JPS62178203A - Single mode optical fiber - Google Patents
Single mode optical fiberInfo
- Publication number
- JPS62178203A JPS62178203A JP61020558A JP2055886A JPS62178203A JP S62178203 A JPS62178203 A JP S62178203A JP 61020558 A JP61020558 A JP 61020558A JP 2055886 A JP2055886 A JP 2055886A JP S62178203 A JPS62178203 A JP S62178203A
- Authority
- JP
- Japan
- Prior art keywords
- cladding
- core
- fluorine
- boron
- optical fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 23
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 24
- 239000011737 fluorine Substances 0.000 claims abstract description 24
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 23
- 229910052796 boron Inorganic materials 0.000 claims abstract description 23
- 238000005253 cladding Methods 0.000 claims description 42
- 230000003287 optical effect Effects 0.000 abstract description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 19
- 239000007789 gas Substances 0.000 description 12
- 230000005540 biological transmission Effects 0.000 description 6
- 239000002019 doping agent Substances 0.000 description 6
- 235000012239 silicon dioxide Nutrition 0.000 description 5
- -1 boron Chemical compound 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- UORVGPXVDQYIDP-UHFFFAOYSA-N borane Chemical compound B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 description 2
- ILAHWRKJUDSMFH-UHFFFAOYSA-N boron tribromide Chemical compound BrB(Br)Br ILAHWRKJUDSMFH-UHFFFAOYSA-N 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000010574 gas phase reaction Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910015845 BBr3 Inorganic materials 0.000 description 1
- 229910015844 BCl3 Inorganic materials 0.000 description 1
- 101100440271 Caenorhabditis elegans ccf-1 gene Proteins 0.000 description 1
- 229910004014 SiF4 Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- UORVGPXVDQYIDP-BJUDXGSMSA-N borane Chemical class [10BH3] UORVGPXVDQYIDP-BJUDXGSMSA-N 0.000 description 1
- 229910000085 borane Inorganic materials 0.000 description 1
- 150000001639 boron compounds Chemical class 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000000255 optical extinction spectrum Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- ABTOQLMXBSRXSM-UHFFFAOYSA-N silicon tetrafluoride Chemical compound F[Si](F)(F)F ABTOQLMXBSRXSM-UHFFFAOYSA-N 0.000 description 1
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Glass Compositions (AREA)
Abstract
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、単一モード光ファイバに関する。[Detailed description of the invention] [Industrial application field] FIELD OF THE INVENTION The present invention relates to single mode optical fibers.
さらに詳しくは長゛波長1.とくに波長が 1,55μ
m帯で光伝送損失が小さい単一モード光ファイバに関す
る。For more details, see Long Wavelength 1. Especially when the wavelength is 1.55μ
The present invention relates to a single mode optical fiber with low optical transmission loss in the m-band.
[従来の技術]
石英ガラス系光ファイバは、石英ガラス製のコアとその
周囲に屈折率がコアよりも小さい石英ガラス製のクラッ
ドから形成されている。[Prior Art] A silica glass optical fiber is formed of a quartz glass core and a silica glass cladding around the core having a refractive index smaller than that of the core.
クラッドの屈折率を下げるために従来よりクラッドには
、フッ素あるいはホウ素がドープされている。The cladding has conventionally been doped with fluorine or boron to lower the refractive index of the cladding.
[発明が解決しようとする問題点]
しかしながら上記のような従来の光ファイバは、たとえ
ば外圧が加えられたばあい、コアおよびクラッドより光
伝送損失が増加するという欠点があり、この欠点を解消
するためにはクラッドの外径/コア径の比を871以上
にする必要があるが、かかる構造を有する光ファイバを
製造するのは極めて困難である。[Problems to be Solved by the Invention] However, the conventional optical fiber as described above has the disadvantage that, for example, when external pressure is applied, optical transmission loss increases compared to the core and cladding. In order to achieve this, it is necessary to make the ratio of the outer diameter of the cladding/core diameter to 871 or more, but it is extremely difficult to manufacture an optical fiber having such a structure.
そこで本発明者らは、上記問題点に鑑みて鋭意研究を重
ねた結果、かかる問題点を解決しうる単一モード光ファ
イバを見出し、本発明を完成するに至った。In view of the above-mentioned problems, the inventors of the present invention have conducted extensive research, and as a result, have discovered a single mode optical fiber that can solve these problems, and have completed the present invention.
[問題点を解決するための手段]
本発明は、フッ素がドープされたクラッドをコアの近傍
に有し、さらにその外側にホウ素または、フッ素および
ホウ素がドープされたクラッドを有してなる単一モード
光ファイバに関する。[Means for Solving the Problems] The present invention provides a single cladding comprising a cladding doped with fluorine near the core and a cladding doped with boron or fluorine and boron on the outside thereof. Regarding mode optical fibers.
[作用および実施例]
本発明の単一モード光ファイバには、コアの近傍にフッ
素のみがドープされたクラッド(以下、第1クラツドと
いう)が設けられ、さらにその外側にホウ素または、ホ
ウ素およびフッ素かドープされたクラッド(以下、第2
クラツドという)が、該第2クラツドの外径/コア径の
比が871以上となるように設けられているので、長波
長、とくに波長が1.55μm帯で光伝送損失が小さく
なる。したがって、本発明の単一モード光ファイバは、
長波長、とくに波長が■、55μm帯の光源が用いられ
、長距離光通信システムなどに好適に使用することかで
きる。[Operations and Examples] The single mode optical fiber of the present invention is provided with a cladding doped with only fluorine (hereinafter referred to as the first cladding) near the core, and further doped with boron or boron and fluorine on the outside of the cladding. or doped cladding (hereinafter referred to as the second
Since the second clad (referred to as a clad) is provided such that the ratio of the outer diameter/core diameter of the second clad is 871 or more, optical transmission loss is reduced at long wavelengths, particularly in the 1.55 μm wavelength band. Therefore, the single mode optical fiber of the present invention is
A light source with a long wavelength, particularly a wavelength of 55 μm, is used, and can be suitably used in a long-distance optical communication system.
本発明に用いるコアとしてはCu、 re、 Co、
Crなどのような光伝送損失を大とならしめるような不
純物の含有率が、たとえばlOppm以下の通常使用さ
れている純石英ガラスを使用しうる。The cores used in the present invention include Cu, re, Co,
It is possible to use a commonly used pure silica glass containing impurities such as Cr that increase optical transmission loss, for example, less than 10 ppm.
本発明に用いる第1クラツドとは、石英ガラス中に石英
ガラスに対する屈折率低下ドーパントとしてフッ素が約
0.2〜3重量重量%柱、またフッ素以外の物質は全く
含まれていないか、あるいは含まれているとしても長波
長光伝送において伝送損失上悪影響を及ぼさない程度で
あればよい。石英ガラス中にフッ素以外の物質、たとえ
ばホウ素などが1重量%以上含まれるばあい、波長が1
.55μm帯である光が吸収されてしまうので好ましく
ない。The first cladding used in the present invention is a quartz glass containing approximately 0.2 to 3% by weight of fluorine as a refractive index lowering dopant for silica glass, and containing no or no substances other than fluorine. Even if it is present, it is sufficient as long as it does not adversely affect transmission loss in long wavelength optical transmission. If the quartz glass contains 1% or more by weight of substances other than fluorine, such as boron, the wavelength is 1.
.. This is not preferable because light in the 55 μm band is absorbed.
本発明に用いる第2クラツドとは、石英ガラス中にホウ
素が3〜5重量%または、フッ素およびホウ素がフッ素
0.2〜2重量%、ホウ素0.5〜5重量%含まれたも
のをいう。かかるホウ素または、フッ素およびホウ素は
フッ素のみをドープしたばあいに生じる石英ガラスのエ
ツチング作用を呈するようなことはなく、屈折率の制御
が容易であり、しかもフッ素をドープするばあいよりも
コストが低いので好ましいが、そのドープ量はシングル
モードファイバとして適正な屈折率差となる上記範囲内
でドープされるのが好ましい。The second cladding used in the present invention refers to quartz glass containing 3 to 5% by weight of boron, or 0.2 to 2% by weight of fluorine and 0.5 to 5% by weight of fluorine and boron. . Such boron or fluorine and boron do not exhibit the etching effect of silica glass that occurs when only fluorine is doped, the refractive index can be easily controlled, and the cost is lower than when doped with fluorine. Although it is preferable because it is low, the doping amount is preferably within the above range that provides an appropriate refractive index difference as a single mode fiber.
また、第1クラツドの屈折率は、コアから第1クラツド
に洩れた光を、しゃへいするかあるいは光ファイバの外
部に放出させないようにするためには、第2クラツドの
屈折率と同程度かそれ以下であるのか好ましい。In addition, the refractive index of the first cladding must be equal to or higher than the refractive index of the second cladding in order to shield the light leaking from the core to the first cladding or prevent it from being emitted to the outside of the optical fiber. It is preferable if it is below.
前記第1クラツドの外径/コア径の比は、3/1未満の
ばあい、第1クラツドから第2クラツドに滲み出す光パ
ワーが大きくなり、第2クラツドに含有されたホウ素に
より光パワーの損失かみられ、また6/1をこえるばあ
い、かかる構造を有する光ファイバの製造が困難となる
ので第1クラツドの外径/コア径の比は3/1〜6/l
であるのが好ましい。If the ratio of the outer diameter/core diameter of the first cladding is less than 3/1, the optical power leaking from the first cladding to the second cladding increases, and the boron contained in the second cladding increases the optical power. If loss is observed or exceeds 6/1, it will be difficult to manufacture an optical fiber with such a structure, so the ratio of the outer diameter/core diameter of the first cladding should be 3/1 to 6/l.
It is preferable that
また前記第2グラツドの外径/コア径の比が8/lより
も小さいばあい、マイクロベンドによる光の損失が生じ
るので、8/1以上であるのが好ましい。Furthermore, if the ratio of the outer diameter/core diameter of the second glad is smaller than 8/l, light loss will occur due to microbending, so it is preferably 8/1 or more.
上記のような構造を有する本発明の光ファイバは公知の
気相反応による内付は法、外付は法あるいはVAD法に
よって作製することができる。The optical fiber of the present invention having the above-mentioned structure can be manufactured by a well-known gas phase reaction method for internal attachment, external attachment, or VAD method.
たとえば、内付は法を適用するばあいには、石英ガラス
パイプ(サポート)内にガラス原料ガスとドーパントソ
ースガスと酸素を送り込み、石英ガラスパイプの外表面
を加熱しながら、気相反応により該石英ガラスパイプの
内面に既述の′¥S2クラッドを形成させたのち、同様
にして第1クラツドを形成させる。しかる後にコアとな
る純石英ガラス棒を挿入してコラプスすることにより先
ファイバ母材を作製するか、または上記第2および第1
のクラッド層が形成されたパイプの内面にガラス原料ガ
スと酸素を送り込み、コアとなる純石英ガラス層を形成
し、中心の空隙をコラプスして光フアイバ母材を作製す
る。また外付は法を適用するばあいは、コアとなる純石
英ガラス棒の外周面に火炎加水分解法により第1および
第2クラッド層を形成させればよい。For example, when applying the internal attachment method, frit gas, dopant source gas, and oxygen are fed into the quartz glass pipe (support), and while the outer surface of the quartz glass pipe is heated, the gas phase reaction After forming the aforementioned '\S2 cladding on the inner surface of the quartz glass pipe, the first cladding is formed in the same manner. Thereafter, a pure silica glass rod serving as a core is inserted and collapsed to produce a pre-fiber base material, or the second and first
Frit gas and oxygen are fed into the inner surface of the pipe on which the cladding layer has been formed to form a core pure silica glass layer, and the central gap is collapsed to produce an optical fiber base material. When the external method is applied, the first and second cladding layers may be formed on the outer peripheral surface of the pure silica glass rod serving as the core by flame hydrolysis.
本発明で用いるガラス原料としては、5jH3CIl。The glass raw material used in the present invention is 5jH3CIl.
SiH2Cg2.5iHCDs 、SiON2.5iH
3Br。SiH2Cg2.5iHCDs, SiON2.5iH
3Br.
5iH2Br2.5iHBr3、SiBr4.5iHx
(OCI+3)、5IH2(OCI!3) 2.5i
ll(OCH3’)s、Si(OCH3) aなどのシ
ラン化合物または気化性のシラン誘導体が用いられる。5iH2Br2.5iHBr3, SiBr4.5iHx
(OCI+3), 5IH2 (OCI!3) 2.5i
A silane compound or a vaporizable silane derivative such as ll(OCH3')s and Si(OCH3)a is used.
またクラッド層を形成するために用いるドーパントソー
スガスとしては、フッ素をドープするばあいには、CC
fJ3P s C1!2F2、CCf1 F3、CF4
などのフレオン類、C#F 、 COF3、BrP 5
BrF4などのフレオン相互の化合物、SFs、F2、
F20、SiF4などが用いられる。ホウ素をドープす
るばあいには、B113、BH2CI!、BHCN2、
BCl3、BN2 Br5BHBrz、BBr3、BN
21 、 BHI 、 BI3などのボランまたは気化
性のボラン誘導体が用いられる。また本発明において、
第2クラッド層を設けるために用いるドーパントソース
ガスとしては、上記のフッ素化合物ガスおよびホウ素化
合物ガスを同時に用いてもよいが、フッ素とボロンが同
時に石英ガラス中に効率よくドープされるためには、ド
ーパントソースガスとしてBF3を用いるのが好ましい
。In addition, when doping fluorine, the dopant source gas used to form the cladding layer is CC
fJ3P s C1!2F2, CCf1 F3, CF4
Freons such as C#F, COF3, BrP5
Freon mutual compounds such as BrF4, SFs, F2,
F20, SiF4, etc. are used. When doping with boron, B113, BH2CI! ,BHCN2,
BCl3, BN2 Br5BHBrz, BBr3, BN
Borane or volatile borane derivatives such as 21, BHI, BI3 are used. Further, in the present invention,
As the dopant source gas used to provide the second cladding layer, the above-mentioned fluorine compound gas and boron compound gas may be used at the same time, but in order to efficiently dope fluorine and boron into the silica glass at the same time, Preferably, BF3 is used as the dopant source gas.
また、ドーパントソースガスには、チッ素、アルゴン、
ヘリウムなどの他のガスを混合してもよい。In addition, dopant source gases include nitrogen, argon,
Other gases such as helium may also be mixed.
つぎに本発明を実施例に基づいて説明するが、本発明は
かかる実施例のみに限定されるものではない。Next, the present invention will be explained based on Examples, but the present invention is not limited to these Examples.
実施例1〜2および比較例1〜2
表面が清浄された石英ガラスパイプ(内径17IIlf
fl)を回転させながら、外部より酸水素バーナで約1
600℃に加熱する一方、石英ガラスパイプ内に第1表
に示すような第2クラツド形成ガスを通してバーナーを
往復移動させ、所定の厚さの第2クラツドを形成させた
のち、ついで第1表に示すような第1クラツド形成ガス
を通し、所定の厚さの第1クラツドを形成させた。Examples 1-2 and Comparative Examples 1-2 Surface-cleaned quartz glass pipe (inner diameter 17IIlf
fl) from the outside using an oxyhydrogen burner for approximately 1 hour.
While heating to 600°C, the burner was moved back and forth to pass a second cladding forming gas as shown in Table 1 into the quartz glass pipe to form a second cladding of a predetermined thickness. A first cladding forming gas as shown was passed through to form a first cladding having a predetermined thickness.
ついで表面が清浄された純石英ガラス棒(直径1 mm
)をえられた第1クラツドおよび第2クラツドつきパイ
プに挿入し、パイプを2000℃に加熱してコラプスし
てサポートとクラッドとコアを有する単一モード光ファ
イバを製造した。Next, a pure silica glass rod (1 mm in diameter) with a clean surface was used.
) was inserted into the obtained pipe with the first cladding and the second cladding, and the pipe was heated to 2000° C. and collapsed to produce a single mode optical fiber having a support, a cladding, and a core.
えられた単一モード光ファイバの物性として光伝送スペ
クトルをカットバック法により求めた。その結果を第2
表に示す。The optical transmission spectrum was determined using the cutback method as a physical property of the obtained single mode optical fiber. The result is the second
Shown in the table.
[以下余白コ
[発明の効果]
本発明の単一モード光ファイバによれば、コアの近傍に
フッ素のみがドープされたクラットの外側にホウ素また
はフッ素およびホウ素がドープされたクラッドが設けら
れているため、たとえば外圧が該光ファイバに加えられ
たばあいであってもコアおよびクラッドから光の損失か
生じないという優れた効果を奏する。[Blank below] [Effects of the Invention] According to the single mode optical fiber of the present invention, a cladding doped with boron or fluorine and boron is provided on the outside of a cladding doped with only fluorine in the vicinity of the core. Therefore, even if external pressure is applied to the optical fiber, there is no loss of light from the core and cladding, which is an excellent effect.
Claims (1)
、さらにその外側にホウ素または、フッ素およびホウ素
がドープされたクラッドを有してなる単一モード光ファ
イバ。 2 フッ素がドープされたクラッドの外径/コア径の比
が3/1〜6/1である特許請求の範囲第1項記載の単
一モード光ファイバ。 3 ホウ素または、フッ素およびホウ素がドープされた
クラッドの外径/コア径の比が8/1以上である特許請
求の範囲第1項または第2項記載の単一モード光ファイ
バ。[Scope of Claims] 1. A single mode optical fiber having a cladding doped with fluorine near the core and a cladding doped with boron or fluorine and boron outside the core. 2. The single mode optical fiber according to claim 1, wherein the ratio of the outer diameter/core diameter of the fluorine-doped cladding is from 3/1 to 6/1. 3. The single mode optical fiber according to claim 1 or 2, wherein the cladding doped with boron or fluorine and boron has an outer diameter/core diameter ratio of 8/1 or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61020558A JPS62178203A (en) | 1986-01-31 | 1986-01-31 | Single mode optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61020558A JPS62178203A (en) | 1986-01-31 | 1986-01-31 | Single mode optical fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62178203A true JPS62178203A (en) | 1987-08-05 |
Family
ID=12030487
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61020558A Pending JPS62178203A (en) | 1986-01-31 | 1986-01-31 | Single mode optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62178203A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999047953A1 (en) * | 1998-03-16 | 1999-09-23 | The Furukawa Electric Co., Ltd. | Wavelength-multiplexing optical transmission channel and optical fiber used therefor |
WO2002055445A3 (en) * | 2001-01-12 | 2002-10-10 | Corning Inc | Optical fiber and preform, method of manufacturing same, and optical component made therefrom |
JP2019504350A (en) * | 2015-12-23 | 2019-02-14 | エヌケイティー フォトニクス アクティーゼルスカブNkt Photonics A/S | Hollow core optical fiber and laser system |
US11002919B2 (en) | 2015-12-23 | 2021-05-11 | Nkt Photonics A/S | Photonic crystal fiber assembly |
US11072554B2 (en) | 2015-11-10 | 2021-07-27 | Nkt Photonics A/S | Element for a preform, a fiber production method and an optical fiber drawn from the preform |
US12110248B2 (en) | 2016-04-27 | 2024-10-08 | Nkt Photonics A/S | Method of fiber production |
-
1986
- 1986-01-31 JP JP61020558A patent/JPS62178203A/en active Pending
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999047953A1 (en) * | 1998-03-16 | 1999-09-23 | The Furukawa Electric Co., Ltd. | Wavelength-multiplexing optical transmission channel and optical fiber used therefor |
AU739302B2 (en) * | 1998-03-16 | 2001-10-11 | Furukawa Electric Co. Ltd., The | Wavelength division multiplex optical transmission line and optical fiber used for a transmission line |
WO2002055445A3 (en) * | 2001-01-12 | 2002-10-10 | Corning Inc | Optical fiber and preform, method of manufacturing same, and optical component made therefrom |
US6885787B2 (en) | 2001-01-12 | 2005-04-26 | Corning Incorporated | Optical fiber and preform, method of manufacturing same, and optical component made therefrom |
US7184636B2 (en) | 2001-01-12 | 2007-02-27 | Corning Incorporated | Method of controllably doping a glassy optical preform with water |
US11072554B2 (en) | 2015-11-10 | 2021-07-27 | Nkt Photonics A/S | Element for a preform, a fiber production method and an optical fiber drawn from the preform |
US12098088B2 (en) | 2015-11-10 | 2024-09-24 | Nkt Photonics A/S | Element for a preform, a fiber production method and an optical fiber drawn from the preform |
US11360274B2 (en) | 2015-12-23 | 2022-06-14 | Nkt Photonics A/S | Photonic crystal fiber assembly |
JP2019504350A (en) * | 2015-12-23 | 2019-02-14 | エヌケイティー フォトニクス アクティーゼルスカブNkt Photonics A/S | Hollow core optical fiber and laser system |
US10989866B2 (en) | 2015-12-23 | 2021-04-27 | Nkt Photonics A/S | Hollow core optical fiber and a laser system |
JP2022140483A (en) * | 2015-12-23 | 2022-09-26 | エヌケイティー フォトニクス アクティーゼルスカブ | Hollow core optical fiber and laser system |
US11474293B2 (en) | 2015-12-23 | 2022-10-18 | Nkt Photonics A/S | Hollow core optical fiber and a laser system |
US11662518B2 (en) | 2015-12-23 | 2023-05-30 | Nkt Photonics A/S | Hollow core optical fiber and a laser system |
US11846809B2 (en) | 2015-12-23 | 2023-12-19 | Nkt Photonics A/S | Photonic crystal fiber assembly |
US11977255B2 (en) | 2015-12-23 | 2024-05-07 | Nkt Photonics A/S | Hollow core optical fiber and a laser system |
US11002919B2 (en) | 2015-12-23 | 2021-05-11 | Nkt Photonics A/S | Photonic crystal fiber assembly |
US12117654B2 (en) | 2015-12-23 | 2024-10-15 | Nkt Photonics A/S | Photonic crystal fiber assembly |
US12313877B2 (en) | 2015-12-23 | 2025-05-27 | Nkt Photonics A/S | Hollow core optical fiber and a laser system |
US12110248B2 (en) | 2016-04-27 | 2024-10-08 | Nkt Photonics A/S | Method of fiber production |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8712202B2 (en) | Single mode optical fiber with improved bend performance | |
US4804247A (en) | Quartz glass optical fiber | |
JP5708291B2 (en) | Optical fiber preform, optical fiber, and optical fiber preform manufacturing method | |
US3932160A (en) | Method for forming low loss optical waveguide fibers | |
JP2004067459A (en) | Optical fiber preform, method for manufacturing the same, and optical fiber obtained by drawing the same | |
JPS62178203A (en) | Single mode optical fiber | |
JPS60260430A (en) | Method for manufacturing optical fiber base material containing fluorine in the cladding part | |
JP4825092B2 (en) | Polarization-maintaining optical fiber | |
JP2014043378A (en) | Method for manufacturing optical fiber, and optical fiber | |
JP3315786B2 (en) | Optical amplifier type optical fiber | |
JPH0820574B2 (en) | Dispersion shift fiber and manufacturing method thereof | |
JPH0656457A (en) | Production of fiber for transmitting ultraviolet light | |
JPS6313946B2 (en) | ||
JPS6110037A (en) | Production of parent material of optical fiber | |
JPS638706A (en) | Polarization maintaining optical fiber | |
JPS61251539A (en) | Optical fiber | |
JPH06219765A (en) | Production of preform for optical fiber | |
JPH1059730A (en) | Manufacturing method of synthetic quartz glass | |
JPS61132531A (en) | Optical fiber manufacturing method | |
JP2721260B2 (en) | Perfluorinated optical fiber | |
JPS62204205A (en) | Quartz optical fiber | |
JPH038743A (en) | Method for manufacturing optical fiber base material | |
JPH11202139A (en) | Grating optical fiber, grating optical fiber preform, and method of manufacturing the optical fiber preform | |
JPH0717735A (en) | High dispersion optical fiber and manufacture thereof | |
JPH01212244A (en) | Base material for optical fiber |