained, it was drawn into a single mode optical fiber, and the loss wavelength characteristics were measured. The results are shown in FIG. Due to absorption by Nd2O3, a very large loss value was obtained at a short wavelength of 0.9 μm or less, but on the other hand, a low loss value was obtained at a wavelength of 1 μm×1.4 μm.

実施例5 中空多孔質母材に注入するゾル液として以下の組成のも
のを用いた。
Example 5 A sol solution having the following composition was used as a sol solution to be injected into a hollow porous base material.

5t(OCH3)4 、 CH30H、H20、NH4
OHおよびi3N4 但し、Si3N4は平均粒径0.2 μm 、比表面積
1.0m2/gのものであり、S i (0(:H3)
 41モルに対し、Si3N4を0.0014モル加え
、十分均一に混合した。
5t(OCH3)4, CH30H, H20, NH4
OH and i3N4 However, Si3N4 has an average particle size of 0.2 μm and a specific surface area of 1.0 m2/g, and Si (0(:H3)
0.0014 mol of Si3N4 was added to 41 mol, and mixed thoroughly and uniformly.

このような組成のゾル液を用い、実施例1と同じ手順で
ゲル化、乾燥、ガラス化の処理を行った。
Using a sol solution having such a composition, gelation, drying, and vitrification were performed in the same manner as in Example 1.

ガラス化後の母材の屈折率分布を第7図に示す。第7図
から明らかなように、比屈折率差として約0.2%が得
られた。
FIG. 7 shows the refractive index distribution of the base material after vitrification. As is clear from FIG. 7, a relative refractive index difference of about 0.2% was obtained.

[発明の効果] 以上説明したように、本発明によれば、コア部とクラッ
ド部を別個に作り、さらにコア部をゾル・ゲル法により
作製するので、従来の気相合成法では困難であった完全
なステップ状屈折率分布を実現できる。さらにまた、本
発明は、ゾル・ゲル法自体がもつ特長である幅広いドー
パント材料が使用できるという利点も併せもつことがで
きる。特に、ドーパント材料としては、実施例に示した
Ge、 Hの他に、 l 、Pb、Sb等のように従来
気相合成法で用いられている物質以外にNd、Er等の
希土類元素等を使用してもよい。
[Effects of the Invention] As explained above, according to the present invention, the core part and the cladding part are made separately, and the core part is produced by the sol-gel method, which is difficult to achieve with conventional gas phase synthesis methods. A completely stepped refractive index distribution can be achieved. Furthermore, the present invention can also have the advantage that a wide range of dopant materials can be used, which is a feature of the sol-gel method itself. In particular, as dopant materials, in addition to Ge and H shown in the examples, rare earth elements such as Nd and Er are used in addition to materials conventionally used in vapor phase synthesis such as L, Pb, and Sb. May be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例を説明する図、 第2図は本発明の第2の実施例を示す図、第3図はその
温度プログラム図、 第4図は比屈折率差分布図、 第5図は本発明の第3の実施例を示す図、第6図は本発
明の第4の実施例の損失波長特性図、 第7図は本発明の第5の実施例の比屈折率差分布図であ
る。 1・・・出発棒、 2・・・コア・クラッドを有する多孔質母材、3・・・
合成用トーチ、 4・・・出発棒を除去した2の多孔質母材、5・・・ヒ
ータ、 6・・・炉芯管、 7・・・種棒、 21・・・出発種棒、 22・・・コア・クラッドを有する多孔質母材、23・
・・クラッド合成用トーチ、 24・・・コア合成用トーチ 25・・・ヒータ、 26・・・炉芯管、 31・・・テフロン製容器、 32・・・ゾル液、 33・・・32をゲル化乾燥した後の多孔質母材、34
・・・炉芯管、 35・・・ヒータ、 36・・・33をガラス化したロッド、41・・・気相
合成法により作製した中空多孔質母材、42・・・炉芯
管、 43・・・ヒータ、 44・・・母材を支持する台、 45・・・内側にゾル液を注入後、ゲル化乾燥した母材
、 50・・・54を支持する台、 51・・・気相合成法により作製した中空多孔質母材、
52・・・ヒータ、 53・・・炉芯管、 54・・・51の内側にゾル液を注入後ゲル化乾燥した
母材、 55〜60・・・温度プログラム、 61・・・屈折率分布を示す曲線、 62・・・コア部、 63・・・クラッド部、 71・・・中空多孔質母材、 72・・・中空部にゾル液を注入後ゲル化・乾燥した母
材、 73・・・炉芯管、 74・・・ヒータ、 75・・・母材を支持する台。
Fig. 1 is a diagram explaining the first embodiment of the present invention, Fig. 2 is a diagram showing the second embodiment of the invention, Fig. 3 is a temperature program diagram thereof, and Fig. 4 is a relative refractive index difference. Distribution diagram, FIG. 5 is a diagram showing the third embodiment of the present invention, FIG. 6 is a loss wavelength characteristic diagram of the fourth embodiment of the present invention, and FIG. 7 is a diagram of the fifth embodiment of the present invention. It is a relative refractive index difference distribution map. DESCRIPTION OF SYMBOLS 1... Starting rod, 2... Porous base material having a core and cladding, 3...
Synthesis torch, 4... Porous base material 2 from which the starting rod has been removed, 5... Heater, 6... Furnace core tube, 7... Seed rod, 21... Starting seed rod, 22 ... Porous base material with core cladding, 23.
...Torch for cladding synthesis, 24...Torch for core synthesis 25...Heater, 26...Furnace core tube, 31...Teflon container, 32...Sol liquid, 33...32 Porous base material after gelling and drying, 34
...Furnace core tube, 35...Heater, 36...Rod obtained by vitrifying 33, 41...Hollow porous base material produced by vapor phase synthesis method, 42...Furnace core tube, 43 ...Heater, 44...Base that supports the base material, 45...Base material gelled and dried after injecting the sol solution inside, 50...Base that supports 54, 51...Air Hollow porous base material made by phase synthesis method,
52... Heater, 53... Hearth tube, 54... Base material gelled and dried after injecting the sol solution into the inside of 51, 55-60... Temperature program, 61... Refractive index distribution 62... Core part, 63... Clad part, 71... Hollow porous base material, 72... Base material gelled and dried after injecting the sol solution into the hollow part, 73. ...Furnace core tube, 74...Heater, 75...Base that supports base material.

Claims (1)

【特許請求の範囲】 1)ガラス微粒子からなる中空の多孔質容器を形成し、 該中空多孔質容器の中空部に、金属アルコキシド、水、
アルコールを主成分とするアルコキシド・ゾル液を充填
し、 加水分解反応により前記アルコキシド・ゾル溶液をゲル
化させ、 そのゲル化した全体を脱水・透明化することを特徴とす
る石英系光ファイバ用母材の作製方法。 2)前記金属アルコキシドとして、Si(OR)_4(
但し、Rはアルキル基を示す)、および、(Ge(OR
)_4、Sn(OR)_4、Pb(OR)_2、Al(
OR)_3、Sb(OR)_4、Ti(OR)_4、N
d(OR)_3、Er(OR)_3、Tb(OR)_3
よりなるアルコキシド化合物のうち少なくとも1種類以
上を含むことを特徴とする特許請求の範囲第1項記載の
石英系光ファイバ用母材の作製方法。 3)前記アルコキシド・ゾル液は、Si_3N_4微粒
子を含有することを特徴とする特許請求の範囲第1項記
載の石英系光ファイバ用母材の作製方法。 4)前記金属アルコキシドとして、Si(OR)_4と
Si(OR)_3Rとの混合物を使用し、前記アルコキ
シド・ゾル液を前記中空多孔質容器の中空部に充填した
後にゲル化し、次いでNH_3を含む雰囲気下でガラス
化処理することを特徴とする特許請求の範囲第1項記載
の石英系光ファイバ用母材の作製方法。 5)ガラス微粒子からなる中空の多孔質容器を形成し、 金属アルコキシド、水、アルコールを主成分とし、前記
金属アルコキシドとしてSi(OR)_4のみを含み、
かつゲル化後の比表面積が前記中空多孔質容器の比表面
積より大きくなるように調製されたゾル液を、前記中空
多孔質容器の中空部に充填し、加水分解反応により前記
アルコキシド・ゾル溶液をゲル化させ、 そのゲル化した全体を、フッ素を含む雰囲気中で脱水・
透明化することを特徴とする石英系光ファイバ用母材の
作製方法。
[Claims] 1) A hollow porous container made of glass particles is formed, and a metal alkoxide, water,
A quartz-based optical fiber motherboard characterized by filling an alkoxide sol solution containing alcohol as a main component, gelling the alkoxide sol solution through a hydrolysis reaction, and dehydrating and making the gelled entire body transparent. How to make the material. 2) As the metal alkoxide, Si(OR)_4(
However, R represents an alkyl group), and (Ge(OR
)_4, Sn(OR)_4, Pb(OR)_2, Al(
OR)_3, Sb(OR)_4, Ti(OR)_4, N
d(OR)_3, Er(OR)_3, Tb(OR)_3
2. The method for producing a preform for a quartz-based optical fiber according to claim 1, wherein the preform contains at least one kind of alkoxide compounds consisting of the following. 3) The method for producing a base material for a silica-based optical fiber according to claim 1, wherein the alkoxide sol liquid contains Si_3N_4 fine particles. 4) A mixture of Si(OR)_4 and Si(OR)_3R is used as the metal alkoxide, the alkoxide sol solution is filled into the hollow part of the hollow porous container, and then gelled, and then containing NH_3. 2. A method for producing a preform for a quartz-based optical fiber according to claim 1, wherein the preform is vitrified in an atmosphere. 5) forming a hollow porous container made of glass fine particles, containing metal alkoxide, water, and alcohol as main components, and containing only Si(OR)_4 as the metal alkoxide;
A sol solution prepared so that the specific surface area after gelation is larger than the specific surface area of the hollow porous container is filled into the hollow part of the hollow porous container, and the alkoxide sol solution is heated by a hydrolysis reaction. gel, and dehydrate and dehydrate the entire gel in an atmosphere containing fluorine.
A method for producing a base material for a silica-based optical fiber, which is characterized by being transparent.
JP2601186A 1986-02-10 1986-02-10 Method for preparing base material for quartz optical fiber Pending JPS62187131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2601186A JPS62187131A (en) 1986-02-10 1986-02-10 Method for preparing base material for quartz optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2601186A JPS62187131A (en) 1986-02-10 1986-02-10 Method for preparing base material for quartz optical fiber

Publications (1)

Publication Number Publication Date
JPS62187131A true JPS62187131A (en) 1987-08-15

Family

ID=12181755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2601186A Pending JPS62187131A (en) 1986-02-10 1986-02-10 Method for preparing base material for quartz optical fiber

Country Status (1)

Country Link
JP (1) JPS62187131A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5024101A (en) * 1989-02-10 1991-06-18 Nippondenso Co., Ltd. Power source circuit and bridge type measuring device with output compensating circuit utilizing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5024101A (en) * 1989-02-10 1991-06-18 Nippondenso Co., Ltd. Power source circuit and bridge type measuring device with output compensating circuit utilizing the same

Similar Documents

Publication Publication Date Title
CA1139102A (en) Method of producing mother rods for optical fibers
KR950004059B1 (en) Method for producing glass for optical fiber
US4680046A (en) Method of preparing preforms for optical fibers
EP0443781A1 (en) Method for doping optical fibers
JPH0196039A (en) Production of optical fiber preform
JPS62187131A (en) Method for preparing base material for quartz optical fiber
Shibata Sol-gel-derived silica preforms for optical fibers
JPH0425213B2 (en)
JP2653828B2 (en) Manufacturing method of optical fiber preform
JPS6296339A (en) Method for manufacturing base material for optical fiber
JPH0244031A (en) Production of nonlinear optical glass
JPH02172835A (en) Production of base material for optical fiber
KR100312230B1 (en) Manufacture method of metal doped silica glass
KR870000383B1 (en) Preparation for making of fiber glass preform
JPS60221332A (en) Manufacture of optical fiber base material
JPS61106433A (en) Production of optical fiber base material
JPH05105466A (en) Optical fiber base material manufacturing method
JPH0233657B2 (en) TIO2GANJUHIKARIFUAIBANOSEIZOHOHO
JPH0239457B2 (en)
JPS6221725A (en) Production of base material for optical fiber
JPS61295247A (en) Preparation of optical fiber glass
JPS62246828A (en) Production of optical glass
JPH0558664A (en) Optical fiber base material manufacturing method
JPH0583503B2 (en)
JPS6348814B2 (en)