[go: up one dir, main page]

JPS62177798A - semiconductor storage device - Google Patents

semiconductor storage device

Info

Publication number
JPS62177798A
JPS62177798A JP61018960A JP1896086A JPS62177798A JP S62177798 A JPS62177798 A JP S62177798A JP 61018960 A JP61018960 A JP 61018960A JP 1896086 A JP1896086 A JP 1896086A JP S62177798 A JPS62177798 A JP S62177798A
Authority
JP
Japan
Prior art keywords
cell
fuse
rom
defective
address
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61018960A
Other languages
Japanese (ja)
Inventor
Yoshihiro Takemae
義博 竹前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61018960A priority Critical patent/JPS62177798A/en
Publication of JPS62177798A publication Critical patent/JPS62177798A/en
Pending legal-status Critical Current

Links

Landscapes

  • Read Only Memory (AREA)
  • For Increasing The Reliability Of Semiconductor Memories (AREA)
  • Techniques For Improving Reliability Of Storages (AREA)

Abstract

PURPOSE:To reduce a steady power consumption by allowing an activation circuit equipped with a fuse not to supply a current to a ROM storing the address of a defective cell when an auxiliary cell is not used. CONSTITUTION:Unless a cell is a memory cell array is not replaced with the auxiliary cell, and has no defect to disconnect all fuses F0-F9 in an address storing ROM1 for a defective cell, the fuse F of the activation circuit 2 remains disconnected. In that state, the node N1 of the circuit 2 becomes H, and transistors Q12 and Q11 are turned on and off, respectively, bring a node N2 to L. Thus a transistor Q13 is turned off, and no current is supplied to the ROM1 through the transistor Q13, whereby a steady power consumption can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、予備セルを有する半導体記憶装置、特にその
不良アドレス記憶用ROMに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor memory device having spare cells, and particularly to a ROM for storing defective addresses thereof.

C従来の技術〕 正規のセルアレイとは別に冗長な予備セルを備え、セル
アレイ中にハード障害を起こした不良セルがあればそれ
を予備セルで置換するメモリは、製造歩留りを大幅に向
上させることだできる。歩留りは工程の成熟につれて良
くなるが、初期の段階では悪いのが普通で、これを予備
セルにより救済できる効果は大きい。予備セルはワード
線およびコラム線方向に各1〜2本分持つものが多いが
、各4〜8本分など多数持つものもある。内蔵する予備
セルの数が多い程、救済できる不良セル数が多くなり歩
留りが向上するが、それだけ複雑化し、正常なメモリチ
ップにとっては無駄が多くなるから予備セルは少数であ
るのが普通である。
C. Prior Art] A memory that has redundant spare cells in addition to the regular cell array and replaces any defective cells that have caused a hardware failure in the cell array with the spare cells can greatly improve manufacturing yields. can. Although the yield improves as the process matures, it is usually poor in the early stages, and the effect of redressing this problem with spare cells is significant. Most spare cells have one to two lines each in the word line and column line directions, but some have as many as four to eight spare cells each. The larger the number of built-in spare cells, the greater the number of defective cells that can be repaired and the higher the yield, but this increases complexity and wastes a normal memory chip, so it is normal to have a small number of spare cells. .

予備セルを使用するには不良ビットのアドレスを記憶す
る必要があり、これには第4図に示す様なROM (読
出し専用メモリ)を使用する。このROMは多結晶シリ
コン等によるヒユーズFと負荷トランジスタQを直列に
したものをアドレスのビット数掛ける予備セルの本数分
、電源Vcc、Vss間に接続してなり、該ヒユーズの
切断の有無で不良アドレスの各ビットの1,0を表わす
ようにしたものである。IMビフ]・のメそりでは不良
セルのアドレスが行1列共にA o = A 9の10
ビツトで表わされるので、予備セル1本分のROMはA
To use the spare cell, it is necessary to store the address of the defective bit, and a ROM (read-only memory) as shown in FIG. 4 is used for this purpose. This ROM consists of a fuse F made of polycrystalline silicon or the like and a load transistor Q connected in series between the power supplies Vcc and Vss in the number of address bits multiplied by the number of spare cells. Each bit of the address is designed to represent 1 or 0. In the memory of [IM Biff], the address of the defective cell is A o = A 9 of 10 in both rows and columns.
Since it is expressed in bits, the ROM for one spare cell is A
.

〜A9に対するヒユーズFo=F9と負荷1−ランジス
タQ o = Q 9の10素子からなり、予備セルが
ワード線、コラム線方向に各2本分設けられるなら、か
かるROMが4群設けられる。
It consists of 10 elements: fuse Fo=F9 for ~A9, load 1-transistor Qo=Q9, and if two spare cells are provided each in the word line and column line directions, four groups of such ROMs are provided.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、メモリの製造技術が成熟すると良品率が高ま
り、使用しない予備セル、つれて不良アドレス記憶RO
M、が多くなる。第4図の不良アドレス記憶ROMは、
不良アドレスを記憶しないときは全てのヒユーズFo=
F9が接続されたままになるので、かかるチップには予
備セルを使用したチップに比べ多くの定常的な直流電流
が流れる欠点がある。
By the way, as memory manufacturing technology matures, the rate of non-defective products increases, resulting in unused spare cells and defective address memory ROs.
M increases. The defective address storage ROM in FIG.
If you do not want to memorize the defective address, all fuses Fo=
Since F9 remains connected, such a chip has the disadvantage that more constant DC current flows than a chip using a spare cell.

本発明はこの点を改善すべく、予備セルを使用しないチ
ップでは不良アドレス記憶用ROMに直流電流が流れな
いようにしようとするものである。
In order to improve this point, the present invention attempts to prevent direct current from flowing into the ROM for storing defective addresses in a chip that does not use spare cells.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、メモリセルアレイの他に予備セルを備え、該
セルアレイ中の不良セルを該予備セルに置換して使用す
る半導体記(、Q装置において、該不良セルのアドレス
を記憶するヒユーズ切断型のROMと、該予備セルの使
用、不使用に応じて切断、非切断とされるヒユーズを備
えて予備セル使用ROMに対し読出し電流を供給し、予
備セル不使用のROMに対しては読出し電流を供給しな
い活性化回路とを備えてなることを特徴とするものであ
る。
The present invention provides a semiconductor device (Q device) which includes a spare cell in addition to a memory cell array and uses the spare cell to replace a defective cell in the cell array. It is equipped with a ROM and a fuse that is cut or uncut depending on whether the spare cell is used or not, and supplies read current to the ROM using the spare cell, and supplies read current to the ROM not using the spare cell. The device is characterized in that it includes an activation circuit that does not supply power.

〔作用〕[Effect]

不良セルのアドレスを記憶するヒユーズ切断型のROM
は、ウェハプローブ試験段階で不良セルアドレスが求め
られ、該アドレスによるヒユーズの選択的な切断(不良
アドレスの書込み)が行われるが、これはチップに不良
セルがある場合だけで、不良セルのないチップではRO
M書込みは行なわれず、該ROMの全てのヒユーズは切
断されないまま残る。このため該ROMは全ビットに読
出し電流が流れる状態になるが、このROMに読出し電
流を供給する活性化回路が読出し電流を供給しなければ
該電流も流れない。これを決定するのが予備セル使用/
不使用を書込まれるヒユーズで、このヒユーズに予備セ
ル使用を書込んだ、具体的には該ヒユーズを切断した状
態でのみROMに対する読出し電流が供給される回路構
成としておく。このようにすれば予備セルを使用しない
チップの定常的な消費電流は予備セルを使用したチップ
より低下し、僅少な定常電流が望まれる用途に適するメ
モリにすることができる。
A fuse-cut ROM that stores the address of a defective cell.
The defective cell address is obtained at the wafer probe test stage, and the fuse is selectively cut (defective address writing) using this address, but this only occurs when there is a defective cell on the chip, and when there is no defective cell. RO in chips
No M write is performed and all fuses in the ROM remain unbroken. Therefore, the ROM is in a state where a read current flows through all bits, but the current does not flow unless the activation circuit that supplies the read current to the ROM supplies the read current. This is determined by the use of spare cells/
The circuit configuration is such that a read current to the ROM is supplied only when the fuse is written to be unused, and the use of a spare cell is written to the fuse, specifically, when the fuse is disconnected. In this way, the steady current consumption of a chip that does not use spare cells is lower than that of a chip that uses spare cells, making it possible to make a memory suitable for applications where a small steady current is desired.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示す回路図で、■は第4図
と同様の不良アト°レス記憶用ROM、2はそこに読出
し電流を供給する活性化回路である。
FIG. 1 is a circuit diagram showing an embodiment of the present invention, in which symbol 2 represents a ROM for storing a defective address similar to that shown in FIG. 4, and 2 represents an activation circuit for supplying a read current thereto.

この活性化回路2は活性化用のヒユーズFを備え、これ
とデプレッション型の負荷MOSトランジスタQIOを
直列接続して1ビツトのヒユーズ切断型ROMを構成し
ている。これはROMI内の各ビットと同じ構成で、ヒ
ユーズFが切断されていなければノードN1はVccレ
ベルに近いH(ハイ)レベルにあるが、ヒユーズFが切
断されるとノードN1はVssレベルに近いしくロー)
レベルになる。デプレッション型の負荷MO3)ランジ
スタQllとエンハンスメント型の駆動MOSトランジ
スタQ12はノードN五のレベルを反転するEZD型の
インバータを構成する。Q13はソースホロワ接続され
た出力用のエンハンスメント型MOSトランジスタで、
ROMIの電源線Vcc相当の線lを駆動する。即ち第
4図の従来回路ではROMは直接Vccへ接続されるが
、第1図ではトランジスタQ13を介して接続する。
The activation circuit 2 includes an activation fuse F, and a depletion type load MOS transistor QIO is connected in series with the activation fuse F to form a 1-bit fuse-cut type ROM. This has the same configuration as each bit in ROMI, and if fuse F is not disconnected, node N1 is at H (high) level, close to Vcc level, but if fuse F is disconnected, node N1 is close to Vss level. Shikuro)
become the level. The depletion type load MO3) transistor Qll and the enhancement type drive MOS transistor Q12 constitute an EZD type inverter that inverts the level of the node N5. Q13 is an enhancement type MOS transistor for output connected as a source follower.
Drives the line l corresponding to the power line Vcc of ROMI. That is, in the conventional circuit of FIG. 4, the ROM is directly connected to Vcc, but in FIG. 1, it is connected via the transistor Q13.

ROMIに不良アドレスを書込むときはレーザでヒユー
ズFo=Fsを選択的に切断するか、パッドPに高電圧
を印加すると共に、切断用のトランジスタQo’、・・
・・・・を設けておいてこれをオンにし、ヒユーズに過
電流を流して溶断する。活性化回路2例のヒユーズFに
ついても同様で、過電流溶断するのであれば切断用のト
ランジスタQIOを設ける。いずれにしても活性化のヒ
ユーズFを切断するとノードN1がし、ノードN2がH
になってトランジスタQ13のソースN3にはVcc−
vthなる電圧が発生しくvthはエンハンスメント型
MO3I−ランジスクのしきい値)、これが線βを通し
てROMIに加わり、ROMI内のヒユーズ未切断ビッ
トに読出し電流が流れる。これにより、ヒユーズと負荷
トランジスタとの各接続点には2値10ビツトの、予め
書込んだ不良セルアドレスAo”Aqが出力する。図示
しないが他の不良アドレスについても同様である。
When writing a defective address to ROMI, the fuse Fo=Fs is selectively cut with a laser, or a high voltage is applied to the pad P, and the cutting transistor Qo',...
... is installed and turned on, causing an overcurrent to flow through the fuse and blowing it out. The same applies to the fuse F in the two examples of activation circuits, and if it is to be blown by overcurrent, a transistor QIO for cutting is provided. In any case, when the activation fuse F is cut, node N1 goes high and node N2 goes high.
Then, the source N3 of the transistor Q13 is connected to Vcc-
A voltage vth is generated (vth is the enhancement type MO3I-Landisk threshold), which is applied to ROMI through line β, causing a read current to flow to the unfused bit in ROMI. As a result, a binary 10-bit defective cell address Ao''Aq written in advance is output to each connection point between the fuse and the load transistor.Although not shown, the same applies to other defective addresses.

活性化用ヒユーズFは切断しないとノードN1がH1ノ
ードN2がLであるのでトランジスタQI3はカットオ
フし、線13ばROMIに対する電流供給線にならない
。従ってROMIに電流は流れず、こうして予備セルを
使用しないならROMIは電流を消費せず、無いのと同
じになる。
If the activation fuse F is not cut, the transistor QI3 will be cut off because the node N1 is at H1 and the node N2 is at L, and the line 13 will not become a current supply line to ROMI. Therefore, no current flows through the ROMI, and if the spare cell is not used, the ROMI does not consume any current and is the same as if it were not present.

なお活性化用のヒユーズFには電流(ROMIの1ビッ
ト分の電流)が流れるが、これによりROM1に電流が
流れないのであるから電流低減効果は大きい。即ち、1
Mビットのメモリ (RAM)で予備セルを2本分持つ
場合でも、その不良アドレスの記憶に行方向で10ビツ
ト、列方向で10ビツト、計20ピントのROMを必要
とする。従って、活性化回路2を共用すれば予備セル不
使用時に不良アドレス記IQ系に流れる直流電流は1/
20に低減できる。これは活性化回路1を合本(各不良
セルアドレス)に共用した場合であるが、活性化回路2
を共用せず各不良セルアドレスに個々に設けても1/1
0に低減できるので、消費電流節減効果としては十分で
ある。
Note that although current (current for one bit of ROMI) flows through the activation fuse F, since this prevents current from flowing to ROM1, the current reduction effect is large. That is, 1
Even when an M-bit memory (RAM) has two spare cells, a ROM of 20 pins in total, 10 bits in the row direction and 10 bits in the column direction, is required to store the defective address. Therefore, if the activation circuit 2 is shared, the DC current flowing through the defective address memory IQ system when the spare cell is not used will be reduced to 1/2.
It can be reduced to 20. This is a case where activation circuit 1 is shared by multiple cells (each defective cell address), but activation circuit 2
1/1 even if it is provided individually for each defective cell address without being shared.
Since the current consumption can be reduced to 0, the effect of reducing current consumption is sufficient.

第2図は本発明の他の実施例を示す回路図で、ノードN
2のクランプ用MO3)ランジスタQ14〜QI6を用
いる点が第1図と異なる。これらトランジスタはダイオ
ード接続され、ノードN2のHレベルを3 V thに
クランプする(Vss−OVとして)。このようにする
とトランジスタQI3オン時のノードN3の電位はノー
ドN2によりvthだけ低い2 V thになるので、
ROM消費電流を抑え、またROMIのヒユーズFo−
F9の切断後に印加される電圧が低下し、切断点の溶融
による再供給を起こしにくくすることができる。
FIG. 2 is a circuit diagram showing another embodiment of the present invention, in which the node N
The difference from FIG. 1 is that transistors Q14 to QI6 for clamping MO3) are used. These transistors are diode-connected and clamp the H level of node N2 to 3 V th (as Vss-OV). In this way, the potential of node N3 when transistor QI3 is on becomes 2 V th, which is lower by vth due to node N2.
Reduces ROM current consumption and also reduces ROMI fuse Fo-
The voltage applied after cutting F9 is reduced, making it difficult for resupply to occur due to melting of the cutting point.

本発明の活性化回路2は當特電流の流れるnチャネルM
OSメモリよりも、定常的な消費電流の僅少なCMOS
タイプのメモリにおいてより効果的である。第3図はC
MOSに適した活性化回路2の要部回路図で、Qp、Q
nはCMOSインバータを構成するp、n各チャネルの
MO3I−ランジスタである。ノードN1.N2は第1
図および第2図のそれに対応する。
The activation circuit 2 of the present invention has an n-channel M through which a special current flows.
CMOS with lower constant current consumption than OS memory
It is more effective in type memory. Figure 3 is C
This is a circuit diagram of the main part of activation circuit 2 suitable for MOS, Qp, Q
n is an MO3I-transistor of each p and n channel constituting a CMOS inverter. Node N1. N2 is the first
2. Corresponding to that of FIG.

活性化回路2を設けると、活性化したもの(予備セル使
用のもの)と活性化しないものでは定常(スタンバイ)
電流が異なることになるが、メモリの用途にはスタンバ
イ電流が小さいのを要求するものと、それを重視しない
ものがあるので、用途に合わせた使用ができるようにし
ておけばよい。
When the activation circuit 2 is provided, activated ones (use of spare cells) and non-activated ones are stationary (standby).
Although the current will be different, there are memory applications that require a small standby current and others that do not place importance on it, so it is best to be able to use it according to the application.

ちなみに予備セル使用のものと不使用のものは、製品で
は区別されている。
By the way, there is a distinction between products that use spare cells and those that do not.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、予備セルを有するメ
モリで不良アドレスを記(、QするROMに対し読出し
電流を供給する活性化回路を設け、該活性化回路内のヒ
ユーズを切断したチップでは読出し電流を供給し、該ヒ
ユーズを残したチップでは読出し電流を供給しないよう
にしたので、読出し電流を供給しないチップ、つまり不
良セルのないチップの定常的な消費電流を低減できる利
点がある。
As described above, according to the present invention, an activation circuit is provided to supply a read current to a ROM that records (and Q) a defective address in a memory having a spare cell, and the fuse in the activation circuit is cut. Since the read current is supplied to the chip in which the fuse remains, the read current is not supplied to the chip in which the fuse remains, which has the advantage of reducing the steady current consumption of the chip that does not supply the read current, that is, the chip that does not have a defective cell.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図の本発明の各実施例を示す回路図、
第3図は本発明の変形例を示す要部回路図、第4図は従
来の不良ドレス記憶用ROMの回路図である。 図中、1は不良アドレス記憶用ROM、Fo〜F9はそ
のアドレス設定用ヒユーズ、2は活性化回路、Fとその
活性化用ヒユーズである。
A circuit diagram showing each embodiment of the present invention in FIGS. 1 and 2,
FIG. 3 is a circuit diagram of a main part showing a modification of the present invention, and FIG. 4 is a circuit diagram of a conventional ROM for storing defective addresses. In the figure, 1 is a ROM for storing defective addresses, Fo to F9 are address setting fuses, 2 is an activation circuit, and F and its activation fuse.

Claims (1)

【特許請求の範囲】[Claims] メモリセルアレイの他に予備セルを備え、該セルアレイ
中の不良セルを該予備セルに置換して使用する半導体記
憶装置において、該不良セルのアドレスを記憶するヒュ
ーズ切断型のROMと、該予備セルの使用、不使用に応
じて切断、非切断とされるヒューズを備えて予備セル使
用ROMに対し読出し電流を供給し、予備セル不使用の
ROMに対しては読出し電流を供給しない活性化回路と
を備えてなることを特徴とする半導体記憶装置。
In a semiconductor memory device that includes a spare cell in addition to a memory cell array, and is used by replacing a defective cell in the cell array with the spare cell, a fuse-cutting ROM that stores an address of the defective cell, and a ROM for storing the address of the spare cell are provided. An activation circuit is provided with a fuse that is cut or uncut depending on whether it is used or not, and supplies a read current to a ROM using a spare cell, and does not supply a read current to a ROM that does not use a spare cell. A semiconductor memory device comprising:
JP61018960A 1986-01-30 1986-01-30 semiconductor storage device Pending JPS62177798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61018960A JPS62177798A (en) 1986-01-30 1986-01-30 semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61018960A JPS62177798A (en) 1986-01-30 1986-01-30 semiconductor storage device

Publications (1)

Publication Number Publication Date
JPS62177798A true JPS62177798A (en) 1987-08-04

Family

ID=11986214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61018960A Pending JPS62177798A (en) 1986-01-30 1986-01-30 semiconductor storage device

Country Status (1)

Country Link
JP (1) JPS62177798A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005061719B3 (en) * 2005-12-22 2007-05-16 Infineon Technologies Ag Memory device for base band-chip of mobile radio unit, has control unit controlling switch based on information stored in memory units, such that switch separates reading circuits from supply voltage
JP2010518540A (en) * 2007-02-13 2010-05-27 インターナショナル・ビジネス・マシーンズ・コーポレーション Electronic fuse apparatus and method including an addressable virtual electronic fuse
JP2010520574A (en) * 2007-03-02 2010-06-10 フリースケール セミコンダクター インコーポレイテッド Integrated circuit fuse array

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005061719B3 (en) * 2005-12-22 2007-05-16 Infineon Technologies Ag Memory device for base band-chip of mobile radio unit, has control unit controlling switch based on information stored in memory units, such that switch separates reading circuits from supply voltage
US7684277B2 (en) 2005-12-22 2010-03-23 Infineon Technologies Ag Non-volatile memory device with controlled application of supply voltage
JP2010518540A (en) * 2007-02-13 2010-05-27 インターナショナル・ビジネス・マシーンズ・コーポレーション Electronic fuse apparatus and method including an addressable virtual electronic fuse
JP2010520574A (en) * 2007-03-02 2010-06-10 フリースケール セミコンダクター インコーポレイテッド Integrated circuit fuse array

Similar Documents

Publication Publication Date Title
US5325334A (en) Column redundancy circuit for a semiconductor memory device
KR100769093B1 (en) Fuse circuit
US5387823A (en) Fuse-programmable redundancy control circuit
US7995407B2 (en) Semiconductor memory device and control method thereof
US4485459A (en) Redundant columns for byte wide memories
US4587639A (en) Static semiconductor memory device incorporating redundancy memory cells
US5608678A (en) Column redundancy of a multiple block memory architecture
US5703816A (en) Failed memory cell repair circuit of semiconductor memory
JPH0427639B2 (en)
KR100287541B1 (en) Redundancy decoder enable circuit of semiconductor memory device
JPS62177798A (en) semiconductor storage device
JP2804863B2 (en) High efficiency DRAM redundant circuit
KR20000050685A (en) Redundancy circuit having buffers to make uniform load distribution
JP3414496B2 (en) Semiconductor device
US5712821A (en) Redundancy circuit of semiconductor memory device
JP2595271B2 (en) Program circuit
JPH05314790A (en) Semiconductor memory
KR100649970B1 (en) Redundancy Circuit
JPS61104500A (en) Semiconductor integrated circuit device
JPH0676593A (en) Semiconductor memory
JPS5846175B2 (en) programmable circuit
JPH11110996A (en) Semiconductor storage device
JP3397357B2 (en) Semiconductor memory device and semiconductor memory redundant address program circuit
JPH0462160B2 (en)
KR100388462B1 (en) Redundancy circuits