[go: up one dir, main page]

JPS62187118A - Production of manganese dioxide - Google Patents

Production of manganese dioxide

Info

Publication number
JPS62187118A
JPS62187118A JP61029499A JP2949986A JPS62187118A JP S62187118 A JPS62187118 A JP S62187118A JP 61029499 A JP61029499 A JP 61029499A JP 2949986 A JP2949986 A JP 2949986A JP S62187118 A JPS62187118 A JP S62187118A
Authority
JP
Japan
Prior art keywords
manganese dioxide
acid
manganese
oxidizing agent
dioxide according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61029499A
Other languages
Japanese (ja)
Inventor
Kazuaki Yamamura
山村 和昭
Ryohei Ishikawa
石川 遼平
Yutaka Tsukuda
築田 裕
Hiroshi Ochiai
弘 落合
Masanori Niiyama
正徳 新山
Takahiro Miyashita
孝洋 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Denki Kogyo Co Ltd
Original Assignee
Chuo Denki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Denki Kogyo Co Ltd filed Critical Chuo Denki Kogyo Co Ltd
Priority to JP61029499A priority Critical patent/JPS62187118A/en
Publication of JPS62187118A publication Critical patent/JPS62187118A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To produce manganese dioxide which is suitable for a dry cell and has activity and high bulk density in excellent yield by performing the acid treatment of slurried manganese suboxide in the presence of an oxidizing agent. CONSTITUTION:Manganese suboxide such as Mn2O3 obtained by roasting manga nese ore is crushed in >= about 60 mesh particle size and slurried. Both an oxidizing agent such as sodium chlorate and acid such as sulfuric acid are added to this slurry and acid-treated. The oxidizing agent and acid which respec tively have the amount of about 1.0-2.0 times for the amount stoichiometrically necessary to obtain manganese dioxide from a raw material are used and prefer ably acid-treated at >= about 60 deg.C temp. The solid content wherein manganese dioxide obtained in this treatment is made to an essential component is fully washed with water and dried and thereby recovered as a final product. By this method, high-activity manganese dioxide having the electric discharge characteristics comparing with electrolytic manganese dioxide is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、二酸化マンガンの製造方法に関する。[Detailed description of the invention] Industrial applications The present invention relates to a method for producing manganese dioxide.

更に詳しくは、高活性かつ嵩密度が高い二酸化マンガン
を、収率よく得ることのできる方法に関する。
More specifically, the present invention relates to a method capable of obtaining manganese dioxide having high activity and high bulk density in good yield.

従来の技術 二酸化マンガンは乾電池の主材料の中で減極剤として用
いられ、その性状が乾電池の性能に極めて大きな影響を
及ぼすので、電池の設計に当たり非常に重要である。
BACKGROUND OF THE INVENTION Manganese dioxide is used as a depolarizer in the main material of dry batteries, and its properties have a very large effect on the performance of dry batteries, so it is very important in battery design.

各種電池系の中で、特に二酸化マンガン乾電池が広範に
使用されているが、その理由は二酸化マンガン鉱石が天
然で比較的安価かつ大量に入手できたことによるものと
思われる。しかしながら、近年、天然鉱石から良質のも
のを選ぶことが次第に困難になってきており、その結果
良好な特性のものを人工的に作製しようとの種々の試み
がなされてきている。
Among various battery systems, manganese dioxide dry batteries are particularly widely used, probably because manganese dioxide ore is naturally available at relatively low cost and in large quantities. However, in recent years, it has become increasingly difficult to select high-quality natural ores, and as a result, various attempts have been made to artificially produce minerals with good properties.

その−例として、例えば電解二酸化マンガンを挙げるこ
とができる。この電解二酸化マンガンは通常硫酸マンガ
ンを陽極酸化して得られ、主としてr−MnO3からな
る結晶相であって、減極剤としては一般に最適のものと
されている。しかしながら、電解二酸化マンガンを得る
ためには電解酸化工程が必須であり、多大の電力を必要
とするので、コスト高、エネルギー消費が著しい等の点
で問題である。
As an example, mention may be made, for example, of electrolytic manganese dioxide. This electrolytic manganese dioxide is usually obtained by anodic oxidation of manganese sulfate, has a crystal phase mainly consisting of r-MnO3, and is generally considered to be optimal as a depolarizing agent. However, in order to obtain electrolytic manganese dioxide, an electrolytic oxidation step is essential and requires a large amount of electric power, resulting in problems such as high cost and significant energy consumption.

また、特開昭58−82697号公報発明にみられるよ
うな、焙焼後の二酸化マンガン鉱石を硝酸で酸処理して
活性化すると共に、その際に得られる可溶性物質、即ち
硝酸マンガンを含む溶液を電解して二酸化マンガンとし
て回収し、歩留りの向上を図る方法が開発されているが
、この方法により得られた二酸化マンガンは嵩密度が小
さく、更に電解工程を利用しているためにコスト高の問
題は解消されない。
In addition, as seen in the invention disclosed in JP-A No. 58-82697, manganese dioxide ore after roasting is acid-treated with nitric acid to activate it, and a solution containing the soluble substance obtained at that time, that is, manganese nitrate. A method has been developed in which manganese dioxide is recovered as manganese dioxide through electrolysis in order to improve the yield, but the manganese dioxide obtained by this method has a low bulk density, and because it uses an electrolytic process, it is expensive. The problem persists.

この様な現状において、低コストで活性の高いMnO2
を得るだめの化学的合成法を開発しようとの動向がみら
れ、例えば、硫酸マンガンを焙焼してマンガンの低級酸
化物、即ち、Mn2O3および/またはMn*CLを得
、このMn3O3および/またはMn3O4を酸処理し
て二酸化マンガンを得る方法(特願昭59−76334
 )が開発されている。この方法によれば、電解工程を
行うことによるコスト高およびエネルギー消費を防ぐこ
とができ、しかも得られた二酸化マンガンは、高純度で
あって、更にr−MnO2を主成分とする高活性なもの
である。
In this current situation, low cost and highly active MnO2
For example, manganese sulfate is roasted to obtain lower oxides of manganese, that is, Mn2O3 and/or Mn*CL, and this Mn3O3 and/or Method for obtaining manganese dioxide by acid treatment of Mn3O4 (Patent application No. 76334/1989)
) has been developed. According to this method, it is possible to prevent high costs and energy consumption due to the electrolytic process, and the obtained manganese dioxide is highly purified and has high activity mainly composed of r-MnO2. It is.

発明が解決しようとする問題点 上述したように高活性の二酸化マンガンを低コストで得
る方法として、すべてを化学的合成で行う方法が開発さ
れ、コストおよび純度の点においては、かなりの成果を
あげてきている。しかしながら、この方法は以下に述べ
るような問題点を有していた。
Problems to be Solved by the Invention As mentioned above, as a method of obtaining highly active manganese dioxide at low cost, a method of completely chemical synthesis was developed, which achieved considerable results in terms of cost and purity. It's coming. However, this method had the following problems.

即ち、この方法は、マンガンの低級酸化物の酸処理にお
いて二価マンガンの生成を伴い、従って、二酸化マンガ
ンの収率が悪く、1回の酸処理によって得られる二酸化
マンガンの収率は、例えばMn20aを原料とした場合
は50%、またMn1CLを原料とした場合は33%に
すぎず、生産性が悪いという問題点があった。
That is, this method involves the production of divalent manganese in the acid treatment of the lower oxide of manganese, and therefore the yield of manganese dioxide is poor. For example, the yield of manganese dioxide obtained by one acid treatment is When Mn1CL was used as a raw material, it was 50%, and when Mn1CL was used as a raw material, it was only 33%, which caused the problem of poor productivity.

また、この酸処理によって得られた二酸化マンガンは、
嵩密度が小さく、そのまま乾電池への充填を行うと、放
電特性が悪かった。従って、この酸処理で得た二酸化マ
ンガンは、ロールプレス等による圧縮成型により重質化
する必要があった。
In addition, the manganese dioxide obtained by this acid treatment is
The bulk density was low, and when it was directly filled into a dry battery, the discharge characteristics were poor. Therefore, the manganese dioxide obtained by this acid treatment had to be made heavier by compression molding using a roll press or the like.

重質化された二酸化マンガンは、所望の粒度に粉砕され
た後に乾電池に充填されるが、このように、重質化工程
、粉砕工程を必要とすることは、作業工程全体を複雑と
し、それによるコスト面への影響は避は難い。
The heavy manganese dioxide is crushed to the desired particle size and then filled into dry batteries, but the necessity of the heavy weighting process and the crushing process complicates the entire work process and makes it difficult to use. The impact on costs is unavoidable.

以上詳述したように、従来の化学的製造法は、二酸化マ
ンガンの収率が悪い、嵩密度が低く重質化する必要があ
る等の問題点を有していた。このような問題点を解決す
ることは、低コストかつ高品質の電池を得る上で非常に
重要であり、従って、本発明の目的は、乾電池用として
好適な、高活性かつ高嵩密度の二酸化マンガンを、化学
的処理により収率よく得ることのできる方法を提供する
ことにある。
As detailed above, conventional chemical production methods have had problems such as poor yield of manganese dioxide, low bulk density, and the need to make it heavier. Solving these problems is very important in obtaining low-cost, high-quality batteries. Therefore, the object of the present invention is to develop a highly active and high bulk density carbon dioxide suitable for use in dry batteries. An object of the present invention is to provide a method for obtaining manganese in good yield through chemical treatment.

問題点を解決するための手段 本発明者等は、上記従来の化学的製造法の問題点を解決
すべく種々検討した結果、酸処理時に発生ずる二価マン
ガン化合物を酸処理と同時に酸化することにより、二酸
化マンガンとすることが上記本発明の目的を達成する上
で非常に有利である ′との知見を得、本発明を開発し
た。
Means for Solving the Problems As a result of various studies in order to solve the above-mentioned problems of the conventional chemical production method, the inventors of the present invention have found that the divalent manganese compound generated during acid treatment is oxidized at the same time as the acid treatment. Based on this finding, the present invention was developed based on the finding that manganese dioxide is very advantageous in achieving the above object of the present invention.

即ち、本発明は、スラリー化したマンガン低級酸化物の
酸処理を酸化剤の存在下で行うことを特徴とする。
That is, the present invention is characterized in that the slurry-formed lower manganese oxide is acid-treated in the presence of an oxidizing agent.

上記酸化剤は、酸処理に伴い発生する二価マンガン化合
物を効率よく酸化し、二酸化マンガンとすることができ
るものであれば良く、例えば、塩素酸ナトリウム、塩素
酸リチウムおよびそれらの混合物等を好ましい例として
挙げることができる。
The above-mentioned oxidizing agent may be any agent as long as it can efficiently oxidize the divalent manganese compound generated during the acid treatment and convert it into manganese dioxide. For example, sodium chlorate, lithium chlorate, and mixtures thereof are preferable. This can be cited as an example.

また、上記酸としては、硫酸、硝酸および塩酸等を例示
することができる。これらは単独あるいはその混合物と
して使用できるが、価格の点では硫酸を用いることが好
ましい。
Furthermore, examples of the above-mentioned acids include sulfuric acid, nitric acid, and hydrochloric acid. Although these can be used alone or as a mixture, it is preferable to use sulfuric acid from the viewpoint of cost.

更に、上記酸処理において用いる酸化剤および酸の量は
、ある程度まで多い方がより反応速度を早くすることが
できるが、経済的観点によりその上限が存在する。従っ
て、酸処理において、用いる酸化剤および酸の量は、低
級酸化物より二酸化マンガンを得るために化学量論的に
必要な量のそれぞれ1.0〜2.0倍、一般的には1,
2倍程度が好ましい。
Further, the reaction rate can be increased by increasing the amount of the oxidizing agent and acid used in the acid treatment to a certain extent, but there is an upper limit from an economic viewpoint. Therefore, in the acid treatment, the amounts of the oxidizing agent and acid used are 1.0 to 2.0 times the stoichiometrically necessary amount to obtain manganese dioxide from the lower oxide, and generally 1.
About twice as much is preferable.

また、上記酸処理は、温度60℃以上で行われることが
好ましい。60℃未満の温度で行った場合、反応完了ま
での時間が長く経済的に好ましくない。
Further, the acid treatment is preferably performed at a temperature of 60° C. or higher. When carried out at a temperature below 60°C, it takes a long time to complete the reaction, which is economically unfavorable.

更に、上記マンガンの低級酸化物の粒度は、十分な酸処
理液との接触面積を得られるものでなければならず、6
0メッシ二以上、一般的には120メツシュ以上である
ことが好ましい。
Furthermore, the particle size of the lower manganese oxide must be such that a sufficient contact area with the acid treatment solution can be obtained;
It is preferably 0 mesh or more, generally 120 mesh or more.

更に、上記マンガン低級酸化物は、上記酸処理により収
率よく二酸化マンガンを与えられるものであればよ(、
Mr+zO3、Mn5O−およびMn008等が例示で
き、これらは単独またはそれらの混合物として使用可能
である。
Furthermore, the manganese lower oxide may be one that can provide manganese dioxide in good yield through the acid treatment (
Examples include Mr+zO3, Mn5O- and Mn008, which can be used alone or as a mixture thereof.

また、上記二酸化マンガンの低級酸化物は、例えば、マ
ンガン鉱石を焙焼して辱られるMn2O3、二価マンガ
ン化合物を焙焼して得られるMn20aおよびMn、O
,、二価マンガン化合物を湿式酸化して得られるMnO
OHおよびMn3O4等を挙げることができる。
In addition, the lower oxides of manganese dioxide include, for example, Mn2O3, which is produced by roasting manganese ore, Mn20a, which is obtained by roasting divalent manganese compounds, and Mn, O
,,MnO obtained by wet oxidation of divalent manganese compound
Examples include OH and Mn3O4.

本発明において、上記公知技術によって得られた二酸化
マンガンの原料は、粒度120メツシュ以上に粉砕され
、スラリー化され、さらに上記酸化剤および上記酸を加
えることにより酸処理される。
In the present invention, the manganese dioxide raw material obtained by the above-mentioned known technique is pulverized to a particle size of 120 mesh or more, made into a slurry, and further acid-treated by adding the above-mentioned oxidizing agent and the above-mentioned acid.

この酸処理は、すでに述べた様に、上記原料より二酸化
マンガンを得るために必要な量の1.2倍程度の酸およ
び酸化剤を用い、60℃以上の温度にて数時間行うこと
が好ましい。しかしながら、これらの処理条件は、使用
する原料の種類、性質により、最も適したものに設定さ
れるべきである。
As already mentioned, this acid treatment is preferably carried out at a temperature of 60°C or higher for several hours using about 1.2 times the amount of acid and oxidizing agent as required to obtain manganese dioxide from the above raw materials. . However, these processing conditions should be set to the most suitable conditions depending on the type and properties of the raw materials used.

この酸処理により得られた二酸化マンガンを主成分とす
る固形分は、十分に水洗し、乾燥させて、そのまま最終
製品として回収する。また、カリウム等による汚染の心
配のないアルカリ、例えばNHloHなどで中和した後
、水洗し乾燥することも可能である。
The solid content mainly composed of manganese dioxide obtained by this acid treatment is thoroughly washed with water, dried, and recovered as a final product. It is also possible to neutralize with an alkali such as NHloH, which is free from contamination with potassium, and then wash with water and dry.

昨月 化学的製造方法により、嵩密度が高く、高活性の二酸化
マンガンを収率良く得るためには、酸処理時に酸化剤を
加える上記本発明による方法を用いることが好ましい。
In order to obtain manganese dioxide having a high bulk density and high activity in a good yield by a chemical production method, it is preferable to use the method according to the present invention in which an oxidizing agent is added during acid treatment.

即ち、マンガンの低級酸化物の酸処理によって二酸化マ
ンガンを得る反応は、不均化反応であって、例えば、M
n2O3またはMnaO4を硫酸で酸処理した場合、以
下の反応式: %式% に示される様に、二価マンガン化合物(ここでは、硫酸
マンガン)がかならず生成される。従って、この酸処理
によって得られる二酸化マンガンの収率は、Mn2O3
で50%、Mn3CLで33%以上とはなり得ない。
That is, the reaction of obtaining manganese dioxide by acid treatment of a lower oxide of manganese is a disproportionation reaction, and for example, M
When n2O3 or MnaO4 is acid-treated with sulfuric acid, a divalent manganese compound (here, manganese sulfate) is inevitably produced as shown in the following reaction formula: %Formula %. Therefore, the yield of manganese dioxide obtained by this acid treatment is Mn2O3
It cannot exceed 50% for Mn3CL and 33% for Mn3CL.

そこで、本発明によれば、この酸処理時に、塩素酸ナト
リウム、塩素酸リチウムまたはその混合物等の酸化剤を
加えることにより、例えば、以下の反応式: %式% (:103 に示される様に二酸化マンガンを生成させることができ
る。かくして本発明の方法によれば、上記酸化剤を加え
ることにより、Mn0zの収率は90%以上となり、ま
た嵩密度も大巾に改善されるので、そのまま電池に充填
しても高い放電特性が得られる。
Therefore, according to the present invention, by adding an oxidizing agent such as sodium chlorate, lithium chlorate, or a mixture thereof during this acid treatment, for example, as shown in the following reaction formula: % formula % (:103) Thus, according to the method of the present invention, by adding the above-mentioned oxidizing agent, the yield of Mn0z becomes 90% or more, and the bulk density is also greatly improved, so it can be used as a battery as it is. High discharge characteristics can be obtained even when filled with

実施例 以下、実施例に基き、本発明を更に詳細に説明するが、
本実施例は何等本発明を制限しない。
EXAMPLES The present invention will be explained in more detail based on Examples below.
This example does not limit the invention in any way.

実施例1 以下の第1表に示す化学組成を有するマンガン鉱石を粒
径5mm以下に破砕後、大気中、800℃の温度下にて
1時間焙焼して、α−Mn20*を主成分とするマンガ
ン酸化物を得た。
Example 1 After crushing manganese ore having the chemical composition shown in Table 1 below to a particle size of 5 mm or less, it was roasted in the air at a temperature of 800°C for 1 hour to produce a manganese ore containing α-Mn20* as the main component. Manganese oxide was obtained.

第1表:元鉱石の化学組成(%) この還元焙焼後の酸化マンガン鉱石を120メツシュ以
上の粒度に粉砕した後、温度90℃においてそれぞれI
ONの硫酸と塩素酸す) IJウムとを添加し、6時間
酸処理を行った。用いた硫酸と塩素酸ナトリウムの量は
二酸化マンガンを得るために化学量論的に必要な量の1
.2倍づつであった。
Table 1: Chemical composition of original ore (%) After grinding this reduced roasted manganese oxide ore to a particle size of 120 mesh or more, each I
ON sulfuric acid and chloric acid (IJ) were added, and acid treatment was performed for 6 hours. The amounts of sulfuric acid and sodium chlorate used were 1 stoichiometrically necessary to obtain manganese dioxide.
.. It was twice as much.

次に、硫酸処理に際して生成した固形物を、固形物:水
=1:30の割合の純水で洗浄後、NH4OH希薄溶液
でpf16.5に調節し、更に温度120℃で乾燥した
ところ以下の第2表に示すような化学組成を有し、また
、そこに含有されるMn0zは、T−MnO2を主成分
とし、一部α−MnO□を含む活性二酸化マンガンであ
った。
Next, the solid matter generated during the sulfuric acid treatment was washed with pure water at a ratio of solid matter: water = 1:30, adjusted to pf 16.5 with a dilute NH4OH solution, and further dried at a temperature of 120°C. It had a chemical composition as shown in Table 2, and the MnOz contained therein was active manganese dioxide mainly composed of T-MnO2 and partially containing α-MnO□.

第2表:活性二酸化マンガンの化学組成(%)実施例2 硫酸マンガン結晶を半密閉形炉(大気雰囲気)で、温度
1000℃において60分間焼成し、主成分がMn+0
4であるマンガン酸化物を得た。このMn30゜を主成
分とするマンガン酸化物を、更に、ロータリーキルンで
大気中、温度800℃にて2時間焙焼しMn20aを主
成分とするマンガン酸化物を得た。
Table 2: Chemical composition (%) of active manganese dioxide Example 2 Manganese sulfate crystals were fired in a semi-closed furnace (atmospheric atmosphere) at a temperature of 1000°C for 60 minutes, and the main component was Mn+0.
Manganese oxide No. 4 was obtained. This manganese oxide containing Mn 30° as a main component was further roasted in a rotary kiln in the atmosphere at a temperature of 800° C. for 2 hours to obtain a manganese oxide containing Mn 20a as a main component.

このMn20.を主成分とするマンガン酸化物を温度9
0℃において、1ONの硫酸と塩素酸ナトリウムとを添
加し、6時間反応を行った。用いた硫酸および塩素酸ナ
トリウムの量は、二酸化マンガンを得るために化学量論
的に必要な滑の各々1.2倍であった。
This Mn20. Manganese oxide mainly composed of
At 0°C, 1ON sulfuric acid and sodium chlorate were added, and the reaction was carried out for 6 hours. The amounts of sulfuric acid and sodium chlorate used were each 1.2 times the stoichiometrically required amount to obtain manganese dioxide.

次に、硫酸処理に際して生成した固形物を、固形物:水
=1:30の割合の純水で洗浄した後、乾燥したところ
、得られた生成物は、以下の第3表に示されたような化
学組成を有し、またそこに含有されるM n O2はr
−MnO2を主成分とし、一部ρ−MnOzを含む高純
度活性二酸化マンガンが得られた。
Next, the solid matter produced during the sulfuric acid treatment was washed with pure water at a ratio of solid matter: water = 1:30, and then dried, and the obtained product was shown in Table 3 below. The chemical composition is as follows, and the M n O2 contained therein is r
High purity active manganese dioxide containing -MnO2 as a main component and partially containing ρ-MnOz was obtained.

第3表:高純度活性二酸化マンガンの化学組成(%)実
施例1で得られた活性二酸化マンガンおよび実施例2で
得られた高純度活性二酸化マンガンのタップ密度を測定
した結果を以下の第4表に示す。
Table 3: Chemical composition (%) of high-purity active manganese dioxide The results of measuring the tap densities of the active manganese dioxide obtained in Example 1 and the high-purity active manganese dioxide obtained in Example 2 are shown in Table 4 below. Shown in the table.

第4表 実施例3 上記実施例1および実施例2で得られた二酸化マンガン
を陽極活物質として用いて、単一塩化亜鉛電池を作製し
、電池特性試験(2Ω連続放電特性試験)を行い、さら
に、放電終止電圧0.9■にいたるまでの放電時間およ
び活物質の利用率を求め、それらの結果を以下の第5表
および添付第1図に示した。なお第5表および第1図に
は比較のために、電解二酸化マンガン(IC1No、 
17.三井金属鉱業)を陽極活物質として用いて作製し
た単一塩化亜鉛電池について同一条件下で行った放電試
験の結果も併せて示した。第1表および第1図の結果か
ら理解されるように、活性二酸化マンガン(実施例1)
および高純度活性二酸化マンガン(実施例2)は、いず
れも放電特性に優れている。
Table 4 Example 3 A single zinc chloride battery was prepared using the manganese dioxide obtained in Example 1 and Example 2 as the anode active material, and a battery characteristic test (2Ω continuous discharge characteristic test) was conducted. Furthermore, the discharge time until the final discharge voltage of 0.9 .mu. was reached and the utilization rate of the active material were determined, and the results are shown in Table 5 below and the attached FIG. 1. For comparison, Table 5 and Figure 1 show electrolytic manganese dioxide (IC1No.
17. The results of a discharge test conducted under the same conditions on a single zinc chloride battery manufactured using Mitsui Mining & Co., Ltd.) as the anode active material are also shown. As understood from the results in Table 1 and Figure 1, activated manganese dioxide (Example 1)
and high-purity activated manganese dioxide (Example 2) both have excellent discharge characteristics.

第5表 発明の効果 以上、詳しく説明したように、本発明の二酸化マンガン
の製造法によれば、マンガンの低級酸化物を、酸化剤の
存在下で酸処理することにより、電解二酸化マンガンに
匹敵する放電特性を有する高活性二酸化マンガンを得る
ことが可能となった。
Table 5 Effects of the Invention As explained in detail above, according to the method for producing manganese dioxide of the present invention, the lower oxide of manganese is treated with an acid in the presence of an oxidizing agent, so that it is comparable to electrolytic manganese dioxide. It has now become possible to obtain highly active manganese dioxide with discharge characteristics.

また、本発明の製造法により得られた二酸化マンガンは
従来の化学的製造によって得られるものと比較して嵩密
度が高く、酸処理後に重質化する必要がなく、またその
収率も従来の33%〜50%から90%程度まで引き上
げることができた。
In addition, the manganese dioxide obtained by the production method of the present invention has a higher bulk density than that obtained by conventional chemical production, there is no need to make it heavier after acid treatment, and the yield is lower than that of conventional chemical production. We were able to raise it from 33% to 50% to around 90%.

その結果、製造コストが低く、かつ高品質の二酸化マン
ガンを得られるため、乾電池の単価を大幅に低減するこ
とが可能である。
As a result, manufacturing costs are low and high quality manganese dioxide can be obtained, making it possible to significantly reduce the unit price of dry batteries.

【図面の簡単な説明】[Brief explanation of drawings]

添付第1図は、本発明の方法による二酸化マンガンを用
いた乾電池と、電解二酸化マンガンを用いた乾電池の放
電時の電池寿命を示す図である。
Attached FIG. 1 is a diagram showing the battery life during discharge of a dry cell using manganese dioxide according to the method of the present invention and a dry cell using electrolytic manganese dioxide.

Claims (10)

【特許請求の範囲】[Claims] (1)スラリー化したマンガンの低級酸化物を、酸化剤
の存在下で酸処理することを特徴とする二酸化マンガン
の製造法。
(1) A method for producing manganese dioxide, which comprises treating a lower oxide of manganese in the form of a slurry with an acid in the presence of an oxidizing agent.
(2)上記酸化剤が、塩素酸ナトリウムおよび塩素酸リ
チウムの少なくとも一方を含むことを特徴とする特許請
求の範囲第1項に記載の二酸化マンガンの製造法。
(2) The method for producing manganese dioxide according to claim 1, wherein the oxidizing agent contains at least one of sodium chlorate and lithium chlorate.
(3)上記酸が、硫酸、硝酸および塩酸からなる群から
選択される少なくとも一種を含むことを特徴とする特許
請求の範囲第1項または第2項に記載の二酸化マンガン
の製造法。
(3) The method for producing manganese dioxide according to claim 1 or 2, wherein the acid contains at least one selected from the group consisting of sulfuric acid, nitric acid, and hydrochloric acid.
(4)上記酸および上記酸化剤の量が、上記低級酸化物
より二酸化マンガンを得るために化学量論的に必要な量
のそれぞれ、1.0〜2.0倍であることを特徴とする
特許請求の範囲第1項乃至第3項のいずれか1項に記載
の二酸化マンガンの製造法。
(4) The amounts of the acid and the oxidizing agent are each 1.0 to 2.0 times the amount stoichiometrically necessary to obtain manganese dioxide from the lower oxide. A method for producing manganese dioxide according to any one of claims 1 to 3.
(5)上記酸処理が、温度60℃以上で行われることを
特徴とする特許請求の範囲第1項乃至第4項のいずれか
1項に記載の二酸化マンガンの製造法。
(5) The method for producing manganese dioxide according to any one of claims 1 to 4, wherein the acid treatment is performed at a temperature of 60°C or higher.
(6)上記マンガンの低級酸化物の粒度が60メッシュ
以上であることを特徴とする特許請求の範囲第1項乃至
第5項のいずれか1項に記載の二酸化マンガンの製造法
(6) The method for producing manganese dioxide according to any one of claims 1 to 5, wherein the particle size of the lower manganese oxide is 60 mesh or more.
(7)上記マンガンの低級酸化物が、Mn_2O_3、
Mn_3O_4およびMnOOHからなる群から選択さ
れる少なくとも一種を含むことを特徴とする特許請求の
範囲第1項乃至第6項のいずれか1項に記載の二酸化マ
ンガンの製造法。
(7) The lower oxide of manganese is Mn_2O_3,
The method for producing manganese dioxide according to any one of claims 1 to 6, characterized in that the method contains at least one selected from the group consisting of Mn_3O_4 and MnOOH.
(8)上記Mn_2O_3が、マンガン鉱石を焙焼して
得られたものであることを特徴とする特許請求の範囲第
7項に記載の二酸化マンガンの製造法。
(8) The method for producing manganese dioxide according to claim 7, wherein the Mn_2O_3 is obtained by roasting manganese ore.
(9)上記Mn_2O_3および上記Mn_3O_4が
、二価マンガン化合物を焙焼して得られたものであるこ
とを特徴とする特許請求の範囲第7項に記載の二酸化マ
ンガンの製造法。
(9) The method for producing manganese dioxide according to claim 7, wherein the Mn_2O_3 and Mn_3O_4 are obtained by roasting a divalent manganese compound.
(10)上記Mn_3O_4および上記MnOOHが、
二価マンガン化合物を湿式酸化して得られたものである
ことを特徴とする特許請求の範囲第7項に記載の二酸化
マンガンの製造法。
(10) The above Mn_3O_4 and the above MnOOH are
8. The method for producing manganese dioxide according to claim 7, which is obtained by wet oxidizing a divalent manganese compound.
JP61029499A 1986-02-13 1986-02-13 Production of manganese dioxide Pending JPS62187118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61029499A JPS62187118A (en) 1986-02-13 1986-02-13 Production of manganese dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61029499A JPS62187118A (en) 1986-02-13 1986-02-13 Production of manganese dioxide

Publications (1)

Publication Number Publication Date
JPS62187118A true JPS62187118A (en) 1987-08-15

Family

ID=12277770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61029499A Pending JPS62187118A (en) 1986-02-13 1986-02-13 Production of manganese dioxide

Country Status (1)

Country Link
JP (1) JPS62187118A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0747982A1 (en) * 1995-06-07 1996-12-11 Eveready Battery Company Cathodes for electrochemical cells having additives
KR100220866B1 (en) * 1997-04-01 1999-09-15 박지만 Refining method of waste manganese oxide
CN1050343C (en) * 1995-02-26 2000-03-15 杜祖德 Preparation of activated manganese dioxide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1050343C (en) * 1995-02-26 2000-03-15 杜祖德 Preparation of activated manganese dioxide
EP0747982A1 (en) * 1995-06-07 1996-12-11 Eveready Battery Company Cathodes for electrochemical cells having additives
KR100220866B1 (en) * 1997-04-01 1999-09-15 박지만 Refining method of waste manganese oxide

Similar Documents

Publication Publication Date Title
JP3356295B2 (en) Manganese oxide compounds
JPH075318B2 (en) Manganese dioxide and its manufacturing method
US3640683A (en) Method of preparing manganese dioxide for dry cell
US2473563A (en) Preparation of manganese dioxide
JPS62187118A (en) Production of manganese dioxide
GB2023558A (en) Process for the Production of Electrochemically Active Lead Dioxide
JPH10340726A (en) Manufacture of positive active material for lithium secondary battery and battery using the same
JPH0675400B2 (en) Activated chemically treated manganese dioxide for dry batteries and method for producing the same
JPH082921A (en) Lithium manganese composite oxide, method for producing the same, and use thereof
JPS60221323A (en) Method for producing activated manganese dioxide
JPS636496B2 (en)
JPS6230624A (en) Production of manganese oxide for dry cell
JPH07144918A (en) Production of alpha-manganese dioxide
US1358626A (en) Depolarizing agent for dry batteries and process of making same
JPS60255626A (en) Manganese oxide for dry batteries
JPH0613405B2 (en) Method for producing manganese oxide
JPS6230620A (en) Production of manganese dioxide
US1305251A (en) burgess
JPH02145430A (en) Production of manganese dioxide for dry cell
JPS6230621A (en) Production of manganese dioxide
JPS6086029A (en) Production of beta-manganese dioxide
KR0164961B1 (en) Method for manufacturing manganese dioxide of layered structure
JPS6386262A (en) Manganese battery
JPS6114137A (en) Manufacture of manganese dioxide
JPH0617236B2 (en) Method for producing manganese dioxide for dry batteries