[go: up one dir, main page]

JPS62186374A - Boundary extracting device - Google Patents

Boundary extracting device

Info

Publication number
JPS62186374A
JPS62186374A JP61028577A JP2857786A JPS62186374A JP S62186374 A JPS62186374 A JP S62186374A JP 61028577 A JP61028577 A JP 61028577A JP 2857786 A JP2857786 A JP 2857786A JP S62186374 A JPS62186374 A JP S62186374A
Authority
JP
Japan
Prior art keywords
stereoscopic image
dimensional
image
binary
dimension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61028577A
Other languages
Japanese (ja)
Inventor
Akihiko Nishide
明彦 西出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61028577A priority Critical patent/JPS62186374A/en
Publication of JPS62186374A publication Critical patent/JPS62186374A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

PURPOSE:To extract a boundary of a 3-dimension binary stereoscopic image at a high speed by providing a 3-dimension stereoscopic image input means, a stereoscopic binary-coding means, a stereoscopic image turning means, a circumscribed rectangular prism extracting means and an AND operation means. CONSTITUTION:The 3-dimension stereoscopic image input means 11, a 3-dimension stereoscopic binary-coding means 12 binary-coding the 3-dimension stereoscopic image inputted by the means 11 at a prescribed threshold value, and a 3-dimension stereoscopic image turning means 13 turning the 3-dimension binary coding stereoscopic image obtained by the means 12 by a prescribed angle theta with respect to an x, y plane and turning the image by a prescribed angle phi with respect to a z axis, are provided. The circumscribed rectangular prisms of the 3-dimension binary-coding image turned by the means 13 is obtained by a circumscribed rectangular prism extracting means 14, the circumscribed rectangular prisms at respective angles theta (0-90 deg.) and phi (0-90 deg.) obtained by the means 14 are ANDed and an AND operation means 15 extracts the boundary of the 3-dimension stereoscopic image. The 3-dimension stereoscopic image boundary data obtained by the AND operation means 15 is stored in a memory and displayed on a display device.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、3次元立体像における凹部の表われ方や程度
を把握し、また3次元立体の各種性状を把握するのに好
適な境界抽出装置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention provides a boundary extraction device suitable for grasping the appearance and extent of concavities in a three-dimensional three-dimensional image, and for grasping various properties of a three-dimensional solid. Regarding.

〔発明の技術的背景およびその問題点〕従来、3次元立
体像における輪郭抽出装置は特に考えられていないが、
2次元画像における輪郭抽出装置としては、テレビジョ
ンカメラ、CCOラインセンサ等の画像検出装置により
検出された画像データを21I化した後、この2値画像
を画素単位でテーブルメモリなどに記憶し、そのテーブ
ル画像データから画像の輪郭を追跡し、画像の輪郭に凹
部弁があればその凹部弁゛を直線で結ぶことにより画像
の輪郭を抽出する装置がある。 。
[Technical background of the invention and its problems] Conventionally, a contour extraction device for three-dimensional stereoscopic images has not been particularly considered;
A contour extraction device for a two-dimensional image converts image data detected by an image detection device such as a television camera or CCO line sensor into 21I, stores this binary image pixel by pixel in a table memory, etc. There is a device that extracts the outline of an image by tracing the outline of an image from table image data and, if there is a recessed valve in the outline of the image, connecting the recessed valve with a straight line. .

また、他の例としては、前記テーブル画像データから画
像の輪郭を追跡し、画像の輪郭に凹部分があればその凹
部分を凸な曲線に、あるいは凹部をなくす直線に置換え
ることにより画像の輪郭を抽出する装置もある。
Another example is to trace the outline of the image from the table image data, and if there is a concave part in the outline of the image, replace the concave part with a convex curve, or with a straight line that eliminates the concave part. There are also devices that extract contours.

しかるに、上記輪郭抽出装置は、いずれも2値画像の同
一値を追跡して輪郭を求めるものであるために、画像の
追跡に特別なソフトウェアが必要となり、しかも輪郭を
抽出するまでに長時間を要するといった問題があった。
However, since all of the contour extraction devices described above find contours by tracing the same values in a binary image, special software is required to track the image, and it takes a long time to extract the contours. There was a problem that it was necessary.

〔発明の目的〕[Purpose of the invention]

本発明はこのような事情に基いてなされたものであり、
その目的とするところは、簡単な画像処理ハードウェア
を用いて3次元2値立体像の境界を高速に抽出し得る境
界抽出装置を提供することにある。
The present invention was made based on these circumstances,
The purpose is to provide a boundary extraction device that can extract boundaries of a three-dimensional binary stereo image at high speed using simple image processing hardware.

〔発明の[要〕[Essentials of the invention]

本発明は、第1図に示すように3次元立体像を入力する
3次元立体像入力手段11と、この3次元立体像入力手
段11により入力された3次元立体像を所定のしきい値
で2値化する3次元立体像21ia化手段12と、この
3次元立体l!I2値化手段12により得られた3次元
2値立体像を(x、y)平面に対して所定角度θだけ回
転させカ1つZ軸(二対して所定角度φだけ回転させる
3次元立体像回転手段13と、この3次元立体像回転手
段13により回転された3次元2値立体像の外接直方体
を求める外接直方体抽出手段14と、この外接直方体抽
出手段14により求められた各角度θ(0〜90度)、
φ(0〜90度)における外接直方体の論理積を求めて
3次元立体像の境界を抽出する論理積演算手段15とを
有し、この論理積演算手段15によって得られた3次元
立体像境界データをメモリに蓄積し、ディスプレイなど
に表示するものである。
As shown in FIG. 1, the present invention includes a three-dimensional stereo image input means 11 for inputting a three-dimensional stereo image, and a three-dimensional stereo image input by the three-dimensional stereo image input means 11 at a predetermined threshold value. A three-dimensional solid image 21ia converting means 12 to be binarized, and this three-dimensional solid l! A three-dimensional stereo image obtained by rotating the three-dimensional binary stereo image obtained by the I-binarization means 12 by a predetermined angle θ with respect to the (x, y) plane and rotating it by a predetermined angle φ with respect to the Z axis (two). A rotating means 13, a circumscribed rectangular parallelepiped extracting means 14 for obtaining a circumscribed rectangular parallelepiped of the three-dimensional binary stereoscopic image rotated by the three-dimensional three-dimensional image rotating means 13, and each angle θ(0 ~90 degrees),
a logical product calculation means 15 for calculating the logical product of circumscribed rectangular parallelepipeds at φ (0 to 90 degrees) and extracting the boundary of the three-dimensional stereoscopic image; It stores data in memory and displays it on a display.

〔発明の実施例〕[Embodiments of the invention]

第2図は本発明の一実施例の構成を示す系統図である。 FIG. 2 is a system diagram showing the configuration of an embodiment of the present invention.

同図において制御用コンピュータ21cよプログラムに
従って装置の各構成要素を制御し、かつ所定の3次元立
体像処理の指令を出力する機能を有するものであり、こ
の制御用コンピュータ21からは入出力バス22および
アドレスデータバス23などが導出されている。このア
ドレスデータバス23には主記憶部24および補助記憶
部25が接続されており、これら各記憶部24゜25は
制御用コンピュータ21で3次元立体像処理を実行する
プログラムが記憶され、また必要なデータを一時記憶す
る機能をもっている。一方、入出力バス22には3次元
立体像入力装置26が接続されている。この3次元立体
像入力装置26は、例えばXl1CTスキヤナ、超音波
断層装置等が使用され、被検体としての3次元立体を撮
像してアナログ画像データを出力するものである。
In the figure, a control computer 21c has a function of controlling each component of the apparatus according to a program and outputting commands for predetermined three-dimensional image processing. and an address data bus 23 are derived. A main storage section 24 and an auxiliary storage section 25 are connected to this address data bus 23, and each of these storage sections 24 and 25 stores a program for executing three-dimensional stereoscopic image processing in the control computer 21, and also stores necessary programs. It has the ability to temporarily store data. On the other hand, a three-dimensional stereoscopic image input device 26 is connected to the input/output bus 22. The three-dimensional stereoscopic image input device 26 uses, for example, an XI1CT scanner, an ultrasonic tomography device, or the like, and images a three-dimensional object as a subject and outputs analog image data.

また、図中27は3次元立体像処理制御部であって、前
記制御用コンピュータ21の指令に基いてマルチパス2
8および画像データバス29に接続される2値化手段と
しての立体@21iI!化部30、立体像回転手段とし
てのアフィン変換部31、外接直方体抽出部32、論理
積演算部33、各立体像処理の途中結果および各角度の
外接直方体の論理積データを記憶する立体像メモリ34
、および立体像の輪郭を表示する結果立体像出力用ディ
スプレイ35などを制御するものである。
In addition, 27 in the figure is a three-dimensional stereo image processing control unit, and based on the instructions from the control computer 21, the multipath 27 is
8 and the image data bus 29 as a binarization means @21iI! conversion unit 30, affine transformation unit 31 as a three-dimensional image rotation means, circumscribed rectangular parallelepiped extraction unit 32, logical product operation unit 33, three-dimensional image memory that stores intermediate results of each three-dimensional image processing and logical product data of the circumscribed rectangular parallelepiped at each angle. 34
, and a display 35 for outputting a stereoscopic image as a result of displaying the outline of the stereoscopic image.

前記立体像2値化部30は、3次元立体象入力装置26
から出力されるアナログ画像データを所定のしきい値で
「1」 「○」に変換して出力するものである。また、
アフィン変換部31は、上記2値化縄30から入力され
た2値立体像あるいは外接直方体を、立体像の中心を回
転中心として(x、y)平面に対して角度±θ(0≦θ
≦90度)だけ回転させ、かつZ軸に対して角度φ(0
≦φ≦90度)だけ回転させる機能を有するものである
。前記外接直方体抽出部32は、2値立体像におけるr
lJの立体領域の最小x、y、z座標値Xm1n 、 
Ymin 、 zlnと最大x、y、z座標1i1Xm
ax 、 Ymax 、 Zmaxとを求め、X 1n
≦X≦xmax、かツy mtn≦y≦’y’ max
、かつ71n≦2≦zmaxの部分を「1」に設定する
ものである。
The stereoscopic image binarization unit 30 includes a three-dimensional stereoscopic image input device 26
The analog image data output from the converter is converted into "1" and "○" by a predetermined threshold value and output. Also,
The affine transformation unit 31 converts the binary stereoscopic image or circumscribed rectangular parallelepiped input from the binarization rope 30 into an angle ±θ (0≦θ
≦90 degrees) and at an angle φ (0
φ≦90 degrees). The circumscribed rectangular parallelepiped extraction unit 32 extracts r in the binary stereoscopic image.
The minimum x, y, z coordinate values of the three-dimensional area of lJ, Xm1n,
Ymin, zln and maximum x, y, z coordinates 1i1Xm
Find ax, Ymax, Zmax, and find X 1n
≦X≦xmax, katsuy mtn≦y≦'y' max
, and 71n≦2≦zmax is set to “1”.

次に、このように構成された本装置の動作について第3
図に示すフローチャートを適時参照しながら説明する。
Next, we will explain the third part about the operation of this device configured in this way.
The explanation will be given with reference to the flowchart shown in the figure from time to time.

先ず、ステップ1として、3次元立体像入力手段により
被検体(3次元立体)の3次元立体像をアナログ画像デ
ータとして入力する。
First, in step 1, a three-dimensional stereoscopic image of a subject (three-dimensional solid) is input as analog image data by a three-dimensional stereoscopic image input means.

このアナログ画像データは3次元立体像処理制御部27
を介して立体@2値化部30に与えられ、ここで、ステ
ップ2として、所定のしきい値を用いて2値画像に変換
し、例えば第4図に示すような3次元2値立体像を得る
。このとき、ステップ3に示すように初期設定としては
立体像回転角θおよびφを共に0度とし、かつ立体像メ
モリ34を「1」に設定する。
This analog image data is processed by the three-dimensional stereoscopic image processing control section 27.
The 3D @binarization unit 30 converts the image into a binary image using a predetermined threshold value in step 2, for example, to create a 3D binary 3D image as shown in FIG. get. At this time, as shown in step 3, as an initial setting, both the stereoscopic image rotation angles θ and φ are set to 0 degrees, and the stereoscopic image memory 34 is set to "1".

次いで、ステップ4として、前記ステップ2で得られた
2直立体像をアフィン変換部31にて第4図に示す如<
 (x、y)平面内で角度θだけ回転させ、ざらにx=
yの直線と2軸とにより形成される平面内で角度φだけ
回転させる。そして、ステップ5として、上記ステップ
4にて得られた回転立体像に基いて外接直方体抽出部3
2により外接直方体を求め、この外接直方体の内部を「
1Jとし、外部を「○」とする。
Next, in step 4, the 2-vertical three-dimensional image obtained in step 2 is transformed by the affine transformation unit 31 as shown in FIG.
Rotate by angle θ in the (x, y) plane, roughly x =
It is rotated by an angle φ within the plane formed by the y straight line and the two axes. Then, in step 5, the circumscribed rectangular parallelepiped extraction unit 3
2 to find a circumscribed rectangular parallelepiped, and the inside of this circumscribed rectangular parallelepiped as ``
1J, and the outside is marked "○".

次いで、ステップ6として、以上のようにして得られた
外接直方体を、再び前記アフィン変換部31により前記
ステップ4と逆変換して角度−φおよび一θだけ回転さ
せる。しかる後、ステップ7として、論理積演算部33
にて立体像メモリ34に蓄積されている3次元立体像と
の3次元立体像論理積を求め、再び蓄積メモリ34に蓄
えておく。そして、ステップ8として角度θが90度以
下であるか否かを判断し、90度以下である場合にはス
テップ9に示すように角度θに微少角度Δθを加え、再
びステップ4に戻ってステップ4〜8の処理を行なう。
Next, in step 6, the circumscribed rectangular parallelepiped obtained in the above manner is again transformed by the affine transformation unit 31 inversely to the step 4, and rotated by angles -φ and 1θ. After that, in step 7, the logical product calculation unit 33
The three-dimensional stereo image logical product with the three-dimensional stereo image stored in the three-dimensional image memory 34 is determined in step 3, and is stored in the storage memory 34 again. Then, in step 8, it is determined whether the angle θ is 90 degrees or less, and if it is 90 degrees or less, a minute angle Δθ is added to the angle θ as shown in step 9, and the process returns to step 4 again. Perform steps 4 to 8.

このようにして、ステップ8にて角度θが90度以上と
なったならば、ステップ10として、角度φが90度以
上であるか否かを判断する。そして、90度以下である
場合にはステップ11に示すように角度φに微少角度Δ
φを加え、再びステップ4に戻ってステップ4〜10の
処理を行ない、角度φが90度以上となるまで繰返す。
In this way, if the angle θ is 90 degrees or more in step 8, it is determined in step 10 whether the angle φ is 90 degrees or more. If the angle is 90 degrees or less, as shown in step 11, a minute angle Δ is added to the angle φ.
φ is added, the process returns to step 4, and steps 4 to 10 are performed, and the process is repeated until the angle φ becomes 90 degrees or more.

その結果、ステップ12として、以上のような処理によ
って得られた結果立体像つまり3次元立体像の凹部を埋
めた輪郭立体像が結果立体像出力用ディスプレイ35に
表示される。
As a result, in step 12, the resultant stereoscopic image obtained by the above-described processing, that is, the outline stereoscopic image that fills the concave portions of the three-dimensional stereoscopic image, is displayed on the resultant stereoscopic image output display 35.

このように、本実施例によれば、3次元2値立体像を(
x、y)平面に対してθ度回転させ、かつZ軸に対して
φ度回転させて外接直方体を求め、その後、これら各角
度θ(0〜90度)およびφ(0〜90度)の外接直方
体の論理積を求めることにより3次元立体像の輪郭を求
めるようにしたので、ハードウェアの処理により立体像
の輪郭を求め得、しかも立体像の輪郭を追跡する方式で
はないので高速に立体像の輪郭を求めることができる。
In this way, according to this embodiment, a three-dimensional binary stereoscopic image (
x, y) plane and φ degree relative to the Z axis to obtain a circumscribed rectangular parallelepiped, and then calculate each of these angles θ (0 to 90 degrees) and φ (0 to 90 degrees). Since the contour of the three-dimensional 3D image is determined by calculating the logical product of the circumscribed rectangular parallelepipeds, the contour of the 3D image can be determined by hardware processing.Moreover, since the method does not track the contour of the 3D image, it is possible to calculate the contour of the 3D image at high speed. You can find the outline of the image.

したがって、本装置により求めた立体像と原立体との差
を求めることにより、原立体の気孔やその気孔の体積1
表面積または凹部の程度を示す値を得ることが可能とな
り、さらに気孔または凹部の特徴値から立体像を分類可
能とすることができる。
Therefore, by determining the difference between the three-dimensional image obtained by this device and the original three-dimensional image, the pores of the original three-dimensional image and the volume of the pores 1
It becomes possible to obtain a value indicating the surface area or the extent of the recess, and furthermore, it is possible to classify the three-dimensional image based on the characteristic values of the pores or the recess.

なお、本発明は前記実施例に限定されるものではない。Note that the present invention is not limited to the above embodiments.

たとえば、前記実施例では測定対象となる3次元立体像
を3次元的に回転させて外接直方体を求める場合を示し
たが、上記対象立体像を回転させずに角度θおよびφか
ら外接直方体を直接求めるようにしてもよい。また、前
記実施例では角度θおよびφを0〜90度まで回転させ
る場合を示したが、0〜180度まで回転させて各方向
からの投影を立体像メモリ34に再投影するようにして
もよい。このほか本発明の要旨を逸脱しない範囲で種々
変形実施可能であるのは勿論である。
For example, in the above embodiment, the case where the circumscribed rectangular parallelepiped is obtained by three-dimensionally rotating the three-dimensional stereoscopic image to be measured is shown, but the circumscribed rectangular parallelepiped can be directly calculated from the angles θ and φ without rotating the target three-dimensional image. You may ask for it. Further, in the above embodiment, the case where the angles θ and φ are rotated from 0 to 90 degrees is shown, but it is also possible to rotate the angles θ and φ from 0 to 180 degrees and re-project the projections from each direction onto the stereoscopic image memory 34. good. It goes without saying that various other modifications can be made without departing from the gist of the present invention.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明によれば、簡単な画像処理
ハードウェアを用いて3次元21J立体像の輪郭を高速
に抽出し得る境界抽出装置を提供できる。
As described in detail above, according to the present invention, it is possible to provide a boundary extraction device that can extract the outline of a three-dimensional 21J stereoscopic image at high speed using simple image processing hardware.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第4図は本発明の一実施例を示す図であっ
て、第1図は本発明装置の模式的な構成図、第2図は本
発明装置の具体的な構成図、第3図および第4図は本発
明の詳細な説明するための流れ図および模式図である。 11・・・3次元立体像入力手段、12・・・3次元立
体像2値化手段、13・・・3次元立体像回転手段、1
4・・・外接直方体抽出手段、15・・・3次元立体像
論理積演算手段、21・・・制御用コンピュータ、24
・・・主記憶部、25・・・補助記憶部、26・・・3
次元立体像入力装置、27・・・3次元立体像処理制御
部、30・・・立体(112値化部、31・・・アフィ
ン変換部、32・・・外接直方体抽出部、33・・・論
理積演算部、34・・・立体像メモリ、35・・・結果
立体像出力用ディスプレイ。 出願人代理人 弁理士 鈴江武彦 第  1  図 第  2  図 第  3  図
1 to 4 are diagrams showing an embodiment of the present invention, in which FIG. 1 is a schematic configuration diagram of the device of the present invention, FIG. 2 is a specific configuration diagram of the device of the present invention, and FIG. 3 and 4 are a flowchart and a schematic diagram for explaining the present invention in detail. 11... Three-dimensional stereoscopic image input means, 12... Three-dimensional stereoscopic image binarization means, 13... Three-dimensional stereoscopic image rotation means, 1
4... Circumscribed rectangular parallelepiped extraction means, 15... Three-dimensional stereo image AND operation means, 21... Control computer, 24
...Main memory section, 25...Auxiliary memory section, 26...3
Dimensional stereoscopic image input device, 27... Three-dimensional stereoscopic image processing control unit, 30... Stereo (112 value conversion unit, 31... Affine transformation unit, 32... Circumscribed rectangular parallelepiped extraction unit, 33... Logical product calculation unit, 34...Stereoscopic image memory, 35...Display for outputting the resultant stereoscopic image. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)3次元立体像を入力する3次元立体像入力手段と
、この3次元立体像入力手段により入力された3次元立
体像を所定のしきい値で2値化する3次元立体像2値化
手段と、この3次元立体像2値化手段により得られた3
次元2値立体像を(x,y)平面に対して所定角度θだ
け回転させかつz軸に対して所定角度φだけ回転させる
3次元立体像回転手段と、この3次元立体像回転手段に
より回転された3次元2値立体像の外接直方体を求める
外接直方体抽出手段と、この外接直方体抽出手段により
求められた各角度θ(0〜90度)、φ(0〜90度)
における外接直方体の論理積を求めて3次元2値立体像
の境界を抽出する論理積演算手段とを具備したことを特
徴とする境界抽出装置。
(1) A 3D stereoscopic image input means for inputting a 3D stereoscopic image, and a 3D stereoscopic image binary value for binarizing the 3D stereoscopic image input by the 3D stereoscopic image input means at a predetermined threshold value. 3D stereoscopic image binarization means and 3D images obtained by this 3D stereoscopic image binarization means.
A three-dimensional three-dimensional image rotation means for rotating a dimensional binary three-dimensional image by a predetermined angle θ with respect to the (x, y) plane and a predetermined angle φ with respect to the z-axis; A circumscribed cuboid extraction means for obtaining a circumscribed cuboid of the three-dimensional binary stereoscopic image, and each angle θ (0 to 90 degrees) and φ (0 to 90 degrees) obtained by this circumscribed cuboid extraction means.
1. A boundary extraction device comprising: logical product operation means for calculating a logical product of circumscribed rectangular parallelepipeds and extracting a boundary of a three-dimensional binary stereoscopic image.
(2)前記3次元立体像入力手段は、X線CTスキャナ
あるいは超音波断層装置を用いて3次元立体像を入力す
るものであることを特徴とする特許請求の範囲第(1)
項記載の境界抽出装置。
(2) Claim (1) characterized in that the three-dimensional stereoscopic image input means inputs a three-dimensional stereoscopic image using an X-ray CT scanner or an ultrasonic tomography device.
Boundary extraction device as described in section.
JP61028577A 1986-02-12 1986-02-12 Boundary extracting device Pending JPS62186374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61028577A JPS62186374A (en) 1986-02-12 1986-02-12 Boundary extracting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61028577A JPS62186374A (en) 1986-02-12 1986-02-12 Boundary extracting device

Publications (1)

Publication Number Publication Date
JPS62186374A true JPS62186374A (en) 1987-08-14

Family

ID=12252456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61028577A Pending JPS62186374A (en) 1986-02-12 1986-02-12 Boundary extracting device

Country Status (1)

Country Link
JP (1) JPS62186374A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2275403A (en) * 1992-08-26 1994-08-24 Namco Ltd Image synthesizer
JPH0879628A (en) * 1994-09-05 1996-03-22 Toshiba Corp X-ray diagnostic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2275403A (en) * 1992-08-26 1994-08-24 Namco Ltd Image synthesizer
GB2275403B (en) * 1992-08-26 1996-11-27 Namco Ltd Image synthesizing system
JPH0879628A (en) * 1994-09-05 1996-03-22 Toshiba Corp X-ray diagnostic device

Similar Documents

Publication Publication Date Title
EP4372694A1 (en) Three-dimensional dynamic tracking method and apparatus, electronic device and storage medium
Tang et al. 3D mapping and 6D pose computation for real time augmented reality on cylindrical objects
CN108198141B (en) Image processing method, device and computing device for realizing face-lifting special effect
CN112381886B (en) Three-dimensional scene reconstruction method based on multiple cameras, storage medium and electronic equipment
CN106296598A (en) 3 d pose processing method, system and camera terminal
CN101271581A (en) Build a personalized 3D human body model
CN107707899A (en) Multi-view image processing method, device and electronic equipment comprising moving target
Dias et al. Automatic registration of laser reflectance and colour intensity images for 3D reconstruction
JPH1079029A (en) Stereoscopic information detecting method and device therefor
CN111914790B (en) Real-time human rotation angle recognition method in different scenarios based on dual cameras
JPS62186374A (en) Boundary extracting device
JP3276949B2 (en) Three-dimensional directed object localization method and image processing apparatus
CN114067046B (en) Method and system for reconstructing and displaying hand three-dimensional model by single picture
Lin et al. Facial expression morphing and animation with local warping methods
JP3429400B2 (en) Modeling system
JPH0981737A (en) Three-dimensional object model generating method
JPH0251789A (en) Shadow adding device for solid representation image
Roshan et al. A sensor fusion approach to autonomous ultrasound imaging of the lumbar region
JPH0564393B2 (en)
CN222354458U (en) A three-dimensional space information acquisition system for building AR augmented reality scenes
JPS6275205A (en) Contour extracting device
JP3540157B2 (en) Shape modeling method using image and recording medium storing shape modeling program
Schenk Progress in automatic aerial triangulation
JP2005322097A (en) Object image model animation display apparatus, object image model animation display method, and object image model animation display program
Bajpai et al. A Cross-Platform Open Source 3D Object Reconstruction System using a Laser Line Projector.