[go: up one dir, main page]

JPS62184803A - Manufacture of wood-plastic composite body - Google Patents

Manufacture of wood-plastic composite body

Info

Publication number
JPS62184803A
JPS62184803A JP2772386A JP2772386A JPS62184803A JP S62184803 A JPS62184803 A JP S62184803A JP 2772386 A JP2772386 A JP 2772386A JP 2772386 A JP2772386 A JP 2772386A JP S62184803 A JPS62184803 A JP S62184803A
Authority
JP
Japan
Prior art keywords
wood
polymer
meth
parts
wpc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2772386A
Other languages
Japanese (ja)
Inventor
藤村 庄
羽野 洋
幸裕 阿部
田辺 立兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil and Fats Co Ltd filed Critical Nippon Oil and Fats Co Ltd
Priority to JP2772386A priority Critical patent/JPS62184803A/en
Publication of JPS62184803A publication Critical patent/JPS62184803A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical And Physical Treatments For Wood And The Like (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は寸法安定性にすぐれる木材−プラスチック複
合体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to a method for manufacturing a wood-plastic composite with excellent dimensional stability.

〔従来の技術〕[Conventional technology]

一般に、木材は吸湿、放湿に際し膨潤収縮する性質があ
り、このためそりや割れを生じ、ついには強度低下をき
たすという欠点を有している。この理由として、木材中
の水分が移動する場合、木材の表面部位に近いところの
水分がまず蒸発して乾燥収縮を生じるが、内部において
は高含水率の状態で未収縮となっており、この乾燥収縮
と未収茄との境界において応力が生じ、この応力を解放
する形でそりや割れが生じるものと考えられている。特
に、木口付近においては、水分の繊維方向への移動が半
径や接線方向への移動より著しく速いため、木口面が早
く乾燥収縮して引張応力を生じ、これが原因で木口割れ
が多発するものと考えられている。
In general, wood has the property of swelling and contracting when it absorbs and releases moisture, which causes warping and cracking, which ultimately leads to a decrease in strength. The reason for this is that when moisture moves in wood, the moisture near the surface of the wood evaporates first and causes drying shrinkage, but inside the wood the moisture content is high and does not shrink. It is thought that stress is generated at the boundary between drying shrinkage and unresolved elasticity, and warping and cracking occur when this stress is released. In particular, near the end of the wood, the movement of water in the direction of the fibers is significantly faster than the movement of water in the radial and tangential directions, so the end surface dries and shrinks quickly, creating tensile stress, which is thought to cause frequent wood cracks. It is considered.

従来より、これらの現象を防止し、木材の寸法安定性を
向上させる方法として、ホルマール法、アセチル化法、
加熱法、シアノエチル化法、アルキルケテンダイマー処
理、エチレンオキサイド処理などが知られているが、こ
れらの方法は木材の脆弱化あるいは実施困難、多大のコ
ストアップとなるなどの難点があり、いずれも実用化に
は至っていない。
Traditionally, formal methods, acetylation methods,
Heating methods, cyanoethylation methods, alkyl ketene dimer treatments, ethylene oxide treatments, etc. are known, but these methods have drawbacks such as weakening of the wood, difficulty in implementation, and large cost increases, and none of them are practical. It has not yet become a reality.

一方、近年、上記方法とは異なる木材の処理方法として
、膨潤域充填法およびモノマー含浸法が提案されている
。このうち、膨潤域充填法は、木材の空隙部内に適宜の
ポリマーを含浸充填させる方法であり、またモノマー含
浸法は、木材の空隙部内に重合性のモノマーを含浸させ
てこれを重合させる方法である。これら方法にて処理さ
れた木材は、いずれも木材とその空隙部内に保持された
ポリマーとからなる、いわゆる木材−プラスチック複合
体となるものであり、上記ポリマーの種類に応じて木材
の硬度、引張強度1曲げ強度などの物性を大きく改良で
きるという特徴がある。
On the other hand, in recent years, a swelling zone filling method and a monomer impregnation method have been proposed as wood treatment methods different from the above methods. Among these, the swelling zone filling method is a method in which the voids of wood are impregnated with an appropriate polymer, and the monomer impregnation method is a method in which a polymerizable monomer is impregnated into the voids of wood and then polymerized. be. The wood treated by these methods becomes a so-called wood-plastic composite consisting of wood and a polymer held in the voids, and the hardness and tensile strength of the wood vary depending on the type of polymer. It has the characteristic that physical properties such as strength 1 bending strength can be greatly improved.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかるに、木材の前記欠点である寸法安定性を改善する
という面では、上記二つの処理方法は下記の理由により
必ずしも有効な方法とはいえなかった。
However, in terms of improving the dimensional stability, which is the drawback of wood, the above two treatment methods cannot necessarily be said to be effective methods for the following reasons.

まず、上記の膨潤域充填法は、これに適用可能なポリマ
ーとしてポリビニルアルコールやポリエチレングリコー
ルなどが知られているが、このうち低分子量のポリエチ
レングリコールを用いた場合に比較的良好な寸法安定性
が得られる。ところが、このポリマーは低分子量である
ために常温で液体または半固体であり、このため経口的
に処理木材つまり複合体の表面にぬれの現象が現れて、
その後の塗装が困難となる。
First, in the swelling region filling method described above, polyvinyl alcohol and polyethylene glycol are known to be applicable polymers, but among these, low molecular weight polyethylene glycol has relatively good dimensional stability. can get. However, because this polymer has a low molecular weight, it is liquid or semi-solid at room temperature, and therefore a wetting phenomenon appears on the surface of the treated wood or composite when administered orally.
Subsequent painting becomes difficult.

また、モノマー含浸法は、これに適用できるモノマーと
してメチルメタクリレート、スチレン、2−ヒドロキシ
エチルアクリレート、ポリオキシアルキレングリコール
(メタ)アクリレートなどの種々のモノマーが知られて
いるが、これら公知のどのモノマーを選択使用しても、
含浸重合後のポリマー保持率を40〜90ffii%と
いう高保持率としなければ、木材の寸法安定性を充分に
改善できず、このような高いポリマー保持率にすると複
合体の生産コストが非常に高くなる。
In addition, various monomers such as methyl methacrylate, styrene, 2-hydroxyethyl acrylate, and polyoxyalkylene glycol (meth)acrylate are known to be applicable to the monomer impregnation method. Even if you use selectively,
The dimensional stability of wood cannot be sufficiently improved unless the polymer retention rate after impregnation polymerization is set to a high retention rate of 40 to 90ffii%, and such a high polymer retention rate makes the production cost of the composite extremely high. Become.

したがって、この発明は、上記二つの処理方法にて代表
されるような木材の物性改良に有効な木材−プラスチッ
ク複合体を得るにあたり、上記従来の如き問題をきたす
ことなく、つまり経日的に複合体の表面にぬれの現象が
現れてその後の塗装が困難となるといった問題やポリマ
ー保持率に起因した生産コストの増大といった問題をき
たすことなく、寸法安定性の高度に改善された上記複合
体を得ることを目的とする。
Therefore, in obtaining a wood-plastic composite that is effective in improving the physical properties of wood as typified by the above two treatment methods, the present invention is capable of producing a wood-plastic composite that is effective in improving the physical properties of wood, without causing the above-mentioned conventional problems. The above composite with highly improved dimensional stability can be produced without causing problems such as wetting phenomena on the body surface that makes subsequent painting difficult, or increased production costs due to polymer retention. The purpose is to obtain.

〔問題点を解決するための手段〕[Means for solving problems]

この発明者らは、上記の目的を達成するために鋭意検討
した結果、前記二つの処理方法のうち膨潤域充填法に属
する方法であって、これに適用する木材充填用のポリマ
ーとして従来用いられたことのない特定のポリマーを使
用したときには、前述の如き問題をきたすことなく寸法
安定性の高度に改善された木材−プラスチック複合体を
製造できるものであることを知り、この発明を完成する
に至った。
As a result of intensive studies to achieve the above object, the inventors found that among the above two treatment methods, a method belonging to the swelling zone filling method, which is a method that is conventionally used as a polymer for wood filling applied to this method, was found. The realization that a wood-plastic composite with highly improved dimensional stability could be produced without the aforementioned problems by using a specific polymer that had never been used before, led to the completion of this invention. It's arrived.

すなわち、この発明は、木材中に、つぎの式;%式% (式中、R1は水素またはメチル基、R2は炭素数4〜
30のアルキル基またはアルケニル基である) で表される(メタ)アクリル酸エステル系モノマーの単
独または共重合体あるいは上記モノマーと共重合可能な
他のモノマーとの共重合体を含浸させることを特徴とす
る木材−プラスチック複合体(以下、WPCと略記する
)の製造方法に係るものである。
That is, this invention provides wood with the following formula; % formula % (wherein R1 is hydrogen or a methyl group, R2 is
30 alkyl group or alkenyl group) alone or a copolymer of a (meth)acrylic acid ester monomer represented by the above, or a copolymer of the above monomer and another monomer copolymerizable with the above monomer. The present invention relates to a method for producing a wood-plastic composite (hereinafter abbreviated as WPC).

このように、この発明においては、木材中に含浸充填さ
せるべきポリマーとして、前記式で表される(メタ)ア
クリル酸エステル系モノマーを必須のモノマー成分とし
た特定の重合体ないし共重合体を使用したもので、この
ポリマーはその分子内に上記モノマーに由来する炭素数
が4〜3oのアルキル基またはアルケニル基、つまり炭
素数の多い高親油性の基が含まれているいるため、前記
従来の膨潤域充填法に適用されていたポリマーはもちろ
んのことモノマー含浸法に適用されていたメチルメタク
リレートなどのモノマーをjli合させてなる重合物に
比し、ポリマーとしての親油性が非常に高いという特徴
を有している。
As described above, in this invention, a specific polymer or copolymer containing the (meth)acrylic acid ester monomer represented by the above formula as an essential monomer component is used as the polymer to be impregnated and filled into wood. This polymer contains in its molecule an alkyl group or alkenyl group having 4 to 3 carbon atoms derived from the above-mentioned monomer, that is, a highly lipophilic group having a large number of carbon atoms. Compared to polymers used in the swelling zone filling method as well as polymers made by combining monomers such as methyl methacrylate that were used in the monomer impregnation method, this polymer has extremely high lipophilicity. have.

このため、このポリマーを木材中に含浸させると、木材
に対して高い撥水性が付与され、木材の吸湿性は大幅に
減少する。その結果、木材のそりや割れの現象を招く吸
放湿性が低下し、内部応力の発生が抑制されるため、得
られるWPCは極めてすぐれた寸法安定性を示すことに
なる。そして、この寸法安定性は、上記ポリマーの特徴
に起因して、このポリマーの木材中の保持率を前記従来
の膨潤域充填法やモノマー含浸法に比し非常に小さくし
ても、良好に得られるため、WPCの生産コストの低減
に好結果がもたらされる。しかも、このポリマーは本質
的に前記従来の膨潤域充填法にみられた如き経口的に複
合体の表面にぬれの現象が現れてその後の塗装が困難と
なるといった問題をきたすおそれは特にない。
Therefore, when this polymer is impregnated into wood, high water repellency is imparted to the wood, and the hygroscopicity of the wood is significantly reduced. As a result, the moisture absorption and desorption properties that cause warping and cracking of the wood are reduced, and the generation of internal stress is suppressed, so that the resulting WPC exhibits extremely excellent dimensional stability. Due to the characteristics of the polymer mentioned above, this dimensional stability can be obtained even if the retention rate of this polymer in the wood is very small compared to the conventional swelling zone filling method or monomer impregnation method. Therefore, a favorable result is brought about in reducing the production cost of WPC. Moreover, this polymer essentially does not pose any particular risk of causing problems such as the phenomenon of wetting appearing on the surface of the composite during oral administration, which makes subsequent coating difficult, as seen in the conventional swelling region filling method.

〔発明の構成・作用〕[Structure and operation of the invention]

この発明に用いられる木材としては、針葉樹、広葉樹、
あるいは国産材、外国産材の区別を全く要しない。また
、原木、丸太、あるいは角柱、円柱、板状製材などのあ
らゆる形態の木材に適用することができる。
Wood used in this invention includes softwood, hardwood,
Or there is no need to distinguish between domestic and foreign materials. Further, it can be applied to all forms of wood such as logs, logs, square columns, cylinders, and sawn boards.

この発明における前記式にて表される(メタ)アクリル
酸エステル系モノマーは、そのアルキル基またはアルケ
ニル基の炭素数が4〜30であることが必要である。こ
の理由は、上記の炭素数が4未満となるとポリマーの親
油性が低下するため、また30を超えるものは入手しが
たい、木材への含浸性が悪くなるなどの問題があるため
である。
In the (meth)acrylic acid ester monomer represented by the above formula in this invention, the alkyl group or alkenyl group must have 4 to 30 carbon atoms. The reason for this is that when the number of carbon atoms is less than 4, the lipophilicity of the polymer decreases, and when the number of carbon atoms exceeds 30, it is difficult to obtain, and there are problems such as poor impregnation into wood.

このような(メタ)アクリル酸エステル系モノマーの具
体例としては、n−ブチル(メタ)アクリレート、1s
o−ブチル(メタ)アクリレート、2−エチルヘキシル
(メタ)アクリレート、デシル(メタ)アクリレート、
ラウリル(メタ)アクリレート、ミリスチル(メタ)ア
クリレート、ペンタデシル(メタ)アクリレート、七チ
ル(メタ)アクリレート、ステアリル(メタ)アクリレ
ート、ベヘニル(メタ)アクリレート、オフタコシル(
メタ)アクリレート、オレイル(メタ)アクリレート、
パルミトレイル(メタ)アクリレートなどが挙げられる
。また、これらの混合物であってもなんら差し支えない
Specific examples of such (meth)acrylic acid ester monomers include n-butyl (meth)acrylate, 1s
o-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, decyl (meth)acrylate,
Lauryl (meth)acrylate, myristyl (meth)acrylate, pentadecyl (meth)acrylate, heptyl (meth)acrylate, stearyl (meth)acrylate, behenyl (meth)acrylate, oftacocil (
meth)acrylate, oleyl(meth)acrylate,
Examples include palmitrail (meth)acrylate. Moreover, there is no problem even if it is a mixture of these.

この発明においては、上記の(メタ)アクリル酸エステ
ル系モノマーの単独重合体または共重合体を用いてもよ
いし、上記のモノマーとこれと共重合可能な他のモノマ
ーとの共重合体を用いてもよい。
In this invention, a homopolymer or copolymer of the above (meth)acrylic acid ester monomer may be used, or a copolymer of the above monomer and another monomer copolymerizable with it may be used. It's okay.

なお、前記式にて表される(メタ)アクリル酸エステル
系モノマーとこれと共重合可能な他のモノマーとの共重
合体を用いる場合は、上記の(メタ)アクリル酸エステ
ル系モノマーが全モノマー中一般に5重量%以上、好ま
しくは10重量%以上とされたものであることが望まし
い。この割合が少なすぎると充分な寸法安定性は得られ
ない。
In addition, when using a copolymer of the (meth)acrylic acid ester monomer represented by the above formula and another monomer that can be copolymerized with this, the above (meth)acrylic acid ester monomer accounts for all the monomers. In general, it is desirable that the content is 5% by weight or more, preferably 10% by weight or more. If this ratio is too small, sufficient dimensional stability cannot be obtained.

一方、使用量の増加とともに寸法安定性は向上して(る
が、一般的には20重量%以上であるのが好ましい。
On the other hand, as the amount used increases, the dimensional stability improves (although it is generally preferable that the amount is 20% by weight or more).

上記の共重合可能な他のモノマーとしては、たとえばメ
チル(メタ)アクリレート、エチル(メタ)アクリレー
トなどのアルキル基ないしアルケニル基の炭素数が4未
満である以外は前記と同様の式で表される(メタ)アク
リル酸エステル系モノマーや、一般の(メタ)アクリル
系ポリマーにおける改質用モノマーとしてよく用いられ
るスチレン、(メタ)アクリロニトリル、酢酸ビニルな
ど、また2−ヒドロキシ(メタ)アクリレート、ポリエ
チレングリコールモノ (メタ)アクリレートなどの水
酸基含有モノマー、(メタ)アクリル酸、無水マレイン
酸などの酸基含有上ツマ−、グリシジル(メタ)アクリ
レートなどのエポキシ基含有モノマーなどが挙げられる
Other copolymerizable monomers include those represented by the same formula as above except that the alkyl or alkenyl group has less than 4 carbon atoms, such as methyl (meth)acrylate and ethyl (meth)acrylate. (Meth)acrylic acid ester monomers, styrene, (meth)acrylonitrile, vinyl acetate, etc. that are often used as modifying monomers in general (meth)acrylic polymers, 2-hydroxy (meth)acrylate, polyethylene glycol monomers, etc. Examples include hydroxyl group-containing monomers such as (meth)acrylate, acid group-containing monomers such as (meth)acrylic acid and maleic anhydride, and epoxy group-containing monomers such as glycidyl (meth)acrylate.

この発明において、上記の如き特定のポリマーを木材中
に含浸させる際には、上記ポリマーを予め適宜の有機溶
媒に溶解させたポリマー溶液を調製する。ここで用いる
有411. 溶媒としては、メタノール、エタノール、
アセトン、メチルエチルケトン、メチルイソブチルケト
ン、テトラヒドロフラン、ジオキサンなどの極性溶媒の
ほか、トルエン、キシレンなどの非極性溶媒が挙げられ
る。このポリマー1容t(lのポリマー?ffi度とし
ては、0.5〜50重量%、好ましくは1〜30重量%
である。
In this invention, when impregnating wood with a specific polymer as described above, a polymer solution is prepared by dissolving the above polymer in an appropriate organic solvent in advance. There is 411. used here. As a solvent, methanol, ethanol,
Examples include polar solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, tetrahydrofuran, and dioxane, as well as nonpolar solvents such as toluene and xylene. The degree of polymer per volume t (l) of this polymer is 0.5 to 50% by weight, preferably 1 to 30% by weight.
It is.

なお、上記のポリマー溶液中には、必要に応じて他の添
加剤、たとえば防錆剤、防腐剤などのこの発明の目的を
阻害しないような物質を加えることも可能である。
It is also possible to add other additives, such as rust preventives, preservatives, and other substances that do not impede the object of the present invention, to the above polymer solution, if necessary.

このようなポリマー溶液を木材中に含浸するには、まず
木材に自然乾燥、加熱乾燥または減圧下に加熱乾燥する
などの乾燥処理を施して、木材中の水分含有量を8〜1
8重量%程度の範囲に調湿する。ついで、この木材を減
圧容器内に密封し、器内を真空ポンプなどで減圧して木
材中の気体を除去したのち、この器内にポリマー溶液を
投入し、器内を大気圧に戻す。これにより、上記溶液は
木材の空隙部内に含浸される。ごの含浸を容易にするた
めに、加圧含浸を併用するようにしてもよい。
To impregnate wood with such a polymer solution, the wood is first subjected to a drying process such as air drying, heat drying, or heat drying under reduced pressure to reduce the water content in the wood to 8 to 1.
Adjust the humidity to a range of about 8% by weight. Next, this wood is sealed in a vacuum container, and after reducing the pressure inside the container with a vacuum pump or the like to remove gas in the wood, a polymer solution is poured into the container, and the inside of the container is returned to atmospheric pressure. As a result, the solution is impregnated into the voids of the wood. Pressure impregnation may also be used to facilitate the impregnation.

このようにして含浸させたのち、自然乾燥、加熱乾燥ま
たは減圧乾燥などの乾燥処理を施して、溶媒を木材より
除去することにより、木材中に前記特定のポリマーが含
浸保持されたWPCを得ることができる。このWPCの
ポリマー保持率は、一般に1〜35重量%、特に5〜3
0重量%程度という前記従来の処理方法に比し非常に少
量に設定することができ、これにより各種用途乙こ充分
に応用できる良好な寸法安定性が得られる。もちろん、
WPCの用途目的に応じてその物性向上の観点からまた
より高度の寸法安定性を図るために、上記よりもさらに
高めのポリマー保持率、たとえば50重量%程度まで、
さらには110重量%程度までの高い保持率に設定する
ことも可能である。
After being impregnated in this manner, the solvent is removed from the wood by drying such as natural drying, heat drying, or reduced pressure drying, thereby obtaining WPC in which the specific polymer is impregnated and retained in the wood. I can do it. The polymer retention rate of this WPC is generally 1 to 35% by weight, especially 5 to 3% by weight.
The amount can be set to a much smaller amount than the conventional treatment method, which is approximately 0% by weight, and this provides good dimensional stability that can be applied to a variety of applications. of course,
Depending on the purpose of use of WPC, in order to improve its physical properties and to achieve a higher degree of dimensional stability, the polymer retention rate may be higher than the above, for example, up to about 50% by weight.
Furthermore, it is also possible to set the retention rate as high as about 110% by weight.

なお、この明細書において、ポリマー保持率とは、WP
Cを構成する木材に対する同ポリマーの重量割合、つま
り下記の式にて算出される値を意味するものである。
In addition, in this specification, polymer retention rate refers to WP
It means the weight ratio of the polymer to the wood constituting C, that is, the value calculated by the following formula.

X:WPCの絶乾重量 Y:未処理木材の絶乾重量 〔発明の効果〕 以上のように、この発明方法によれば、経口的に複合体
の表面にぬれの現象が現れてその後の塗装が困離となる
といった問題やポリマー保持率に起因した生産コストの
増大といった問題をきたすことなく、木材特有の吸湿膨
潤あるいは放湿収縮が大きく抑制された、すぐれた寸法
安定性を示すWPCを工業的有利に製造できる。このた
め、この方法にて得られるWPCは、常に湿気と乾燥に
見まわれる外壁や床材、木製美術品やその他寸法安定性
が高度に要求される建築材料などとして特に好適であり
、またこれら以外の各種用途にも利用することができる
X: Absolute dry weight of WPC Y: Absolute dry weight of untreated wood [Effects of the invention] As described above, according to the method of this invention, the phenomenon of wetting appears on the surface of the composite orally and the subsequent coating It is possible to manufacture WPC that exhibits excellent dimensional stability and greatly suppresses the moisture absorption swelling and moisture release shrinkage characteristic of wood, without causing problems such as difficulty in polymer retention or increased production costs due to polymer retention. It can be manufactured advantageously. For this reason, WPC obtained by this method is particularly suitable for use in external walls and flooring materials that are constantly exposed to humidity and dryness, wooden works of art, and other building materials that require a high degree of dimensional stability. It can also be used for various purposes.

〔実施例〕〔Example〕

つぎに、この発明の実施例を記載してより具体的に説明
する。なお、以下の実施例で使用した木材含浸用のポリ
マー溶液A−F、および比較例で使用した木材含浸用の
ポリマー溶液G−Jは、それぞれ下記の方法で調製した
ものである。文中、部とあるは重量部を意味するものと
する。
Next, examples of the present invention will be described in more detail. Note that the polymer solutions A-F for impregnating wood used in the following examples and the polymer solutions G-J for impregnating wood used in comparative examples were each prepared by the following methods. In the text, parts mean parts by weight.

くポリマー溶液A〉 撹拌装置、温度計および冷却器を備えた四つロフラスコ
に、キシレン210部を仕込み、内部を窒素置換したの
ち、攪拌しながら昇温しでキシレンを還流させた。還流
開始後、ステアリルメタクリレート50部とメチルメタ
クリレート450部とtert−ブチルペルオキシオク
トエート12部との混合溶液を2.5時間を要して滴下
した。その間、還流温度を維持するように制御した。滴
下終了後、還流下に1時間熟成したのち、tert−プ
チルペルオキシオクトエート12部とトルエン40部と
の混合溶液を投入し、さらに1時間還流下に熟成を行っ
た。しかるのち、冷却し、トルエン250部を投入して
、均一なポリマー溶液Aを得た。
Polymer Solution A> 210 parts of xylene was charged into a four-hole flask equipped with a stirrer, a thermometer, and a condenser, and the interior was purged with nitrogen, and the temperature was raised while stirring to reflux the xylene. After the reflux started, a mixed solution of 50 parts of stearyl methacrylate, 450 parts of methyl methacrylate, and 12 parts of tert-butylperoxyoctoate was added dropwise over 2.5 hours. During this time, the reflux temperature was controlled to be maintained. After the dropwise addition was completed, the mixture was aged under reflux for 1 hour, and then a mixed solution of 12 parts of tert-butylperoxyoctoate and 40 parts of toluene was added, and the mixture was further aged under reflux for 1 hour. Thereafter, it was cooled and 250 parts of toluene was added to obtain a uniform polymer solution A.

くポリマー?容液B〉 ステアリルメタクリレートの使用量を75部に、メチル
メタクリレートの使用量を425部に、それぞれ変更し
た以外は、ポリマー溶液Aの場合と同様にしてポリマー
溶液Bを調製した。
Polymer? Volume B> Polymer solution B was prepared in the same manner as polymer solution A, except that the amount of stearyl methacrylate used was changed to 75 parts, and the amount of methyl methacrylate used was changed to 425 parts.

くポリマー溶液C〉 ステアリルメタクリレートの使用量を150部に、メチ
ルメタクリレートの使用量を300部に、それぞれ変更
するとともに、他のモノマーとしてスチレンを50部使
用した以外は、ポリマー溶液Aの場合と同様にしてポリ
マー溶液Cを調製した。
Polymer solution C> Same as polymer solution A except that the amount of stearyl methacrylate used was changed to 150 parts, the amount of methyl methacrylate used was changed to 300 parts, and 50 parts of styrene was used as another monomer. A polymer solution C was prepared.

くポリマー?容液D〉 ステアリルメタクリレートの使用量を250部に、メチ
ルメタクリレートの使用量を250部に、それぞれ変更
した以外は、ポリマー溶液Aの場合と同様にしてポリマ
ー溶液りを調製した。
Polymer? Volume D> A polymer solution was prepared in the same manner as in Polymer Solution A, except that the amount of stearyl methacrylate used was changed to 250 parts, and the amount of methyl methacrylate used was changed to 250 parts.

くポリマー溶液E〉 ステアリルメタクリレート250部の代わりに、2−エ
チルへキシルメタクリレート250部を用いた以外は、
ポリマー溶液りの場合と同様にしてポリマー?容液Eを
8周製した。
Polymer solution E> Except that 250 parts of 2-ethylhexyl methacrylate was used instead of 250 parts of stearyl methacrylate.
Polymer in the same way as in the case of polymer solution? Eight rounds of liquid E were prepared.

くポリマー溶液F〉 ステアリルメタクリレ−)−50部とメチルメタクリレ
ート450部との代わりに、1so−メチルメタクリレ
ート500部を用いた以外は、ポリマー溶液Aの場合と
同様にしてポリマー溶液Fを調製した。
Polymer solution F> Polymer solution F was prepared in the same manner as polymer solution A, except that 500 parts of 1so-methyl methacrylate was used instead of 50 parts of stearyl methacrylate and 450 parts of methyl methacrylate. .

くポリマー溶液G〉 ステアリルメタクリレート50部とメチルメタクリレー
ト450部との代わりに、メチルメタクリレート500
部を用いた以外は、ポリマー溶、夜Aの場合と同様にし
てポリマー溶液Gを調製した。
Polymer Solution G> Instead of 50 parts of stearyl methacrylate and 450 parts of methyl methacrylate, 500 parts of methyl methacrylate
Polymer solution G was prepared in the same manner as in the case of polymer solution A, except that the polymer solution G was used.

〈ポリマー7容液H〉 ステアリルメタクリレート50部とメチルメタクリレー
ト450部との代わりに、スチレン500部を用いた以
外は、ポリマー溶液Aの場合と同様にしてポリマー溶液
Hを調製した。
<Polymer 7 volume solution H> Polymer solution H was prepared in the same manner as polymer solution A except that 500 parts of styrene was used instead of 50 parts of stearyl methacrylate and 450 parts of methyl methacrylate.

実施例1 接線方向10mm、半径方向70mm、繊維方向130
mmに寸法取りした含水率13重量%のアメリカ産ヒノ
キ柾目材をデシケータ−中に入れて10mmHgに減圧
した。このデシケータ−中に、ポリマー溶液Aをアセト
ンによってポリマー濃度が15重量%となるように希釈
してなる含浸液を投入し、5分間減圧含浸させたのち、
常圧に戻して10分間静置し、その後デシケータ−より
取り出した。
Example 1 Tangential direction: 10 mm, radial direction: 70 mm, fiber direction: 130 mm
Straight-grained American cypress wood with a water content of 13% by weight and measured to mm was placed in a desiccator and the pressure was reduced to 10 mmHg. An impregnating solution prepared by diluting polymer solution A with acetone to a polymer concentration of 15% by weight was put into this desiccator, and after being impregnated under reduced pressure for 5 minutes,
The pressure was returned to normal, and the mixture was allowed to stand for 10 minutes, and then taken out from the desiccator.

この含浸木材を72時間風乾後、80℃で16時間乾燥
して、絶乾試料としてのwpcを得た。
This impregnated wood was air-dried for 72 hours and then dried at 80° C. for 16 hours to obtain wpc as an absolutely dry sample.

このWPCのポリマー保持率は21.0重量%であった
。なお、ポリマー保持率の算出にあたって、未処理木材
を上記と全く同様に乾燥処理してこれの絶乾重量を求め
、これと上記wpcの絶乾重量とより、既述の方法にて
算出した。
The polymer retention rate of this WPC was 21.0% by weight. In addition, in calculating the polymer retention rate, the untreated wood was dried in exactly the same manner as above to obtain its absolute dry weight, and the calculation was performed using the above-mentioned method from this and the absolute dry weight of the wpc.

実施例2〜6 ポリマー溶液Aの代わりに、ポリマー溶液B〜Fを用い
た以外は実施例1と全く同様にして5種のWPCを得た
。これらWPCのポリマー保持率は下記の第1表に示さ
れるとおりであった。
Examples 2 to 6 Five types of WPC were obtained in exactly the same manner as in Example 1, except that polymer solutions B to F were used instead of polymer solution A. The polymer retention rates of these WPCs were as shown in Table 1 below.

第1表 比較例1. 2 ポリマー溶液Aの代わりに、ポリマー溶液G。Table 1 Comparative example 1. 2 Polymer solution G instead of polymer solution A.

Hを用いた以外は、実施例1と全く同様にして2種のW
PCを得た。これらWPcのポリマー保持率は下記の第
2表に示されるとおりであった。
Two types of W were prepared in the same manner as in Example 1 except that H was used.
I got a PC. The polymer retention rates of these WPcs were as shown in Table 2 below.

第2表 以上の実施例および比較例に係る各wpcにつき“、吸
水率および体積膨潤率を測定し、これら測定値から各w
pcの抗吸水能(RWA)および抗膨潤能(A S E
)を調べた結果は、後記の第3表に示されるとおりであ
った。
For each wpc according to the examples and comparative examples shown in Table 2 and above, the water absorption rate and volumetric swelling rate were measured, and from these measured values, each wpc was
Anti-water absorption capacity (RWA) and anti-swelling capacity (A S E
) The results of the investigation were as shown in Table 3 below.

なおミ吸水率および体積膨潤率の測定は、つぎの方法に
て行った。
The water absorption rate and volumetric swelling rate were measured using the following method.

く吸水率〉 絶乾試料としてのwpcを、20°Cの水中に完全に浸
漬して所定日数放置し、放置後の重量(Xt)と放置前
の絶乾重量(X)とから、下記の式にて算出した。
Water absorption rate〉 WPC as an absolutely dry sample was completely immersed in water at 20°C and left for a specified number of days, and from the weight after standing (Xt) and the absolute dry weight before standing (X), the following was calculated. Calculated using the formula.

Xt−X 吸水率く重量%) = −X 10.O〈体積膨潤率〉 絶乾試料としてのwpcを、20°Cの水中に完全に浸
漬して所定日数放置し、放置後の体積(Mt)と放置前
の体積(M)とから、下記の式にて算出した。
Xt-X water absorption rate (weight %) = -X 10. O〈Volume swelling rate〉 WPC as an absolutely dry sample is completely immersed in water at 20°C and left for a predetermined number of days, and from the volume after standing (Mt) and the volume before standing (M), the following is calculated. Calculated using the formula.

また、抗吸水能(RWA)および抗膨潤能(ASE)は
、上記wpcの場合と同様にして未処理木材の吸水率お
よび体積膨潤率を測定し、これとWPCのの吸水率およ
び体積膨潤率とから、下記の弐により算出した。
In addition, anti-water absorption capacity (RWA) and anti-swelling capacity (ASE) are determined by measuring the water absorption rate and volumetric swelling rate of untreated wood in the same manner as in the case of WPC above, and comparing this with the water absorption rate and volumetric swelling rate of WPC. From this, it was calculated using the following formula 2.

e c Wc:未処理木材の吸水率 Wt:WPCの吸水率 ■C:未処理木材の体積膨潤率 Vt:WPCの体積膨潤率 なお、吸水率および体積膨潤率の測定における放置日数
は、それぞれ4日および7日としたが、上述の測定条件
にて算出される吸水率および体積膨潤率は、一般に約1
週間後に平衡に達するものである。
e c Wc: Water absorption rate of untreated wood Wt: Water absorption rate of WPC ■C: Volumetric swelling rate of untreated wood Vt: Volumetric swelling rate of WPC Note that the number of days left for measurement of water absorption rate and volumetric swelling rate was 4, respectively. 1 day and 7 days, but the water absorption rate and volume swelling rate calculated under the above measurement conditions are generally about 1
Equilibrium is reached after a week.

第3表 上記第3表の結果からも明らかなように、実施例1〜6
に係るWPCは、ポリマー保持率が20〜30重量%の
範囲にあるにもかかわらず、すぐれた寸法安定性を示す
のに対して、比較例1.2に係るWPCは、ポリマー保
持率が20〜30重量%の範囲の低含浸率では良好な寸
法安定性を示さないものであることが判る。
Table 3 As is clear from the results in Table 3 above, Examples 1 to 6
The WPC according to Comparative Example 1.2 shows excellent dimensional stability even though the polymer retention rate is in the range of 20 to 30% by weight, whereas the WPC according to Comparative Example 1.2 has a polymer retention rate of 20 to 30% by weight. It can be seen that low impregnation rates in the range of ~30% by weight do not exhibit good dimensional stability.

なお、上記実施例1〜6に係るWPCは、これを常温常
温下に長期間放置しておいても経日的にWPCの表面に
ぬれの現象が現れることはなく、したがって上記放置後
にWPCの表面に通常の塗装を行っても塗装が困難とな
るといった問題は全く生じなかった。
Note that the WPCs according to Examples 1 to 6 above do not show any wetting phenomenon on the surface of the WPCs over time even if they are left at room temperature for a long period of time. Even when the surface was painted normally, no problems such as difficulty in painting occurred.

Claims (1)

【特許請求の範囲】[Claims] (1)木材中に、つぎの式; ▲数式、化学式、表等があります▼ (式中、R_1は水素またはメチル基、R_2は炭素数
4〜30のアルキル基またはアルケニル基である) で表される(メタ)アクリル酸エステル系モノマーの単
独または共重合体あるいは上記モノマーと共重合可能な
他のモノマーとの共重合体を含浸させることを特徴とす
る木材−プラスチック複合体の製造方法。
(1) The wood contains the following formula; ▲ There are mathematical formulas, chemical formulas, tables, etc. 1. A method for producing a wood-plastic composite, which comprises impregnating a (meth)acrylic acid ester monomer alone or a copolymer thereof, or a copolymer of the above monomer and another monomer copolymerizable with the above monomer.
JP2772386A 1986-02-10 1986-02-10 Manufacture of wood-plastic composite body Pending JPS62184803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2772386A JPS62184803A (en) 1986-02-10 1986-02-10 Manufacture of wood-plastic composite body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2772386A JPS62184803A (en) 1986-02-10 1986-02-10 Manufacture of wood-plastic composite body

Publications (1)

Publication Number Publication Date
JPS62184803A true JPS62184803A (en) 1987-08-13

Family

ID=12228937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2772386A Pending JPS62184803A (en) 1986-02-10 1986-02-10 Manufacture of wood-plastic composite body

Country Status (1)

Country Link
JP (1) JPS62184803A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5605767A (en) * 1993-06-09 1997-02-25 Triangle Pacific Corporation Hardened and fire retardant wood products
EP1048422A3 (en) * 1999-04-19 2001-12-05 Rohm And Haas Company Compositions for the treatment of wood

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5605767A (en) * 1993-06-09 1997-02-25 Triangle Pacific Corporation Hardened and fire retardant wood products
US5609915A (en) * 1993-06-09 1997-03-11 Triangle Pacific Corporation Hardened and fire retardant wood products
US5683820A (en) * 1993-06-09 1997-11-04 Triangle Pacific Corporation Hardened and fire retardant products
EP1048422A3 (en) * 1999-04-19 2001-12-05 Rohm And Haas Company Compositions for the treatment of wood

Similar Documents

Publication Publication Date Title
US4291101A (en) Wood fibrous material and a method for improving the qualities thereof
Ohmae et al. The analysis of dimensional changes due to chemical treatments and water soaking for hinoki (Chamaecyparis obtusa) wood
Liu et al. Dimensionally stable and highly durable bamboo material prepared through a simple surface furfurylation
JPS58103545A (en) Self-networkable aqueous plastic dispersion
BR112017001757B1 (en) Method for treating a wooden product
CN101966716A (en) Preparation method of wood plastic composite with good interface compatibility
JPS62184803A (en) Manufacture of wood-plastic composite body
JPS62152802A (en) Manufacture of wood-plastic composite body
Wu et al. Improvement of Bamboo Properties via In Situ Construction of Polyhydroxyethyl Methylacrylate and Polymethyl Methylacrylate Networks.
JP2010526692A (en) Modified wood and method for producing modified wood
Mohamad Jani et al. Rubberwood-polymer composites: the effect of chemical impregnation on the mechanical and physical properties
US12280518B2 (en) Wood template-supported phase change composite for thermal energy applications
PT936961E (en) TREATMENT PROCESS OF WOOD BY IMPREGNATION
JPH01146701A (en) Manufacture of wood-plastic composite body
JP3198471B2 (en) Method for producing modified wood
JPS60242003A (en) Improved wood
JPH01146702A (en) Manufacture of wood-plastic composite body
JPH02180921A (en) Curable resin
JP2021527577A (en) Acetylated wood and its manufacturing method
JP2595270B2 (en) Modified wood material and method for producing the same
US3968318A (en) Dimensional stabilization of lignocellulosic materials
JPH01141701A (en) Wood impregnated with resin
JPH01196301A (en) Timber impregnated with resin
JPH11114914A (en) Method for producing wood-plastic composite and wood-plastic composite produced by the method
JP3553660B2 (en) Manufacturing method of modified wood