[go: up one dir, main page]

JPS62182B2 - - Google Patents

Info

Publication number
JPS62182B2
JPS62182B2 JP13720581A JP13720581A JPS62182B2 JP S62182 B2 JPS62182 B2 JP S62182B2 JP 13720581 A JP13720581 A JP 13720581A JP 13720581 A JP13720581 A JP 13720581A JP S62182 B2 JPS62182 B2 JP S62182B2
Authority
JP
Japan
Prior art keywords
parts
weight
polyolefin
flame
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13720581A
Other languages
Japanese (ja)
Other versions
JPS5838736A (en
Inventor
Myuki Hagiwara
Yosuke Morita
Eisuke Oda
Shunichi Fujimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP13720581A priority Critical patent/JPS5838736A/en
Publication of JPS5838736A publication Critical patent/JPS5838736A/en
Publication of JPS62182B2 publication Critical patent/JPS62182B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)
  • Organic Insulating Materials (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、特性に優れた難燃性ポリオレフイ
ン成形体の製造方法に関するものである。 ポリエチレン、ポリプロピレン、エチレン−プ
ロピレン共重合体などのポリオレフインは、優れ
た機械特性、電気特性を有しているなどの理由か
ら電線、ケーブルの被覆材料や各種の電気部品な
どに多用されている。 そして近年防災上の見地から上述の電線、ケー
ブルの被覆材料などは高度に難燃化することが要
求され、又一部にはそれが義務づけられるような
傾向にある。 ところでポリオレフインは、上述の通り機械特
性、電気特性に優れた利点を有する反面、火災時
には容易に燃焼し、しかも多量の燃焼熱を放出し
て被害を拡大する恐れがあるなど防災上重大な問
題があつた。 そのためポリオレフインの難燃化技術の開発に
関しては多方面の検討がなされて居り、今日該ポ
リオレフインに対して例えば、(i)ハロゲン系難燃
剤の配合、(ii)ハロゲン系難燃剤と三酸化アンチモ
ンとの併用配合、(iii)粉末状無機物の配合、などの
手段が良く知られている。 しかし上記(i)の方法ではハロゲン系難燃剤の量
を相当に増やさないと高度の難燃化が得られず、
更に(ii)の方法ではハロゲン系難燃剤の配合量をわ
ずかに減量し得てもそれには限界があり、いずれ
の場合も燃焼時に黒煙を発生したり、有害なハロ
ゲン含有ガスの発生による他の重大な問題を生ず
る憂いがあつた。 この点(iii)の方法は、かかる黒煙や有害ガス発生
の恐れがなく、かす省資源にも役立つなど多くの
利点があるが、やはり高度の難燃化を得るために
は粉末状無機物の量を大幅に増量、例えばベース
ポリマーと当量あるいはそれ以上に達する量は配
合しなければならないことがあり、その結果は折
角のポリオレフインの良好な機械特性を著しく低
下させてしまう欠点を免がれ得なかつた。 本発明者等はかかる問題を解決すべく鋭意検討
を重ねた結果、ポリオレフイン100重量部に対し
て少くとも80重量部の水和金属酸化物を混和して
難燃化するに際し、後に詳述するハロゲン化アセ
ナフチレンの多量体をポリオレフイン100重量部
に対して少くとも0.5重量部配合し、この組成物
に遊離基発生処理を施して、該ハロゲン化アセナ
フチレンの多量体を更に多量体化させるか或いは
あらかじめ前記構成単位を少くとも2以上縮合さ
せたハロゲン化アセナフチレン系多量体をポリオ
レフイン100重量部に対して少くとも0.5重量部配
合しておくことにより、上記の如き問題が著しく
改善され優れた諸特性をもつた難燃性ポリオレフ
イン成形体が得られることを見出し、この発明を
完成したものである。 即ちこの発明は、ポリオレフイン100重量部に
対して水和金属酸化物粉末80〜250重量部と一般
(但し、Xは水素、塩素、臭素から選らばれた
いずれかの原子、Yは塩素または臭素原子、mは
2〜6の整数、Rはハロゲン原子以外の置換基、
nは0〜4の整数、nが2以上の場合Rは同一ま
たは異種のいずれでもよい、m+n≦6) で表わされる単位を構成要素とするハロゲン化ア
セナフチレンの多量体の1種または2種以上の物
質をポリオレフイン100重量部に対して少なくと
も0.5重量部配合した組成物にて、所望の成形体
を成形した後、得られた成形体に遊離基発生処理
を施すことを特徴とする難燃性高分子組成物成形
体の製造方法である。 この発明により上記の問題が解決する理由は必
らずしもこれを明らかになし得た訳ではないが、
ポリオレフインに対してハロゲン化アセナフチレ
ンの多量体が優れた相溶性を示すと共に、遊離基
発生処理を施した後は水和金属酸化物のポリマー
に対する親和性をも増大させる結果として組成物
の機械的特性の低下を著しく抑制する好ましい構
造を呈することによるものと考えられる。 この発明におけるポリオレフインとは、本来可
燃性である炭化水素系高分子物質を云うのであつ
て、例えばポリエチレン、ポリプロピレン、ポリ
ブテン、エチレン−酢酸ビニル共重合体、エチレ
ン−アクリレート共重合体、エチレン−プロピレ
ン共重合体、エチレン−プロピレンジエン共重合
体などが挙げられる。 このポリオレフインの難燃化のために混和され
る水和金属酸化物とは、一般式Mm On XH2O
(式中Mは金属、m,nは金属の原子価によつて
定まる1以上の整数、Xは含有結合水の数を示
す)で表はされる化合物または該化合物を含む複
塩で、具体的には、水酸化アルミニウム、水酸化
マグネシウム、水酸化カルシウム、水酸化バリウ
ム、酸化ジルコニウム水和物、酸化錫水和物、塩
基性炭酸マグネシウム、ハイドロタルサイドウソ
ナイト、硼砂などが挙げられ、これは使用目的な
どにより1種又は2種以上を選んで用いられる。
そして特に水酸化アルミニウム、水酸化マグネシ
ウムは、その効果及び経済性の点などから特に好
ましい。 これらの水和金属酸化物の配合量はポリオレフ
イン100重量部に対し80〜250重量部であるが、そ
の下限以下では本来の難燃効果が期待できず、又
上限を超えると機械的特性の低下が大きくなり過
ぎ実用性に欠けてしまうのでいずれも好ましくな
い。 つぎに、本発明でいうハロゲン化アセナフチレ
ンの多量体とは一般式 で示される。ハロゲン化アセナフチレンが形成的
には脱水素あるいは脱ハロゲン化水素反応を起し
て縮合し、縮合度2以上の多量体となつたものを
いう。アセナフチレン構造単位間の結合点として
は、例えば、容易に形成されるものとして1(或
2)、5′−
The present invention relates to a method for producing a flame-retardant polyolefin molded article with excellent properties. Polyolefins such as polyethylene, polypropylene, and ethylene-propylene copolymers have excellent mechanical and electrical properties, and are therefore widely used in coating materials for electric wires and cables and in various electrical parts. In recent years, from the standpoint of disaster prevention, it has become necessary for the above-mentioned electric wires and cables to have highly flame-retardant coating materials, and there is a tendency for some to be required to do so. By the way, as mentioned above, polyolefin has the advantage of excellent mechanical and electrical properties, but on the other hand, it easily burns in the event of a fire, and it also poses serious problems in terms of disaster prevention, such as releasing a large amount of combustion heat and potentially spreading damage. It was hot. Therefore, various studies have been conducted regarding the development of flame retardant technology for polyolefins, and today, for example, (i) combination of halogen flame retardants, (ii) combination of halogen flame retardants and antimony trioxide, etc. (iii) Incorporation of powdered inorganic substances are well known. However, with method (i) above, a high degree of flame retardation cannot be obtained unless the amount of halogen flame retardant is considerably increased.
Furthermore, even if method (ii) allows the amount of halogen-based flame retardant to be reduced slightly, there is a limit to this, and in either case, black smoke is generated during combustion, and harmful halogen-containing gases are generated. I was worried that this would cause serious problems. The method in point (iii) has many advantages, such as eliminating the risk of generating such black smoke and harmful gases and helping to conserve waste resources. However, in order to obtain a high degree of flame retardancy, Significant increases in the amount, e.g. equivalent to or even more than the base polymer, may have to be incorporated in order to avoid the drawbacks that can significantly reduce the good mechanical properties of the polyolefin. Nakatsuta. As a result of intensive studies to solve this problem, the inventors of the present invention discovered that at least 80 parts by weight of a hydrated metal oxide is mixed with 100 parts by weight of polyolefin to make it flame retardant, as will be described in detail later. At least 0.5 parts by weight of a halogenated acenaphthylene polymer is blended with 100 parts by weight of polyolefin, and this composition is subjected to a free radical generation treatment to further polymerize the halogenated acenaphthylene polymer, or By blending at least 0.5 parts by weight of a halogenated acenaphthylene polymer, which is a condensation of at least two or more of the above-mentioned structural units, per 100 parts by weight of polyolefin, the above-mentioned problems can be significantly improved and excellent properties can be obtained. The present invention was completed based on the discovery that a flame-retardant polyolefin molded article with elasticity can be obtained. That is, this invention uses 80 to 250 parts by weight of hydrated metal oxide powder and the general formula 100 parts by weight of polyolefin. (However, X is any atom selected from hydrogen, chlorine, and bromine, Y is a chlorine or bromine atom, m is an integer of 2 to 6, R is a substituent other than a halogen atom,
n is an integer of 0 to 4; when n is 2 or more, R may be the same or different; one or more halogenated acenaphthylene multimers whose constituent elements are units represented by m+n≦6) A flame retardant method characterized by molding a desired molded article with a composition containing at least 0.5 parts by weight of the above substance per 100 parts by weight of polyolefin, and then subjecting the resulting molded article to a free radical generation treatment. This is a method for producing a polymer composition molded article. The reason why this invention solves the above problem is that although it has not necessarily been possible to do so clearly,
The mechanical properties of the composition are improved as a result of the excellent compatibility of the halogenated acenaphthylene polymer with the polyolefin and, after free radical generation treatment, also the increased affinity of the hydrated metal oxide for the polymer. This is thought to be due to the fact that it exhibits a preferable structure that significantly suppresses the decrease in . The polyolefin in this invention refers to a hydrocarbon polymer substance that is inherently flammable, such as polyethylene, polypropylene, polybutene, ethylene-vinyl acetate copolymer, ethylene-acrylate copolymer, ethylene-propylene copolymer, etc. Examples include polymers, ethylene-propylene diene copolymers, and the like. The hydrated metal oxide that is mixed in to make this polyolefin flame retardant has the general formula Mm On XH 2 O
(In the formula, M is a metal, m and n are integers of 1 or more determined by the valence of the metal, and X represents the number of bound water contained). Specific examples include aluminum hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, zirconium oxide hydrate, tin oxide hydrate, basic magnesium carbonate, hydrotalcide usonite, borax, etc. One type or two or more types may be selected and used depending on the purpose of use.
In particular, aluminum hydroxide and magnesium hydroxide are particularly preferred from the viewpoint of their effectiveness and economy. The blending amount of these hydrated metal oxides is 80 to 250 parts by weight per 100 parts by weight of polyolefin, but below this lower limit, the original flame retardant effect cannot be expected, and above the upper limit, mechanical properties may deteriorate. Both are undesirable because they become too large and lack practicality. Next, the halogenated acenaphthylene multimer referred to in the present invention has the general formula It is indicated by. In terms of formation, halogenated acenaphthylene undergoes dehydrogenation or dehydrohalogenation reaction and condenses to form a multimer with a degree of condensation of 2 or more. Bonding points between acenaphthylene structural units include, for example, 1 (or 2), 5'-

【式】1 (或2)、6′−
[Formula] 1 (or 2), 6'-

【式】4,4′(もしく は4,7′、7,7′)[Formula] 4, 4′ (or is 4,7′,7,7′)

【式】 4,5′(もしくは4,6′、5,7)
[Formula] 4,5' (or 4,6', 5,7)

【式】5,5′(もしくは 5,6′)[Formula] 5, 5' (or 5,6')

【式】等が例 示されるが、そのほかにも1,1′、1,2′−、1
(或2)、3′−、1(或2)、4′−、1(或2)、
7′−、1(或2)、8′−、3,3′−、3,4′−、
3,5′−、3,6′−、3,7′−、3,8′−、4,
8′−等の結合、さらに例えば5,5′と6,6′、
4,7′と6,6′のように二つの結合を介して縮合
することも可能である。縮合度3以上のものはこ
のような結合のいずれかにより構成単位を増大せ
しめたものである。なお縮合度の上限は10以上と
なると組成物中への分散性が著しく低下し、配合
による効果が低下するので好ましくない。このよ
うな多量体は後述の例で述べるようにアリル位も
しくはベンジル位置にまずハロゲンを導入し、つ
ぎにその高い反応性を利用し、触媒存在下に処理
することによつて合成することができる。 これらハロゲン化アセナフチレンの多量体と高
分子物質との相溶性は特に置換基がなくても良好
であるが、さらにメチル基、メトキシ基、メチル
エステル基等を導入されることによつて増進され
る。これによつて、混練成形時の加工性及び高温
下、長時間の成形物使用時に揮散、滲出しない性
質が高められる。しかし、過度に炭素数の多い置
換基は合成上困難性があり、また、長鎖アルキル
基の場合は難燃性および耐放射線性を低下させる
ことから避ける必要がある。而して、この目的で
導入される置換基としては炭素数1〜4のアルキ
ル基、アルコキシ基、アルキルエステル基等が例
示される。 そしてその配合量はこの発明の効果を発揮させ
るために上記の高分子物質100重量部に対して少
なくとも0.5重量部の量が必要である。 次に以上の如き組成物はこれを適当な成形体に
成形するのであるが、その成形法としては押出成
形、加圧成形あるいはロール成形など特に限定な
く適用できる。 ハロゲン化アセナフチレン単位の炭素1と炭素
2の間の2重結合はラジカル重合性を有してい
る。したがつて、高分子物質中に多量体を混和し
て組成物を成形した後、遊離基発生処理を施すこ
とによつて、更に多量体化せしめるものである
が、その手段としては、組成物中に予めジクミル
パーオキサイド、1,3−ビス(t−ブチルパー
オキシイソプロピル)ベンゼン、2,5−ジメチ
ル−2,5−ジ(t−ブチルパーオキシ)ヘキシ
ン−3,ジ−t−ブチルパーオキサイド、t−ブ
チルハイドロパーオキサイド、ジ−イソプロピル
ベンゼンハイドロパーオキサイド、クメンハイド
ロパーオキサイド等の有機過酸化物の適量を混入
させて加熱するか、あるいは成形体に対してβ
線、γ線、電子線等の電離性放射線を照射する等
の方法がある。 尚本発明において上記組成物に対しては、使用
目的に応じて他の補強剤、増量剤、架橋助剤、顔
料、滑剤、熱光安定剤等を特性を低下させない範
囲で加えることは勿論差支えない。 本発明によれば以上の説明および後記実施例か
ら明らかなように、水和金属酸化物の混和による
難燃化ポリオレフイン成形体の製造方法におい
て、得られる成形体の機械的特性の低下を著しく
抑制しつつ高度に難燃化された成形体が得られる
等上記の問題を解消し得るのでありその工業的利
用価値は非常に大きい。 以下実施例によりこの発明を具体的に説明す
る。 ハロゲン化アセナフチレンの多量体の製造 例 1 1,2,3,5−テトラブロモアセナフテン
(C12H6Br4)1モルのベンゼン(500g)溶液と
臭化カリウム2モル、臭素酸カリウム0.2モルの
水溶液(600g)を三ツ口フラスコに取り、暗所
にて激しく撹拌混合した。これに濃硫酸2モルを
同容積の水で希釈し、撹拌下、10℃近傍にて滴下
し、3時間反応させた。反応終了後、ベンゼン層
を水、カセイソーダ水溶液(2%)、再び水の順
で洗浄し、シリカゲルにて乾燥した。つぎに、乾
燥ベンゼン溶液を三ツ口フラスコに移し、側管よ
り約2モルの水酸化カリウムを溶解させた温エタ
ノール液を滴下させ、脱臭化水素反応を行なつ
た。反応終了後ベンゼン層を水洗し乾燥した。さ
らに減圧下でベンゼンを留去し、残留物を熱アセ
トンにて充分洗浄乾燥して、ブロモアセナフチレ
ン縮合物を得た。 縮合物の元素分析値より推定された組成式は
(C12H3.7Br2.9)lであつた。GPC測定による縮
合度lは2〜5のものが主成分であつた。 例 2 1,2,3,5−テトラブロモアセナフテンの
クロロホルム溶液に触媒量の塩化第2錫を添加
し、約3時間静かに沸とう環流させた。反応終了
後、水洗、乾燥し、クロロホルムを留去した。つ
ぎに残留物をベンゼンに溶解し、例1と同様の方
法により、脱臭化水素反応を行なつた。ベンゼン
層を水洗後、乾燥し、ついでベンゼンを留去し熱
アセトンにて充分洗浄した。得られたブロモアセ
ナフチレン縮合物の組成式は(C12H4.1Br2.3)l
であり、GPC測定による縮合度lは2〜7のも
のが主成分であつた。 例 3 アセトナフテン154gを約340mlの四塩化炭素に
溶解し、温度10℃に保持しつつ、塩化第二鉄154
gを加えた。これに良く撹拌しながら四塩化炭素
で希釈した臭素960gを滴下した。滴下終了後反
応系を45〜55℃とし、反応を完結させた。つぎに
触媒をろ別し、溶液を水洗し、四塩化炭素を留去
して中間体であるブロモアセナフテン縮合体を得
た。次に、例1と同様の方法により、ブロモアセ
ナフテン縮合体の脱臭化水素反応を行つた。ベン
ゼン層を水洗後、乾燥し、ついでベンゼンを留去
し熱アセトンにて充分洗浄した。得られたブロモ
アセナフチレン縮合物の組成式は
(C12H1.7Br3.8)lであり、GPC測定による縮合
度lは2〜3のものが主成分であつた。 実施例1〜3および比較例1〜3 ポリエチレン、水酸化アルミニウムを始めとす
る表1に示した配合物を加熱ロールにて良く練和
し、この混合物を160℃にて30分間プレス成形
し、1mmおよび3mm厚のシートを得た。 得られたシートは、JIS C 3005によつて機械
的特性および耐熱性(加熱条件:150℃、
168Hr)を、JIS K 7201によつて酸素指数をそ
れぞれ測定した。その結果を併わせて同表に示し
た。 表から明らかなようにハロゲン化アセナフチレ
ン多量体の配合は水酸化アルミニウム、水酸化マ
グネシウムなどの配合によつて低下する組成物の
機械的特性および耐熱性を改善せしめることが明
らかである。
Examples include [Formula], but there are also 1, 1', 1, 2'-, 1
(or 2), 3'-, 1 (or 2), 4'-, 1 (or 2),
7′-, 1 (or 2), 8′-, 3,3′-, 3,4′-,
3,5'-, 3,6'-, 3,7'-, 3,8'-, 4,
Bonds such as 8'-, as well as, for example, 5,5' and 6,6',
It is also possible to condense via two bonds, such as 4,7' and 6,6'. Those having a degree of condensation of 3 or more are those in which the number of constituent units is increased by any of these bonds. Note that an upper limit of the degree of condensation of 10 or more is not preferable because the dispersibility in the composition will be significantly reduced and the effect of blending will be reduced. Such a multimer can be synthesized by first introducing a halogen at the allyl or benzyl position, and then taking advantage of its high reactivity and treating it in the presence of a catalyst, as described in the example below. . The compatibility between these halogenated acenaphthylene polymers and polymeric substances is good even without any substituents, but it can be further improved by introducing methyl groups, methoxy groups, methyl ester groups, etc. . This improves the processability during kneading and molding and the property of not volatilizing or exuding when the molded product is used for a long time at high temperatures. However, substituents with an excessively large number of carbon atoms are difficult to synthesize, and long-chain alkyl groups need to be avoided because they reduce flame retardancy and radiation resistance. Examples of substituents introduced for this purpose include alkyl groups having 1 to 4 carbon atoms, alkoxy groups, and alkyl ester groups. In order to exhibit the effects of the present invention, the blending amount must be at least 0.5 parts by weight per 100 parts by weight of the above-mentioned polymeric substance. Next, the composition as described above is molded into a suitable molded article, and the molding method may be extrusion molding, pressure molding or roll molding without particular limitation. The double bond between carbon 1 and carbon 2 of the halogenated acenaphthylene unit has radical polymerizability. Therefore, after mixing a multimer into a polymeric substance and forming a composition, it is further made into a multimer by subjecting it to a free radical generation treatment. In advance, dicumyl peroxide, 1,3-bis(t-butylperoxyisopropyl)benzene, 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne-3, di-t-butyl An appropriate amount of an organic peroxide such as peroxide, t-butyl hydroperoxide, di-isopropylbenzene hydroperoxide, or cumene hydroperoxide is mixed in and heated, or
There are methods such as irradiation with ionizing radiation such as rays, gamma rays, and electron beams. In the present invention, it is of course possible to add other reinforcing agents, extenders, crosslinking aids, pigments, lubricants, heat-light stabilizers, etc. to the above composition according to the purpose of use, as long as the properties do not deteriorate. do not have. According to the present invention, as is clear from the above description and the examples described later, in the method for producing a flame-retardant polyolefin molded product by incorporating a hydrated metal oxide, the deterioration of the mechanical properties of the resulting molded product is significantly suppressed. However, it is possible to solve the above-mentioned problems such as obtaining a highly flame-retardant molded article, and its industrial value is extremely high. The present invention will be specifically explained below with reference to Examples. Example of producing a multimer of halogenated acenaphthylene 1 A solution of 1 mol of 1,2,3,5-tetrabromoacenaphthene (C 12 H 6 Br 4 ) in benzene (500 g), 2 mol of potassium bromide, and 0.2 mol of potassium bromate. An aqueous solution (600 g) of was placed in a three-necked flask and mixed with vigorous stirring in a dark place. Two moles of concentrated sulfuric acid was diluted with the same volume of water, and the mixture was added dropwise at around 10° C. under stirring, and reacted for 3 hours. After the reaction was completed, the benzene layer was washed with water, an aqueous solution of caustic soda (2%), and water again in this order, and dried with silica gel. Next, the dry benzene solution was transferred to a three-necked flask, and a warm ethanol solution in which about 2 moles of potassium hydroxide had been dissolved was added dropwise from a side pipe to carry out a dehydrobromation reaction. After the reaction was completed, the benzene layer was washed with water and dried. Furthermore, benzene was distilled off under reduced pressure, and the residue was thoroughly washed and dried with hot acetone to obtain a bromoacenaphthylene condensate. The compositional formula estimated from elemental analysis of the condensate was (C 12 H 3 .7 Br 2 .9 )l. The degree of condensation l determined by GPC measurement was 2 to 5 as the main component. Example 2 A catalytic amount of stannic chloride was added to a chloroform solution of 1,2,3,5-tetrabromoacenaphthene and gently boiled and refluxed for about 3 hours. After the reaction was completed, the mixture was washed with water, dried, and chloroform was distilled off. Next, the residue was dissolved in benzene, and a dehydrobromination reaction was carried out in the same manner as in Example 1. The benzene layer was washed with water, dried, and then benzene was distilled off and thoroughly washed with hot acetone. The compositional formula of the obtained bromoacenaphthylene condensate is (C 12 H 4 . 1 Br 2 . 3 )l
The main components had a degree of condensation l of 2 to 7 as determined by GPC measurement. Example 3 Dissolve 154 g of acetonaphthene in approximately 340 ml of carbon tetrachloride, maintain the temperature at 10°C, and dissolve 154 g of ferric chloride.
g was added. To this was added dropwise 960 g of bromine diluted with carbon tetrachloride while stirring well. After the dropwise addition was completed, the reaction system was heated to 45 to 55°C to complete the reaction. Next, the catalyst was filtered off, the solution was washed with water, and carbon tetrachloride was distilled off to obtain an intermediate bromoacenaphthene condensate. Next, in the same manner as in Example 1, the bromoacenaphthene condensate was subjected to a dehydrobromination reaction. The benzene layer was washed with water, dried, and then benzene was distilled off and thoroughly washed with hot acetone. The compositional formula of the obtained bromoacenaphthylene condensate was ( C12H1.7Br3.8 )l, and the degree of condensation l as measured by GPC was 2 to 3 as the main component. Examples 1 to 3 and Comparative Examples 1 to 3 The compounds shown in Table 1, including polyethylene and aluminum hydroxide, were well kneaded with a heated roll, and this mixture was press-molded at 160°C for 30 minutes. Sheets with a thickness of 1 mm and 3 mm were obtained. The obtained sheet has mechanical properties and heat resistance according to JIS C 3005 (heating conditions: 150℃,
168 hours) and the oxygen index was measured according to JIS K 7201. The results are also shown in the same table. As is clear from the table, it is clear that the addition of the halogenated acenaphthylene polymer improves the mechanical properties and heat resistance of the composition, which are degraded by the addition of aluminum hydroxide, magnesium hydroxide, and the like.

【表】 実施例4〜7および比較例4〜5 エチレン−酢酸ビニル共重合体、水酸化アルミ
を始めとする表2に示した配合物を加熱ロールに
て良く練和し、得られた混和物を150℃にて10分
間プレス成形し、1mmおよび3mm厚のシートを得
た。得られたシートについて1mm厚シートは片面
より15Mrad、3mm厚シートは両面よりそれぞれ
電子線加速器にて電子線を各々10Mrad照射して
試料とした。 得られた試料は実施例1と同様にして機械的特
性、耐熱性、酸素指数を測定し結果を表2に示し
た。 表から明らかな如く、ハロゲン化アセナフチレ
ンの多量体の配合により組成物の機械的特性、耐
熱性、難燃性が著しく向上することが明らかであ
る。
[Table] Examples 4 to 7 and Comparative Examples 4 to 5 The blends shown in Table 2, including the ethylene-vinyl acetate copolymer and aluminum hydroxide, were thoroughly kneaded with a heating roll, and the resulting mixture The product was press-molded at 150° C. for 10 minutes to obtain sheets with a thickness of 1 mm and 3 mm. The obtained sheets were irradiated with an electron beam of 10 Mrad from one side of the 1 mm thick sheet, and 10 Mrad of electron beam from both sides of the 3 mm thick sheet using an electron beam accelerator. The mechanical properties, heat resistance, and oxygen index of the obtained sample were measured in the same manner as in Example 1, and the results are shown in Table 2. As is clear from the table, it is clear that the mechanical properties, heat resistance, and flame retardance of the composition are significantly improved by incorporating the halogenated acenaphthylene polymer.

【表】 以上の実施例から明らかな如く、本発明方法に
よれば優れた諸特性をもつた難燃性ポリオレフイ
ン成形体が製造できるものであり、その工業的価
値は極めて大きいものである。
[Table] As is clear from the above examples, flame-retardant polyolefin molded articles having excellent properties can be produced according to the method of the present invention, and its industrial value is extremely large.

Claims (1)

【特許請求の範囲】 1 ポリオレフイン100重量部に対して、水和金
属酸化物粉末80〜250重量部と一般式、 (但し、式中Xは水素、塩素、臭素の群から選
らばれたいずれかの原子、Yは塩素または臭素原
子、mは2〜6の整数、Rはハロゲン原子以外の
置換基、nは0〜4の整数、nが2以上の場合R
は同一または異種のいずれでもよい、m+n≦
6)で表わされる単位を構成要素とするハロゲン
化アセナフチレンの多量体を少くとも0.5重量部
を配合し、この組成物にて所望の成形体を成形し
た後、得られた成形体に遊離基発生処理を施すこ
とを特徴とする難燃性ポリオレフイン成形体の製
造方法。
[Claims] 1. 80 to 250 parts by weight of hydrated metal oxide powder and the general formula, based on 100 parts by weight of polyolefin. (However, in the formula, X is any atom selected from the group of hydrogen, chlorine, and bromine, Y is a chlorine or bromine atom, m is an integer from 2 to 6, R is a substituent other than a halogen atom, and n is 0 An integer of ~4, if n is 2 or more, R
may be the same or different, m+n≦
After blending at least 0.5 parts by weight of a halogenated acenaphthylene polymer containing the unit represented by 6) as a constituent element and molding this composition into a desired molded product, free radicals are generated in the resulting molded product. A method for producing a flame-retardant polyolefin molded article, which comprises subjecting it to a treatment.
JP13720581A 1981-09-01 1981-09-01 Preparation of flame retardant molded polyolefin article Granted JPS5838736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13720581A JPS5838736A (en) 1981-09-01 1981-09-01 Preparation of flame retardant molded polyolefin article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13720581A JPS5838736A (en) 1981-09-01 1981-09-01 Preparation of flame retardant molded polyolefin article

Publications (2)

Publication Number Publication Date
JPS5838736A JPS5838736A (en) 1983-03-07
JPS62182B2 true JPS62182B2 (en) 1987-01-06

Family

ID=15193238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13720581A Granted JPS5838736A (en) 1981-09-01 1981-09-01 Preparation of flame retardant molded polyolefin article

Country Status (1)

Country Link
JP (1) JPS5838736A (en)

Also Published As

Publication number Publication date
JPS5838736A (en) 1983-03-07

Similar Documents

Publication Publication Date Title
JP3358228B2 (en) Resin composition and insulated wire and insulated tube therefrom
JPS6025063B2 (en) Radiation-resistant and flame-retardant treatment method for polymeric materials
JPS62182B2 (en)
JP2636380B2 (en) Halogenated bis (4-phenoxyphenyl) ether and flame-retardant high molecular composition containing the same
JPS6135230B2 (en)
JP3621232B2 (en) Flame-retardant polyolefin resin molding
JPS6140266B2 (en)
JPS6017446B2 (en) Radiation resistant resin composition
JPS6034978B2 (en) Method for manufacturing flame-retardant polyolefin molded body
JPS6015655B2 (en) Method for producing a flame-retardant polymer composition molded article
JPS6253358A (en) Flame-retardant composition
JPS6320259B2 (en)
JPS6158095B2 (en)
JPH0450251A (en) Vinyl chloride resin composition
JPH04149238A (en) Flame retardant silane-crosslinked polyolefin composition
JPS59206454A (en) Flame-retardant acrylic resin composition having improved transparency
JP2662783B2 (en) Flame retardant fluororesin composition
JPS6239161B2 (en)
JPS6014779B2 (en) Method for producing flame-retardant resin composition molded article
JPH0621217B2 (en) Flame-retardant resin composition
JPH01186707A (en) Fire-resistant insulating composition
JPS626565B2 (en)
KR810001777B1 (en) Flame Retardant Nylon Composition
JPH0352483B2 (en)
WO2022080239A1 (en) Flame-retardant polypropylene-based resin composition