JPS62178866A - Manufacture of heat insulator - Google Patents
Manufacture of heat insulatorInfo
- Publication number
- JPS62178866A JPS62178866A JP2084386A JP2084386A JPS62178866A JP S62178866 A JPS62178866 A JP S62178866A JP 2084386 A JP2084386 A JP 2084386A JP 2084386 A JP2084386 A JP 2084386A JP S62178866 A JPS62178866 A JP S62178866A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- foam
- gas generating
- generating agent
- urethane foam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Thermal Insulation (AREA)
- Refrigerator Housings (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、冷蔵庫、冷凍プレハブ等に利用する断熱体に
関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a heat insulator used in refrigerators, frozen prefabricated products, and the like.
従来の技術
第3図は、従来の断熱体を示している。以下に従来例の
構成について第3図を参考に説明する。BACKGROUND OF THE INVENTION FIG. 3 shows a conventional heat insulator. The configuration of the conventional example will be explained below with reference to FIG.
近年、断熱箱体の断熱性能を向上させるため内2べ一/
゛
部を減圧した断熱体を用いることが注目されている。こ
の断熱体の芯材としてはパーライト等の粉末、ハニカム
、及び発泡体等が用いられている。In recent years, in order to improve the insulation performance of the insulation box, two
The use of a heat insulator with reduced pressure in the lower part is attracting attention. Powder such as perlite, honeycomb, foam, etc. are used as the core material of this heat insulating body.
例えば、特開昭57−133870号に示されるように
連続気泡を有する硬質ウレタンフオームを芯材とする提
案がなされている。この特開昭57−133870号を
第3図で説明すると、図において、1は断熱性構造体で
あり、連続気泡を有する硬質ウレタンフオーム2を気密
性薄膜から成る容器3で被い、その内部を0 、001
mm1Htまで減圧し、密閉している。硬質ウレタン
フオーム2は、独立気泡率が約80〜90%程度の市販
の材料を高温高湿下で真空脱気して気泡膜を破り、連続
気泡を得るととが特徴となっている。For example, as shown in JP-A-57-133870, a proposal has been made to use a hard urethane foam having open cells as the core material. To explain this Japanese Patent Application Laid-Open No. 57-133870 with reference to FIG. 3, 1 is a heat insulating structure in which a hard urethane foam 2 having open cells is covered with a container 3 made of an airtight thin film, and the inside thereof is 0,001
The pressure is reduced to mm1Ht and it is sealed. The rigid urethane foam 2 is characterized in that a commercially available material with a closed cell ratio of about 80 to 90% is vacuum degassed under high temperature and high humidity to break the cell membrane and obtain open cells.
発明が解決しようとする問題点
しかし、上記のような従来の断熱性構造体1では汎用の
樹脂原料を用いて通常の発泡方法によって製造した硬質
ウレタンフオーム2を基材として用いているため気泡骨
格を通じて伝導する固体熱伝導分が大きく、気体の熱伝
導分を十分に小さく3、<。Problems to be Solved by the Invention However, in the conventional heat insulating structure 1 as described above, since the rigid urethane foam 2 manufactured by a general foaming method using a general-purpose resin raw material is used as a base material, a foam skeleton is formed. The solid heat conduction component conducted through is large, and the gas heat conduction component is sufficiently small 3,<.
しなければ実用上充分な断熱性能は、得られ々かった0
すなわち、従来例においては気泡骨格径がほぼ3Qo〜
10o○μmであるため、0 、001 mmHS’ま
で減圧しないと気体熱伝導の寄与は十分に小さくならず
、優れた断熱性能が得られなかった。しかしながら生産
効率の点からみると300〜1000μm程度の気泡骨
格径を有する断熱性構造体1の内部を0.001 +m
nH? 4で排気することは、排気コンダクタンスが非
常に小さく、排気時間が非常に長くかかり、ひいては量
産性に大きな問題があった。さらに0.001 mmH
S’の高真空域では材料からのガス放出の影響を受けや
すく、特に低分子量の未反応モノマー成分を含みやすい
有機物発泡体の場合には排気時間を長くする必要がある
などの問題があった。Otherwise, it would be difficult to obtain a practically sufficient thermal insulation performance.In other words, in the conventional example, the bubble skeleton diameter was approximately 3Qo~
Since the thickness was 1000μm, the contribution of gas heat conduction would not be sufficiently reduced unless the pressure was reduced to 0,001 mmHS', and excellent heat insulation performance could not be obtained. However, from the point of view of production efficiency, the inside of the heat insulating structure 1 having a bubble skeleton diameter of about 300 to 1000 μm is 0.001 + m.
nH? 4, the exhaust conductance is very small and the evacuation time is very long, which in turn poses a major problem in mass productivity. Further 0.001 mmH
In the high vacuum region of S', it is susceptible to gas release from the material, and in particular, organic foams that tend to contain unreacted monomer components of low molecular weight have problems such as requiring a long evacuation time. .
本発明は、上記問題点に鑑み、工業的に取扱いやすい真
空度域においても優れた断熱性能を示す硬質ウレタンフ
オームを得ることにより排気時間が短縮され量産可能な
断熱体を提供することを目的とする。In view of the above-mentioned problems, an object of the present invention is to provide a heat insulator that can be mass-produced by shortening the evacuation time by obtaining a hard urethane foam that exhibits excellent heat insulation performance even in a vacuum range that is easy to handle industrially. do.
問題点を解決するだめの手段
本発明は、上記問題点を解決するために有機ポリイソシ
アネート、ポリオール、触媒、整泡剤。Means to Solve the Problems The present invention aims to solve the above problems by using organic polyisocyanates, polyols, catalysts, and foam stabilizers.
発泡剤、気泡連通化剤及び熱分解型ガス発生剤を混合発
泡して連続気泡構造の硬質ウレタンフオームを形成し、
この硬質ウレタンフオームを前記熱分解型ガス発生剤の
分解温度に達するまで加熱処理した後、断熱体の芯材と
して用いるものである。A foaming agent, a cell communication agent, and a pyrolytic gas generating agent are mixed and foamed to form a rigid urethane foam with an open cell structure.
After this hard urethane foam is heat-treated until it reaches the decomposition temperature of the pyrolyzable gas generating agent, it is used as the core material of the heat insulator.
作 用
上記構成によって発泡過程で気泡膜が破れて連続気泡率
が実質的に1oo%となり、かつ、硬化した硬質ウレタ
ンフオームを熱分解型ガス発生剤の分解温度に達する捷
で加熱処理することにより、気泡骨格中に分散していた
熱分解型ガス発生剤が分解しガス化する。このため気泡
骨格が局所的に破裂して凹凸状の平均−々厚みのものと
々す、気泡骨格を介して伝導する伝熱に対して熱抵抗が
増加し、固体熱伝導の寄与の小さい芯材を得ることがで
きる。Effect: With the above structure, the cell membrane is torn during the foaming process and the open cell ratio becomes substantially 100%, and the cured hard urethane foam is heat-treated with a knife that reaches the decomposition temperature of the pyrolytic gas generating agent. , the pyrolytic gas generating agent dispersed in the cell skeleton is decomposed and gasified. For this reason, the bubble skeleton locally ruptures and becomes uneven and has an average thickness of 100 to 300 mm.Thermal resistance increases for heat conduction through the bubble skeleton, and the contribution of solid heat conduction is small. material can be obtained.
6ベーノ
実施例
以下、実施例を挙げて本発明の断熱体を第1図、および
第2図に基づいて説明する。6 Beno Examples Hereinafter, the heat insulating body of the present invention will be explained with reference to Examples and FIGS. 1 and 2.
図において、4は下表に示す原料及び配合部数を用いて
ウレタン高圧発泡機で製造した硬質ウレタンフオームで
あり、常温でエージングした後、所定の大きさに切断し
たものである。In the figure, 4 is a hard urethane foam manufactured in a urethane high-pressure foaming machine using the raw materials and blending parts shown in the table below, and is cut into predetermined sizes after being aged at room temperature.
表において、ポリオールAは、芳香族ジアミン6、−7
゜
を開始剤としてプロピレンオキサイドを付加重合させて
得た水酸基価4404KOH/fのポリエーテルポリオ
ールである。整泡剤は、ゴールドシュミット■製テゴス
ターブB−8404、発泡剤は、昭和電工■製フロンR
−11である。触媒Aは、三共エアープロダクツ■製D
ABCO−TMR,触媒Bは、ジメチルエタノールアミ
ンである。又、気泡連通化剤は、日本油脂■製ステアリ
ン酸カルシウムである。有機ポリインシアネートAはト
ルイレンジイソシアネートとトリメチルプロパン及ジ
び%チレングリコールを反応させて得たアミン当量16
0のポリイソシアネートである。In the table, polyol A is aromatic diamine 6, -7
This is a polyether polyol with a hydroxyl value of 4404 KOH/f obtained by addition polymerization of propylene oxide using ゜ as an initiator. The foam stabilizer is Tegostarb B-8404 manufactured by Goldschmidt ■, and the foaming agent is Freon R manufactured by Showa Denko ■.
-11. Catalyst A is D manufactured by Sankyo Air Products.
ABCO-TMR, catalyst B is dimethylethanolamine. The cell communication agent is calcium stearate manufactured by Nippon Oil & Fats Corporation. Organic polyincyanate A was obtained by reacting toluylene diisocyanate with trimethylpropane and diethylene glycol and had an amine equivalent weight of 16%.
0 polyisocyanate.
熱分解型ガス発生剤は、三協化成■製ヒドラゾジカルボ
ンアミドである。これらの原料を組合せて発泡を行ない
、硬化後、所定の大きさに切断する。この後、180℃
で約2時間熱処理し、熱分解型ガス発生剤を分解させ、
かつ吸着水分や未反応モノマーを蒸発させて、アルミ蒸
着ポリエステルフィルムとポリエチレンフィルムのラミ
ネート構成による金属−プラスチックスラミネートフィ
7A−。The thermal decomposition type gas generating agent is hydrazodicarbonamide manufactured by Sankyo Kasei ■. These raw materials are combined and foamed, and after hardening, the foam is cut into a predetermined size. After this, 180℃
heat treatment for about 2 hours to decompose the pyrolytic gas generating agent,
In addition, adsorbed water and unreacted monomers are evaporated to produce a metal-plastic laminate film 7A-, which is made of a laminate of an aluminum-deposited polyester film and a polyethylene film.
ルムから成る袋状の容器5で被い、内部を0.01mm
Hグ、 0.1mmHrまでそれぞれ減圧し、密閉し
て断熱体6を得た。このときの排気時間は、それぞれ、
5分、2分であった。得られた断熱体6の熱伝導率を表
下段に示した。熱伝導率は真空理工■製に−Mattc
を使って平均温度24℃で測定した。It is covered with a bag-like container 5 made of lume, and the inside is 0.01 mm thick.
The pressure was reduced to 0.1 mmHr, and the heat insulator 6 was obtained. The exhaust time at this time is
It was 5 minutes, 2 minutes. The thermal conductivity of the obtained heat insulator 6 is shown in the lower part of the table. Thermal conductivity is made by Vacuum Riko ■ - Mattc
The measurements were taken at an average temperature of 24°C.
表から明らかなように本発明の断熱体6は、工業的に取
扱いやすい0.1〜0.01mmHfの圧力でも優れた
断熱性能を示すことが判った。これは、気体熱伝導によ
る伝熱が大きくなってもそれ以上に固体熱伝導による伝
熱が小さくなっているだめであると考えられる。As is clear from the table, it was found that the heat insulating body 6 of the present invention exhibits excellent heat insulating performance even at a pressure of 0.1 to 0.01 mmHf, which is easy to handle industrially. This is thought to be due to the fact that even though the heat transfer due to gas heat conduction increases, the heat transfer due to solid heat conduction decreases even more.
すなわち、熱分解型ガス発生剤を添加することにより得
られた連続気泡構造の硬質ウレタンフオーム4は、気泡
骨格中に熱分解型ガス発生剤が分散しておシ、この後、
熱分解型ガス発生剤の分解温度に達する丑で熱処理を加
えることにより、分解しガス化する結果、気泡骨格が局
所的に破裂し凹凸状の不均一な厚みとなる。このため気
泡骨格を介して伝熱する固体熱伝導率は、新たに発生し
た熱抵抗により減少し、断熱性能の向上が図れるのであ
る。なお、熱分解型ガス発生剤の選択にあたっては、発
泡時の反応熱によっては、分解しない分解温度を有する
ことが必要で、発泡時に分解しガス化すると、破泡が激
しく、正常なフオーム体は得られない。又、加熱温度条
件は、ウレタンフオーム4中の雰囲気下で、十分分解し
うる温度でなければ訛らない。That is, in the hard urethane foam 4 with an open cell structure obtained by adding a pyrolytic gas generating agent, the pyrolytic gas generating agent is dispersed in the cell skeleton.
By applying heat treatment with a substance that reaches the decomposition temperature of the pyrolytic gas generating agent, the material is decomposed and gasified, resulting in local bursting of the cell skeleton, resulting in uneven thickness. Therefore, the solid thermal conductivity of heat transferred through the cell skeleton is reduced due to the newly generated thermal resistance, and the heat insulation performance can be improved. When selecting a pyrolytic gas generating agent, it is necessary to have a decomposition temperature that does not decompose depending on the reaction heat during foaming, and if it decomposes and gasifies during foaming, the foam will break violently and the normal foam will not be able to form. I can't get it. Further, the heating temperature condition does not change unless the temperature is such that the urethane foam 4 can be sufficiently decomposed in the atmosphere.
発明の効果
本発明は、上記の説明からも明らかなように、以下に示
すような効果が得られるものである。すなわち、熱分解
型ガス発生剤を添加することにより得られた連続気泡構
造の硬質ウレタンフオームは気泡骨格中に分散した熱分
解型ガス発生剤がとの後熱分解型ガス発生剤の分解温度
以上の熱処理によって分解しガス化する結果、気泡骨格
が局所的に破裂し凹凸状の不均一な厚みに々る。このた
め、気泡骨格を介して伝熱する固体熱伝導率は新たに発
生した熱抵抗により減少し断熱性能の向上が図れるので
ある。よって、本発明の真空断熱体9へ一ノ
は真空度が0.1〜0 、01 mmHfであっても極
めてすぐれた断熱性能を有する。この結果、短時間かつ
容易な排気設備によって量産することが可能となり、大
幅な生産性向上に寄与するという利点を有するものであ
る。Effects of the Invention As is clear from the above description, the present invention provides the following effects. That is, the hard urethane foam with an open cell structure obtained by adding a pyrolytic gas generating agent has a temperature higher than the decomposition temperature of the pyrolytic gas generating agent after the pyrolytic gas generating agent dispersed in the cell skeleton. As a result of decomposition and gasification due to heat treatment, the bubble skeleton locally ruptures, resulting in uneven and uneven thickness. Therefore, the solid thermal conductivity for heat transfer through the cell skeleton is reduced due to the newly generated thermal resistance, and the heat insulation performance can be improved. Therefore, the vacuum heat insulating body 9 of the present invention has extremely excellent heat insulation performance even when the degree of vacuum is 0.1 to 0.01 mmHf. As a result, mass production can be carried out in a short time and with simple exhaust equipment, which has the advantage of contributing to a significant improvement in productivity.
図、第3図は従来例の断熱性構造体の断面図である。
4・・・・・・硬質ウレタンフオーム、5・・・・・・
容器、6・・・・・・断熱体。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名4−
一一石更策つレグンフォー、へ
第1図3 are sectional views of a conventional heat insulating structure. 4...Hard urethane foam, 5...
Container, 6...Insulator. Name of agent: Patent attorney Toshio Nakao and 1 other person 4-
Figure 1 to Legunfor, one stone's throw away
Claims (1)
発泡剤、気泡連通化剤及び熱分解型ガス発生剤を混合、
発泡して連続気泡構造の硬質ウレタンフォームを形成し
、この硬質ウレタンフォームを前記熱分解型ガス発生剤
の分解温度以上に加熱処理した後、金属−プラスチック
スラミネートフィルムから成る容器で被い、その内部を
減圧して密閉した断熱体の製造方法。Organic polyisocyanates, polyols, catalysts, foam stabilizers,
Mixing a blowing agent, a cell communication agent, and a pyrolytic gas generating agent,
After foaming to form a rigid urethane foam with an open cell structure and heat-treating this rigid urethane foam to a temperature higher than the decomposition temperature of the pyrolytic gas generating agent, the foam is covered with a container made of a metal-plastic laminate film. A method for producing a heat insulator whose interior is sealed by reducing pressure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2084386A JPS62178866A (en) | 1986-01-31 | 1986-01-31 | Manufacture of heat insulator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2084386A JPS62178866A (en) | 1986-01-31 | 1986-01-31 | Manufacture of heat insulator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62178866A true JPS62178866A (en) | 1987-08-05 |
Family
ID=12038353
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2084386A Pending JPS62178866A (en) | 1986-01-31 | 1986-01-31 | Manufacture of heat insulator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62178866A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995014881A1 (en) * | 1993-11-22 | 1995-06-01 | Mitsubishi Chemical Corporation | Vacuum heat insulating material |
-
1986
- 1986-01-31 JP JP2084386A patent/JPS62178866A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995014881A1 (en) * | 1993-11-22 | 1995-06-01 | Mitsubishi Chemical Corporation | Vacuum heat insulating material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100548660B1 (en) | Continuous Bubble Rigid Polyurethane Foam and Manufacturing Method Thereof | |
US5575871A (en) | Heat insulating material and method for producing same | |
WO2001048430A1 (en) | Method of deforming vacuum heat insulation material, method of fixing vacuum heat insulation material, refrigeration, cold storage vessel, and heat insulation box body | |
JPH06213561A (en) | Insulating material and refrigerator using the same | |
JPS62178866A (en) | Manufacture of heat insulator | |
JPH07110097A (en) | Heat insulation material | |
JPS61153480A (en) | Heat insulator | |
JPH02120598A (en) | Insulating body | |
JPS6321476A (en) | Heat insulator | |
JP2548323B2 (en) | Insulation | |
JPS62147275A (en) | Manufacture of heat insulator | |
JPS62251593A (en) | Manufacture of heat insulator | |
JPS6262173A (en) | Heat insulator | |
JPS6361586B2 (en) | ||
JP2001181365A (en) | Method for producing open-celled rigid polyurethane foam for vacuum insulation panel filler | |
JPH023115B2 (en) | ||
KR900005028B1 (en) | Heat insulating body | |
JPS63189771A (en) | Manufacture of heat insulator | |
JPS61153477A (en) | Heat-insulating box body | |
JPH0463992B2 (en) | ||
JPS6257432A (en) | Production of polyethylene open-cell foam | |
JPH04143586A (en) | Adiabatic body | |
JPS6361589B2 (en) | ||
JPH04143585A (en) | Adiabatic body | |
JPH0272294A (en) | Heat insulating structure |