JPS62181772A - biological reactor - Google Patents
biological reactorInfo
- Publication number
- JPS62181772A JPS62181772A JP61023472A JP2347286A JPS62181772A JP S62181772 A JPS62181772 A JP S62181772A JP 61023472 A JP61023472 A JP 61023472A JP 2347286 A JP2347286 A JP 2347286A JP S62181772 A JPS62181772 A JP S62181772A
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- tank
- separation
- separation membrane
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012528 membrane Substances 0.000 claims abstract description 72
- 238000000926 separation method Methods 0.000 claims abstract description 47
- 238000006243 chemical reaction Methods 0.000 claims abstract description 28
- 238000007664 blowing Methods 0.000 claims abstract description 6
- 239000012510 hollow fiber Substances 0.000 claims abstract description 4
- 244000005700 microbiome Species 0.000 claims abstract description 3
- 239000012466 permeate Substances 0.000 claims description 8
- 210000001601 blood-air barrier Anatomy 0.000 claims description 2
- 239000007788 liquid Substances 0.000 abstract description 20
- 230000015572 biosynthetic process Effects 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 4
- 230000010287 polarization Effects 0.000 abstract description 4
- 238000012423 maintenance Methods 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 21
- 238000000034 method Methods 0.000 description 6
- 239000011550 stock solution Substances 0.000 description 5
- 238000000855 fermentation Methods 0.000 description 4
- 230000004151 fermentation Effects 0.000 description 4
- 238000004065 wastewater treatment Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 3
- 238000000108 ultra-filtration Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000005273 aeration Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D65/00—Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
- B01D65/02—Membrane cleaning or sterilisation ; Membrane regeneration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2321/00—Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
- B01D2321/18—Use of gases
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Treatment Of Biological Wastes In General (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は生物反応装置に係り、特に反応装置の槽体内に
設置された分離膜の膜面に沿う原液流速を高めることに
より透過液量を増大させるようにした生物反応装置に関
するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a biological reaction device, and particularly to a method for increasing the flow rate of a stock solution along the membrane surface of a separation membrane installed in a tank body of a reaction device to reduce the amount of permeated liquid. The present invention relates to a biological reaction device designed to increase the number of biological reactors.
[従来の技術]
生物処理装置と脱会lll装置とを組み合わせた生物反
応装置が廃水処理装置の分野などにおいて知られている
0例えば、生物処理装置からの生物処理液を膜分離処理
し、この濃縮液を生物処理装置に返送するようにしたも
のが、また生物処理後の処理液を膜分離し、処理水の水
質向上を図るようにしたものが考えられている。[Prior Art] A biological reaction device that combines a biological treatment device and a deassertion device is known in the field of wastewater treatment devices. There are systems in which the liquid is returned to the biological treatment equipment, and systems in which the treated liquid after biological treatment is separated by a membrane to improve the quality of the treated water.
このような膜分離手段と生物反応手段とを組み合わせた
装置によれば高度な廃水処理等の生物処理を行なえる。An apparatus that combines such membrane separation means and biological reaction means allows advanced biological treatment such as wastewater treatment to be performed.
[発明が解決しようする問題点]
しかしながら、上記従来の生物反応手段と膜分離手段と
を組み合わせた反応装置は、生物反応槽と膜分離装置と
が別体に設けられているので、原液を生物処理手段に送
給する手段及び膜分離用動力装置を別途に設けることが
必要であり、動力コスi・が嵩むと共に、装置全体の構
成が大型化され、コンパクト化にも限界があった。[Problems to be Solved by the Invention] However, in the above-mentioned conventional reaction device that combines a biological reaction means and a membrane separation means, the biological reaction tank and the membrane separation device are provided separately. It is necessary to separately provide a means for feeding to the processing means and a power unit for membrane separation, which increases the power cost and increases the size of the entire apparatus, which limits the ability to make it compact.
[問題点を解決するための手段]
未出願人は、このような問題を解決するものとして、密
閉式の生物反応槽体内に分gI膜を装入設置すると共に
、この分離膜透過液を槽体外への取出可能とし、槽体内
の圧力を利用して液の膜透過を行わせるよう構成した生
物反応装置(特願昭60−92953.以下、「先願I
」という、)及び、流動層型反応装置の槽体内の流動層
形成部の下方に分離膜を設置すると共に、流動層処理水
を槽体の上部から取り出して槽体下部へ循環して膜透過
液を生産水として槽体外へ取り出すようにした生物反応
装置(昭和61年1月9日出願、以下、「先願II J
という、)を提案した。上記先願I及びIIによれば、
槽体内に分離膜が設置されているので、119分離用動
力装置を別途に設けることが不要で、しかも装置全体の
コンパクト化を図ることが可能とされる。[Means for Solving the Problems] In order to solve these problems, the unapplicant has charged and installed a separation membrane in a closed biological reaction tank, and transferred the permeate of this separation membrane to the tank. A biological reaction device configured to be able to be taken out of the body and to allow liquid to permeate through a membrane using the pressure inside the tank (Japanese Patent Application No. 60-92953. Hereinafter referred to as "Prior Application I
), and a separation membrane is installed below the fluidized bed formation part in the tank of the fluidized bed reactor, and the fluidized bed treated water is taken out from the top of the tank and circulated to the bottom of the tank to pass through the membrane. A biological reaction device in which the liquid is taken out of the tank as produced water (filed on January 9, 1985, hereinafter referred to as "Prior Application II J
) was proposed. According to the above prior applications I and II,
Since the separation membrane is installed inside the tank, there is no need to separately provide a power unit for 119 separation, and the entire device can be made more compact.
本発明は、上記先願I及び先願■に基き、更に鋭、−!
検11・1を屯ねた結果完成されたものであり、生物反
応装置内にガスを吹き込むことによりfI’2面流速全
流速くし、高い透過液IJ−を維持するよう構成したも
のである。The present invention is based on the above-mentioned prior application I and prior application (2), and furthermore, -!
It was completed as a result of the results of the 11/1 test, and was designed to increase the total flow rate on the fI'2 surface by blowing gas into the biological reaction device, thereby maintaining a high permeate IJ-.
即ち1本発明は、生物反応装置の槽体内に分離膜を、−
I:、)1″方向にかつこの分離1模の透過液を槽体外
へ取出可能に設けると共に、該槽体内の分離1模の下方
にガスの吹込手段を設けたものである。That is, 1 the present invention provides a separation membrane in the tank body of a biological reaction device, -
I:, ) 1'' direction so that the permeated liquid of this separation 1 pattern can be taken out of the tank body, and a gas blowing means is provided below the separation pattern 1 inside the tank body.
[作用]
膜面に沿って流れる原水(原液)の流速(nり面流速)
を高めることにより、透過液量を高い水準に維持できる
ことは、種々の研究の結果、経験的に知見されている0
本発明においては、吹き込まれたガスが膜面に沿って上
昇することにより1模而流速が高められ、高透過液量が
維持される。また、槽体内に分離膜が装入設置されてい
るので、上記先願と同様に、膜分離用動力装置を別途に
設ける必要がなく装置全体のコンパクト化を図ることが
可能である。[Effect] Flow velocity of raw water (undiluted solution) flowing along the membrane surface (n-plane flow velocity)
As a result of various studies, it has been empirically found that the amount of permeated liquid can be maintained at a high level by increasing the
In the present invention, the blown gas rises along the membrane surface, thereby increasing the flow rate and maintaining a high permeate amount. In addition, since the separation membrane is charged and installed in the tank body, there is no need to separately provide a power unit for membrane separation, as in the above-mentioned prior application, and it is possible to make the entire apparatus more compact.
し、かも、ガスの気泡や液流が分離膜面に接触すること
により、膜面の濃度分極やゲル層の形成を抑制し、より
高い透過液量を維持することができる。Moreover, the contact of gas bubbles and liquid flow with the separation membrane surface suppresses concentration polarization and gel layer formation on the membrane surface, making it possible to maintain a higher amount of permeated liquid.
[実施例] 以下図面を参照して実施例について説明する。[Example] Examples will be described below with reference to the drawings.
第1図は本発明の実施例に係る生物反応装置の縦断面図
、第2図は第1図のrr −n線に沿う断面図、第3図
は第1図の■の部分の拡大図である。Fig. 1 is a longitudinal cross-sectional view of a biological reaction device according to an embodiment of the present invention, Fig. 2 is a cross-sectional view taken along line rr-n in Fig. 1, and Fig. 3 is an enlarged view of the part marked ■ in Fig. 1. It is.
lは反応装置の槽体であって、気密な耐圧容器である。1 is the tank body of the reaction apparatus, which is an airtight pressure vessel.
この槽体lには、その底部に原液の導入管2が接続され
ている。また槽体1の上部にはガスの循環用の配管3が
接続され、抜き出されたガスは、ブロワBにより槽体l
の底部の散気口4から噴出されるように構成されている
。なお、5は槽体内の圧力調整のためのガス抜管であり
、調圧弁5aが介、没されている。A stock solution introduction pipe 2 is connected to the bottom of the tank l. Further, a pipe 3 for gas circulation is connected to the upper part of the tank body 1, and the extracted gas is transferred to the tank body by a blower B.
The air is ejected from the air diffuser port 4 at the bottom of the air diffuser. Note that 5 is a gas vent pipe for regulating the pressure inside the tank body, and a pressure regulating valve 5a is inserted therein.
槽体lの内部には、中空糸あるいは管型の多数の分11
11196を集合せしめてなる1模モジユール7が配6
1シされている。この膜モジュール7は、筒形ケーシン
グ8、該筒形ケーシング8の丘下の両(5V40に鏡板
状に設けられた有孔の支持板9.10を有し、前記分l
Il膜6の上下の端部は該支持板9゜10の貫通孔9a
、10aに挿入されて固定されている。このように、分
lll膜6は、それぞれが上下方向(本実施例ではほぼ
鉛直方向)に配設されており、分KII!J6の内部は
槽体l内に直に連通した状態となっている。Inside the tank l, there are a large number of hollow fiber or tube-shaped parts 11.
1 model module 7 consisting of a collection of 11196 is arranged 6
1 has been done. This membrane module 7 has a cylindrical casing 8, a perforated support plate 9.10 provided in the shape of a mirror plate on both sides (5V40) under the hill of the cylindrical casing 8, and
The upper and lower ends of the Il film 6 are connected to the through holes 9a of the support plate 9°10.
, 10a and fixed. In this way, the minute KII! membranes 6 are each arranged in the vertical direction (almost vertically in this embodiment), and the minute KII! The inside of J6 is in direct communication with the inside of tank l.
一方1分1llI膜6の外周部分は、前記筒形ケーシン
グ8で囲まれており、透過水室11となっている。On the other hand, the outer periphery of the 1/1/1I membrane 6 is surrounded by the cylindrical casing 8, and forms a permeate chamber 11.
第3図に示す如く、このケーシング8の下部側壁と前記
槽体lの下部側壁には、それぞれ略同−高さに透過木の
抜出口12.13が開設されており、両抜出口12.1
3は、槽体lの抜出口13周縁から槽体中心方向に突設
された短管14を介して連通されている。符号15は短
管14の先端と抜出口12縁部との封塞をなすシール部
材である。As shown in FIG. 3, the lower side wall of the casing 8 and the lower side wall of the tank l are provided with transparent wood extraction ports 12.13 at approximately the same height, respectively. 1
3 are communicated with each other via a short pipe 14 protruding from the periphery of the outlet 13 of the tank l toward the center of the tank. Reference numeral 15 is a sealing member that seals the tip of the short tube 14 and the edge of the extraction port 12.
このように構成された実施例装置において、導入管2か
ら給液ポンプPにより槽体l内に導入された原液は、槽
体l内に存在している微生物によって生物的な反応(例
えば分解、発酵等)を受け、低分子化した生成物はブロ
ワBの作動により散気口4より吹き出される気泡Gに伴
流されて分、箪膜6の内部6aに入り、該内部6aを通
過する途中で分、III!J6を透過して透過水室11
に入る。In the embodiment device configured as described above, the stock solution introduced into the tank l from the introduction pipe 2 by the liquid supply pump P is subjected to biological reactions (e.g. decomposition, Fermentation, etc.), the low-molecular products are followed by bubbles G blown out from the air diffuser 4 by the operation of the blower B, enter the interior 6a of the chamber membrane 6, and pass through the interior 6a. Minutes on the way, III! Permeated water chamber 11 through J6
to go into.
そして、透過水抜出口12.13より槽体l外に取り出
される(矢印A)。The permeated water is then taken out of the tank body l through the permeated water outlet 12.13 (arrow A).
また、導入された原液に含まれる高分子成分のうち十分
な生物処理を受けなかったものは、分離膜6の内部6a
l、41昇してその上端を抜は出た後、モジュール7と
槽体1との間を下降し、4PJ体lの底部に戻される。In addition, among the polymer components contained in the introduced stock solution, those that have not undergone sufficient biological treatment are removed from the inside 6a of the separation membrane 6.
1, 41, and after exiting the upper end, it descends between the module 7 and the tank body 1, and is returned to the bottom of the 4PJ body 1.
そして、この途中において、あるいはその後の循環の途
中において生物的な処理を受け、低分子化した生成物は
、前述の如く分離11126の内部6aから分#、1膜
6を透過し、透過水抜出口12.13より槽体1外に取
り出される。During this process or during the subsequent circulation, the products that have been biologically treated and reduced in molecular weight pass through the membrane 6 from the inside 6a of the separation 11126 for several minutes, and pass through the permeated water outlet. It is taken out of the tank body 1 from 12.13.
また、この生物反応に伴ってメタン等のガスが発生する
が、所要量のガスは配管3で循環され、余剰のガスはガ
ス抜115から槽体■外にtノ1出される。Further, gas such as methane is generated as a result of this biological reaction, and the required amount of gas is circulated through the pipe 3, and the excess gas is discharged from the gas vent 115 to the outside of the tank body.
[−記のように、本′支施例装71&こおいては、槽体
1内に分離膜6が装入され、槽体l内に原水を送給する
ためのポンプ圧を利用して液の分離1112透過が図れ
るので5従来の膜分離装置のような加圧供給機構(動力
装置)を別途に設置する必要はなく、装置構成の簡易化
及びコンパクト化を図ることができる。[As shown in -, in this embodiment, the separation membrane 6 is inserted into the tank 1, and the pump pressure is used to feed raw water into the tank 1. Since liquid separation and permeation can be achieved, there is no need to separately install a pressure supply mechanism (power unit) like in conventional membrane separation devices, and the device configuration can be simplified and made more compact.
加えて、本発明装置では散気口4から噴出された気泡G
が分離膜6の内部を通って」二昇するのであるが、この
気泡Gの−1:昇に伴流されて該膜6の膜面に沿う原水
濠速(膜面流速)が高められ、これによって高い透過水
量が維持されるようになる。In addition, in the device of the present invention, the air bubbles G ejected from the air diffuser port 4
passes through the inside of the separation membrane 6 and rises, and the raw water velocity (membrane surface flow velocity) along the membrane surface of the membrane 6 is increased by being followed by the -1: rise of this bubble G. This allows a high amount of permeated water to be maintained.
また、分、!Ill模6の下方から吹き出される気泡は
、分離1模6の内部6aを液と共に1:昇するのである
が、その際、この気泡や液流により膜面に付着したゲル
層やケーキ層が機械的に2q6されて除去される。また
、このガスのJ: ’i1及び液流により、分離膜面の
液C度分極も妨げられ均一化される。そのため、本発明
装置では、著しく高い鑓過効率及び高い透過水量が長期
間維持されるようになる。Also, minutes! The air bubbles blown out from below the separation pattern 6 rise together with the liquid inside the separation pattern 6, but at this time, the gel layer and cake layer adhering to the membrane surface are removed by the bubbles and liquid flow. Mechanically 2q6 removed. Furthermore, the J: 'i1 of the gas and the liquid flow prevent the liquid C degree polarization on the surface of the separation membrane and make it uniform. Therefore, in the device of the present invention, extremely high permeation efficiency and high amount of permeated water can be maintained for a long period of time.
」二足実施例では給液ポンプPによって槽体1内の圧力
を高めて膜透過圧を得ているが、槽体内の水深を深める
ことによっても透過水圧を得られる。勿論、両者を併用
しても良い。In the two-legged embodiment, the pressure inside the tank body 1 is increased by the liquid supply pump P to obtain the membrane permeation pressure, but the permeation water pressure can also be obtained by deepening the water depth inside the tank body. Of course, both may be used together.
また、散気口4は一箇所に限られず、分離膜の下方複数
箇所に設けるようにしても良い。Further, the aeration port 4 is not limited to one location, but may be provided at multiple locations below the separation membrane.
更に、透過水の抜出機構として、分離膜6の支持板9.
10の代わりに、第4図に示すような支持部材16とし
ても良い、第4図において、支持部材16は、モ行なモ
板19.20を有し1両板19.20の間に透過氷室2
1が形成されている。この透過氷室21を1′j通する
ように短い筒状部材22が配置役されており、これによ
って支持部材16の4:側18が室23と連通されてい
る。また、支持部材16の下側の板20には多数の透孔
24が穿設されており、分#L膜6の上端がこの透4L
24に嵌め合わされ、分離膜6内に透過してきた液が1
漠6の上端から透過氷室21内に流入し得るよう構成さ
れている。Furthermore, a support plate 9 for the separation membrane 6 is used as a permeate extraction mechanism.
10 may be replaced by a support member 16 as shown in FIG. 4. In FIG. Himuro 2
1 is formed. A short cylindrical member 22 is arranged to pass 1'j through this permeable ice chamber 21, thereby communicating the 4: side 18 of the support member 16 with the chamber 23. Further, a large number of through holes 24 are bored in the lower plate 20 of the support member 16, and the upper end of the #L membrane 6 is connected to the through hole 4L.
24, and the liquid that has permeated into the separation membrane 6 is
It is configured so that the ice can flow into the permeable ice chamber 21 from the upper end of the ice cube 6.
なお支持部材16と天地対称に下部にも支持部材が設け
られ、第4図の符す21.22で示されるものと同様の
透過氷室及び筒状部材(共に図示せず)を有しており、
分1111196の下端が、偵下部の支持部材の透過氷
室に流入可能とされると共に、槽体1内の底部近傍の部
分と室23内とが連通されている。A support member is also provided at the bottom in vertical symmetry with the support member 16, and has a permeable ice chamber and a cylindrical member (both not shown) similar to those shown at 21 and 22 in Fig. 4. ,
The lower end of the portion 1111196 is allowed to flow into the permeable ice chamber of the supporting member of the receding part, and a portion near the bottom of the tank body 1 and the inside of the chamber 23 are communicated with each other.
かかる上部及び下部の支持部材を用いた場合には、第1
図のケーシング8は設置されておらず、代わりに、槽体
1の側壁に支持部材の透過水室21から透過水を抜き出
すための配管を接続し、これにより透過水の抜き出しを
行なう、このように構成した場合でも、上記実施例と同
様の作用効果を得ることができる。When such upper and lower support members are used, the first
The casing 8 shown in the figure is not installed, and instead, piping for extracting permeated water from the permeated water chamber 21 of the support member is connected to the side wall of the tank body 1, and the permeated water is extracted by this. Even in the case of this configuration, the same effects as in the above embodiment can be obtained.
なお本発明においては、第5図及び第5図のVl−71
線に沿う断面図である第6図に示す如く、膜モジュール
7は槽体1内に複数配設しても良い、この場合には散気
口4は各モジュール毎に複数設けるのが良く、このよう
な装置によれば rp位容積又は栄位設置スペース当り
の1漠分離効率は相当に高められる。第5.6図の実施
例において、透過水の抜出は各モジュール毎に行なって
も良く、別途透過水の集水管を配設し、集水して抜き出
しても良い、(なお、第5図及び第6図において、第1
図及び第2図と同一部材は同一符号をもって示し、その
説明を省略する。)
本発明において1分離1模6の形態としては、中空糸1
1り、キャピラリー膜、又はチューブラ−膜等が好適で
ある。In addition, in the present invention, Vl-71 shown in FIGS.
As shown in FIG. 6, which is a sectional view along the line, a plurality of membrane modules 7 may be arranged in the tank body 1. In this case, it is preferable to provide a plurality of air diffusers 4 for each module. With such a device, the separation efficiency per unit volume or installation space can be increased considerably. In the embodiment shown in Fig. 5.6, the permeated water may be extracted from each module, or a separate permeated water collection pipe may be installed to collect and extract the water (in addition, the permeated water may be extracted from the In Fig. 6 and Fig. 6, the first
Components that are the same as those in the figures and FIG. ) In the present invention, as the form of 1 separation 1 pattern 6, hollow fiber 1
1, capillary membranes, tubular membranes, etc. are suitable.
この分離膜の種類としては、逆浸透膜、限外吐過膜、精
密濾過1漠等、特に限定されることなく各種のものを用
いることができ、反応の種類に応じて選定すれば良い0
例えば廃水処理に用いる場合には、孔径0.1−0.0
11Lm程度の精密濾過膜を、また高度な廃水処理を行
なう場合には分画分子量が20000−1000程度の
限外鑓過膜を用いることができる。また有機酸発酵やア
ルコール発酵等を行なう場合は、生成した有機酸。The type of separation membrane is not particularly limited, such as reverse osmosis membranes, ultrafiltration membranes, precision filtration membranes, etc., and can be selected depending on the type of reaction.
For example, when used for wastewater treatment, the pore size is 0.1-0.0.
A precision filtration membrane of about 11 Lm or an ultrafiltration membrane with a molecular weight cut-off of about 20,000 to 1,000 can be used when performing advanced wastewater treatment. In addition, when performing organic acid fermentation or alcohol fermentation, the organic acid produced.
アルコールが透過する特性の精密症過膜、限外濾過11
りを用いることができる。Precision membrane that allows alcohol to pass through, ultrafiltration 11
can be used.
本発明の装置は、好気性処理や発酵処理を行うのが好適
であるが、J111気性処理にも適用できる。The apparatus of the present invention is suitable for performing aerobic treatment or fermentation treatment, but can also be applied to J111 aerobic treatment.
また、本発IJIにおいて、微生物は各種の方式によっ
て槽体内に装入維持させることができる0例えば、流動
床方式、スラッジブランケット方式あるいは浮遊方式の
いずれでもよい。In the IJI of the present invention, the microorganisms can be charged and maintained in the tank by various methods, such as a fluidized bed method, a sludge blanket method, or a floating method.
[発明の効果]
以上の通り1本発明の生物反応装置においては、反応槽
体内に分離膜が組み込まれ、4PI体内の原液供給圧力
を利用して分離膜の透過が図られているものにおいて、
11々面流速が増大され透過液量が高水準に維持される
。しかも膜面の濃度分極やゲル層の形成も抑制され、極
めて高効率の膜分離処理が行なわれる。[Effects of the Invention] As described above, in the biological reaction device of the present invention, a separation membrane is incorporated in the reaction tank body, and permeation through the separation membrane is achieved using the stock solution supply pressure in the 4PI body.
11 The surface flow velocity is increased and the amount of permeate is maintained at a high level. Furthermore, concentration polarization on the membrane surface and formation of a gel layer are suppressed, and membrane separation processing is performed with extremely high efficiency.
加えて、本発明装ごは膜分離と生物反応とを複合させる
ものであるから高度な生物反応を行なわせることができ
、しかも装置全体の構成が極めてコンパクトであり、且
つ膜透過用の動力装置を別途に設ける必要がない。In addition, since the device of the present invention combines membrane separation and biological reaction, it is capable of performing advanced biological reactions, and the overall configuration of the device is extremely compact. There is no need to provide a separate one.
7JS1図は本発明の実施例装置の縦断面図、第2図は
第1図TI −II線に沿う横断面図、第3図は第1図
のm部の拡大図である。第4図は本発明の他の実施例装
置を説明する支持部材の断面の拡大図である。第5図は
本発明の別の実施例装置の縦断面図、第6図は第5図の
Vl−Vl線に沿う横断面図である。
■・・・槽体、 3・・・ガス抜出管、4・・
・通気口、 6・・・分#1模。
7・・・膜モジュール。
代理人 弁理士 重 野 剛
第4図
第6図7JS1 is a longitudinal cross-sectional view of the apparatus according to the embodiment of the present invention, FIG. 2 is a cross-sectional view taken along line TI-II in FIG. 1, and FIG. 3 is an enlarged view of section m in FIG. 1. FIG. 4 is an enlarged cross-sectional view of a support member illustrating another embodiment of the present invention. FIG. 5 is a longitudinal cross-sectional view of another embodiment of the device of the present invention, and FIG. 6 is a cross-sectional view taken along the line Vl--Vl in FIG. ■... Tank body, 3... Gas vent pipe, 4...
・Vent, 6 minutes #1 model. 7...Membrane module. Agent Patent Attorney Tsuyoshi Shigeno Figure 4 Figure 6
Claims (3)
装置において、該槽体内に分離膜を、上下方向にかつこ
の分離膜の透過液を槽体外へ取出可能に設けると共に、
該槽体内の分離膜の下方にガスの吹込手段を設けたこと
を特徴とする生物反応装置。(1) In a biological reaction device that performs a biological reaction using microorganisms in a tank body, a separation membrane is provided in the tank body in the vertical direction and the permeate of the separation membrane can be taken out from the tank body,
A biological reaction device characterized in that a gas blowing means is provided below the separation membrane in the tank body.
ラー膜であることを特徴とする特許請求の範囲第1項に
記載の生物反応装置。(2) The biological reaction device according to claim 1, wherein the separation membrane is a hollow fiber membrane, a capillary membrane, or a tubular membrane.
循環させたガスであることを特徴とする特許請求の範囲
第1項又は第2項に記載の生物反応装置。(3) The biological reaction device according to claim 1 or 2, wherein the gas is a gas generated in the tank body that is collected and recirculated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61023472A JPS62181772A (en) | 1986-02-05 | 1986-02-05 | biological reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61023472A JPS62181772A (en) | 1986-02-05 | 1986-02-05 | biological reactor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62181772A true JPS62181772A (en) | 1987-08-10 |
Family
ID=12111472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61023472A Pending JPS62181772A (en) | 1986-02-05 | 1986-02-05 | biological reactor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62181772A (en) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01224007A (en) * | 1988-03-02 | 1989-09-07 | Akua Runesansu Gijutsu Kenkyu Kumiai | Cleaning method in liquid treating device |
JPH02150272A (en) * | 1988-11-30 | 1990-06-08 | Hitachi Ltd | Biological cell culture method, culture system, and culture device |
JPH02268890A (en) * | 1989-04-11 | 1990-11-02 | Tokyu Constr Co Ltd | Device for treating sewage by hollow-fiber membrane |
JPH02268892A (en) * | 1989-04-11 | 1990-11-02 | Tokyu Constr Co Ltd | Sewage treating device using hollow-fiber-membrane module |
JPH02268889A (en) * | 1989-04-11 | 1990-11-02 | Tokyu Constr Co Ltd | Treatment of sewage by hollow-fiber membrane |
JPH04215892A (en) * | 1990-09-03 | 1992-08-06 | Kubota Corp | Sewage purifying tank |
JPH04341394A (en) * | 1991-03-12 | 1992-11-27 | Kubota Corp | Sewage disposal facility |
WO2000037369A1 (en) * | 1998-12-18 | 2000-06-29 | Zenon Environmental Inc. | Submerged membrane bioreactor for treatment of nitrogen containing water |
JP2002052316A (en) * | 2000-08-10 | 2002-02-19 | Yuasa Corp | Tubular membrane element and immersion filtration system using the same |
JP2002052315A (en) * | 2000-08-10 | 2002-02-19 | Yuasa Corp | Tubular membrane element and immersion filtration system using the same |
JP2002052317A (en) * | 2000-08-10 | 2002-02-19 | Yuasa Corp | Tubular membrane element and immersion filtration system using the same |
JP2002052318A (en) * | 2000-08-10 | 2002-02-19 | Yuasa Corp | Tubular membrane element and immersion filtration system using the same |
WO2002013954A1 (en) * | 2000-08-10 | 2002-02-21 | Yuasa Corporation | Immersion type membrane filter |
JP2002177745A (en) * | 2000-12-13 | 2002-06-25 | Yuasa Corp | Air bubble supply device for immersion type membrane filtration system |
JP2002292254A (en) * | 2001-03-29 | 2002-10-08 | Yuasa Corp | Immersion type membrane filtration device |
JP2002336660A (en) * | 2001-05-18 | 2002-11-26 | Yuasa Corp | Immersion type membrane filtration device and immersion type membrane filtration method |
JP2002336854A (en) * | 2001-05-18 | 2002-11-26 | Yuasa Corp | Immersion type membrane filtration device for septic tank |
JP2003047830A (en) * | 2001-08-06 | 2003-02-18 | Yuasa Corp | Immersion type membrane filtration device and immersion type membrane filtration method |
JP2003053378A (en) * | 2001-08-13 | 2003-02-25 | Ngk Insulators Ltd | Method and device for treating water by using separation membrane |
JP2003103279A (en) * | 2001-09-28 | 2003-04-08 | Yuasa Corp | Septic tank |
US6616843B1 (en) | 1998-12-18 | 2003-09-09 | Omnium De Traitement Et De Valorisation | Submerged membrane bioreactor for treatment of nitrogen containing water |
JP2006101805A (en) * | 2004-10-07 | 2006-04-20 | Japan Organo Co Ltd | Hollow fiber membrane type bioreactor and liquid treatment method using the same |
JPWO2005068379A1 (en) * | 2004-01-13 | 2007-08-23 | 伊藤忠林業株式会社 | Wastewater purification system |
US8147699B2 (en) | 2002-08-21 | 2012-04-03 | Hpd, Llc | Monolith filter apparatus and membrane apparatus, and method using same |
WO2014192416A1 (en) * | 2013-05-30 | 2014-12-04 | 住友電気工業株式会社 | Filtration device and filtration method using same |
JP2021526970A (en) * | 2018-06-12 | 2021-10-11 | デュポン セイフティー アンド コンストラクション インコーポレイテッド | Filtration system and how to filter water |
-
1986
- 1986-02-05 JP JP61023472A patent/JPS62181772A/en active Pending
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01224007A (en) * | 1988-03-02 | 1989-09-07 | Akua Runesansu Gijutsu Kenkyu Kumiai | Cleaning method in liquid treating device |
JPH02150272A (en) * | 1988-11-30 | 1990-06-08 | Hitachi Ltd | Biological cell culture method, culture system, and culture device |
JPH02268890A (en) * | 1989-04-11 | 1990-11-02 | Tokyu Constr Co Ltd | Device for treating sewage by hollow-fiber membrane |
JPH02268892A (en) * | 1989-04-11 | 1990-11-02 | Tokyu Constr Co Ltd | Sewage treating device using hollow-fiber-membrane module |
JPH02268889A (en) * | 1989-04-11 | 1990-11-02 | Tokyu Constr Co Ltd | Treatment of sewage by hollow-fiber membrane |
JPH04215892A (en) * | 1990-09-03 | 1992-08-06 | Kubota Corp | Sewage purifying tank |
JPH04341394A (en) * | 1991-03-12 | 1992-11-27 | Kubota Corp | Sewage disposal facility |
US6616843B1 (en) | 1998-12-18 | 2003-09-09 | Omnium De Traitement Et De Valorisation | Submerged membrane bioreactor for treatment of nitrogen containing water |
WO2000037369A1 (en) * | 1998-12-18 | 2000-06-29 | Zenon Environmental Inc. | Submerged membrane bioreactor for treatment of nitrogen containing water |
US7022238B2 (en) | 2000-08-10 | 2006-04-04 | Yuasa Corporation | Immersion type membrane filter |
JP2002052315A (en) * | 2000-08-10 | 2002-02-19 | Yuasa Corp | Tubular membrane element and immersion filtration system using the same |
JP2002052318A (en) * | 2000-08-10 | 2002-02-19 | Yuasa Corp | Tubular membrane element and immersion filtration system using the same |
WO2002013954A1 (en) * | 2000-08-10 | 2002-02-21 | Yuasa Corporation | Immersion type membrane filter |
JP2002052317A (en) * | 2000-08-10 | 2002-02-19 | Yuasa Corp | Tubular membrane element and immersion filtration system using the same |
JP2002052316A (en) * | 2000-08-10 | 2002-02-19 | Yuasa Corp | Tubular membrane element and immersion filtration system using the same |
JP2002177745A (en) * | 2000-12-13 | 2002-06-25 | Yuasa Corp | Air bubble supply device for immersion type membrane filtration system |
JP2002292254A (en) * | 2001-03-29 | 2002-10-08 | Yuasa Corp | Immersion type membrane filtration device |
JP2002336660A (en) * | 2001-05-18 | 2002-11-26 | Yuasa Corp | Immersion type membrane filtration device and immersion type membrane filtration method |
JP2002336854A (en) * | 2001-05-18 | 2002-11-26 | Yuasa Corp | Immersion type membrane filtration device for septic tank |
JP2003047830A (en) * | 2001-08-06 | 2003-02-18 | Yuasa Corp | Immersion type membrane filtration device and immersion type membrane filtration method |
JP2003053378A (en) * | 2001-08-13 | 2003-02-25 | Ngk Insulators Ltd | Method and device for treating water by using separation membrane |
JP2003103279A (en) * | 2001-09-28 | 2003-04-08 | Yuasa Corp | Septic tank |
US8147699B2 (en) | 2002-08-21 | 2012-04-03 | Hpd, Llc | Monolith filter apparatus and membrane apparatus, and method using same |
JPWO2005068379A1 (en) * | 2004-01-13 | 2007-08-23 | 伊藤忠林業株式会社 | Wastewater purification system |
JP2006101805A (en) * | 2004-10-07 | 2006-04-20 | Japan Organo Co Ltd | Hollow fiber membrane type bioreactor and liquid treatment method using the same |
WO2014192416A1 (en) * | 2013-05-30 | 2014-12-04 | 住友電気工業株式会社 | Filtration device and filtration method using same |
CN105307982A (en) * | 2013-05-30 | 2016-02-03 | 住友电气工业株式会社 | Filtration device and filtration method using same |
JPWO2014192416A1 (en) * | 2013-05-30 | 2017-02-23 | 住友電気工業株式会社 | Filtration device and filtration method using the same |
JP2021526970A (en) * | 2018-06-12 | 2021-10-11 | デュポン セイフティー アンド コンストラクション インコーポレイテッド | Filtration system and how to filter water |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS62181772A (en) | biological reactor | |
US7087173B2 (en) | Inverted cavity aerator for membrane module | |
EP1527810B1 (en) | A permeate collection assembly | |
US20100170847A1 (en) | Membrane cleaning using an airlift pump | |
US5421999A (en) | Floating nitrification reactor in a treatment pond | |
US7037429B2 (en) | Water treatment unit | |
US20150232360A1 (en) | Apparatus and method for anaerobic wastewater treatment with membrane distillation | |
JPH012567A (en) | biological reactor | |
EP0334506A2 (en) | Apparatus for gas supply of a cell culture | |
JPH0789902B2 (en) | Bioreactor | |
US4959322A (en) | Culturing apparatus | |
JPH08117777A (en) | Liquid flow-type biochemical reaction device, and underground water or drain-purification system using the same | |
JPH07256282A (en) | Membrane separation small-sized combined purifying tank | |
JPS61120694A (en) | Treatment of organic waste water | |
JPS61249599A (en) | biological reactor | |
JPH09225487A (en) | Biological treating device | |
JP7220739B2 (en) | MEMBRANE ACTIVATED SLUDGE TREATMENT APPARATUS AND MEMBRANE ACTIVATED SLUDGE TREATMENT METHOD | |
KR20160148197A (en) | Submerged anaerobic membrane bioreactor and method for wastewater treatment using the same | |
JPH10296252A (en) | Aeration tank immersed membrane separation activated sludge apparatus | |
JPS645960B2 (en) | ||
KR101877363B1 (en) | Biological filtration tank of triple structure | |
JP3345732B2 (en) | Water purification equipment | |
JPH0618614B2 (en) | Fluidized bed reactor | |
JPS62244378A (en) | Device for pretreatment of filtration membrane | |
JP2008206430A (en) | Flat membrane element and biological reactor |