JPS62176913A - Process for separation and recovery of cesium from treating liquid containing sodium salt - Google Patents
Process for separation and recovery of cesium from treating liquid containing sodium saltInfo
- Publication number
- JPS62176913A JPS62176913A JP1883886A JP1883886A JPS62176913A JP S62176913 A JPS62176913 A JP S62176913A JP 1883886 A JP1883886 A JP 1883886A JP 1883886 A JP1883886 A JP 1883886A JP S62176913 A JPS62176913 A JP S62176913A
- Authority
- JP
- Japan
- Prior art keywords
- cesium
- zinc
- ferrocyanide
- concentration
- radioactive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 45
- 229910052792 caesium Inorganic materials 0.000 title claims description 90
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 title claims description 85
- 159000000000 sodium salts Chemical class 0.000 title claims description 5
- 239000007788 liquid Substances 0.000 title abstract description 23
- 238000011084 recovery Methods 0.000 title description 4
- 238000000926 separation method Methods 0.000 title description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 30
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 30
- 239000011701 zinc Substances 0.000 claims abstract description 30
- 230000002285 radioactive effect Effects 0.000 claims abstract description 24
- 239000003463 adsorbent Substances 0.000 claims abstract description 19
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 12
- 239000002244 precipitate Substances 0.000 claims abstract description 7
- 239000000203 mixture Substances 0.000 claims abstract description 4
- 230000003472 neutralizing effect Effects 0.000 claims abstract description 3
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims abstract 6
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 claims abstract 6
- 229910000030 sodium bicarbonate Inorganic materials 0.000 claims abstract 3
- 235000017557 sodium bicarbonate Nutrition 0.000 claims abstract 3
- 229910000029 sodium carbonate Inorganic materials 0.000 claims abstract 3
- 239000000243 solution Substances 0.000 claims description 19
- 229910001385 heavy metal Inorganic materials 0.000 claims description 8
- 238000006386 neutralization reaction Methods 0.000 claims description 4
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 3
- YAGKRVSRTSUGEY-UHFFFAOYSA-N ferricyanide Chemical compound [Fe+3].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] YAGKRVSRTSUGEY-UHFFFAOYSA-N 0.000 claims description 2
- 239000003929 acidic solution Substances 0.000 claims 3
- 239000003638 chemical reducing agent Substances 0.000 claims 1
- 239000002699 waste material Substances 0.000 abstract description 10
- 239000000706 filtrate Substances 0.000 abstract description 8
- 230000002378 acidificating effect Effects 0.000 abstract description 5
- 239000002915 spent fuel radioactive waste Substances 0.000 abstract description 3
- UETZVSHORCDDTH-UHFFFAOYSA-N iron(2+);hexacyanide Chemical compound [Fe+2].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] UETZVSHORCDDTH-UHFFFAOYSA-N 0.000 abstract 2
- 235000017550 sodium carbonate Nutrition 0.000 abstract 1
- 235000011121 sodium hydroxide Nutrition 0.000 abstract 1
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 38
- 238000001179 sorption measurement Methods 0.000 description 35
- 235000010344 sodium nitrate Nutrition 0.000 description 19
- 239000004317 sodium nitrate Substances 0.000 description 15
- NFVZIERLAZUYBQ-UHFFFAOYSA-N [K].[Zn] Chemical compound [K].[Zn] NFVZIERLAZUYBQ-UHFFFAOYSA-N 0.000 description 13
- 239000007864 aqueous solution Substances 0.000 description 13
- 239000002927 high level radioactive waste Substances 0.000 description 10
- -1 all Chemical compound 0.000 description 9
- 239000012528 membrane Substances 0.000 description 8
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 239000000276 potassium ferrocyanide Substances 0.000 description 6
- 229910001415 sodium ion Inorganic materials 0.000 description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 5
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 5
- 238000005202 decontamination Methods 0.000 description 5
- 230000003588 decontaminative effect Effects 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 229910017604 nitric acid Inorganic materials 0.000 description 5
- 229910052708 sodium Inorganic materials 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- 238000009826 distribution Methods 0.000 description 4
- 238000005342 ion exchange Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000012958 reprocessing Methods 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 4
- WYKYKTKDBLFHCY-UHFFFAOYSA-N chloridazon Chemical compound O=C1C(Cl)=C(N)C=NN1C1=CC=CC=C1 WYKYKTKDBLFHCY-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910001410 inorganic ion Inorganic materials 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 229910052712 strontium Inorganic materials 0.000 description 3
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 239000003456 ion exchange resin Substances 0.000 description 2
- 229920003303 ion-exchange polymer Polymers 0.000 description 2
- 239000003758 nuclear fuel Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910001414 potassium ion Inorganic materials 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000002901 radioactive waste Substances 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000004017 vitrification Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000011592 zinc chloride Substances 0.000 description 2
- 235000005074 zinc chloride Nutrition 0.000 description 2
- GTLDTDOJJJZVBW-UHFFFAOYSA-N zinc cyanide Chemical compound [Zn+2].N#[C-].N#[C-] GTLDTDOJJJZVBW-UHFFFAOYSA-N 0.000 description 2
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 229910052778 Plutonium Inorganic materials 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 229910001420 alkaline earth metal ion Inorganic materials 0.000 description 1
- YVBOZGOAVJZITM-UHFFFAOYSA-P ammonium phosphomolybdate Chemical compound [NH4+].[NH4+].[NH4+].[NH4+].[O-]P([O-])=O.[O-][Mo]([O-])(=O)=O YVBOZGOAVJZITM-UHFFFAOYSA-P 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 150000003983 crown ethers Chemical class 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002550 fecal effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000004992 fission Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 150000007661 iron cyano complex Chemical class 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000002925 low-level radioactive waste Substances 0.000 description 1
- 229910052680 mordenite Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- OYEHPCDNVJXUIW-UHFFFAOYSA-N plutonium atom Chemical compound [Pu] OYEHPCDNVJXUIW-UHFFFAOYSA-N 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- GTSHREYGKSITGK-UHFFFAOYSA-N sodium ferrocyanide Chemical compound [Na+].[Na+].[Na+].[Na+].[Fe+2].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] GTSHREYGKSITGK-UHFFFAOYSA-N 0.000 description 1
- 239000000264 sodium ferrocyanide Substances 0.000 description 1
- 235000012247 sodium ferrocyanide Nutrition 0.000 description 1
- 235000010288 sodium nitrite Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 229910052713 technetium Inorganic materials 0.000 description 1
- GKLVYJBZJHMRIY-UHFFFAOYSA-N technetium atom Chemical compound [Tc] GKLVYJBZJHMRIY-UHFFFAOYSA-N 0.000 description 1
- XOGGUFAVLNCTRS-UHFFFAOYSA-N tetrapotassium;iron(2+);hexacyanide Chemical compound [K+].[K+].[K+].[K+].[Fe+2].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] XOGGUFAVLNCTRS-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
- 229960001763 zinc sulfate Drugs 0.000 description 1
- 229910000368 zinc sulfate Inorganic materials 0.000 description 1
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
【発明の詳細な説明】
〈発明の利用分野〉
本発明は、セシウム含有廃液からのセシウムの分離、回
収方法に係わり、とくに萌用済核燃料の再処理施設等原
子力関連施設から発生する高レベル放射性廃液中の放射
性セシウムの分離、回収方法に関するものである。[Detailed Description of the Invention] <Field of Application of the Invention> The present invention relates to a method for separating and recovering cesium from cesium-containing waste liquid, and particularly relates to a method for separating and recovering cesium from cesium-containing waste liquid, and in particular for high-level radioactivity generated from nuclear power-related facilities such as spent nuclear fuel reprocessing facilities. This paper relates to a method for separating and recovering radioactive cesium in waste liquid.
〈発明の背景〉
使用済核燃料の再処理法としては、ビューレックス法が
主流となりつつあるが、末法の場合処理に伴って濃厚硝
酸酸性(2〜4M)の高レベル放射性廃液が発生する。<Background of the Invention> The Burex method is becoming mainstream as a method for reprocessing spent nuclear fuel, but in the case of the final method, high-level radioactive waste liquid containing concentrated nitric acid (2 to 4 M) is generated during processing.
また、再処理工場の各工程からの中レベル放射性廃液の
濃縮によっても高レベル放射性廃液が生じろ。高レベル
放射性廃液の安全な処理、処分法はまだ確立しておらず
、核燃料サイクルを完成するうえで大きな障害となって
いる。現時点で最も有力な処理法として高レベル放射性
廃液を一括してガラス固化体とする処理法の開発が盛ん
に進められているが、末法には次のような難点がある。In addition, high-level radioactive waste liquid may also be generated by concentrating medium-level radioactive waste liquid from each process in a reprocessing plant. Safe treatment and disposal methods for high-level radioactive waste liquid have not yet been established, and this is a major obstacle to completing the nuclear fuel cycle. At present, the most promising treatment method is actively developing a treatment method that converts high-level radioactive waste liquid into a vitrified substance, but the final treatment method has the following drawbacks.
まず、a ll、IB7 、c、+uなどの放射性セシ
ウムがガラス化処理温度以下で揮発しやすく、その対応
が難しいことである。また、浸水時にガラス固化体から
の放射性核種の溶出を完全に抑えるることは難しく、放
射性セシウムは最も溶出しやすい核種である。さらに、
強い放射能と多量の発熱がガラス固化体の取扱いや運搬
時の安全性、長期にわたる保管、貯蔵における安定性に
ついて事前評価を困難としている大きな要因となってい
る。これについては、全放射能と発生熱の90%以上を
占める放射性ストロンチウムとセシウムをあらかじめ除
去できれば、かなり軽減されるはずである。また、これ
らの放射性核種は産業面での利用価値が大きく、とくに
放射性セシウムは都市下水等の活性汚泥処理に伴う余剰
汚泥や各種食品の殺菌用照射線源として将来大きな需要
が見込まれている。First, radioactive cesium such as all, IB7, c, and +u easily evaporates below the vitrification treatment temperature, making it difficult to deal with this problem. Furthermore, it is difficult to completely suppress the elution of radionuclides from the vitrified material during flooding, and radioactive cesium is the nuclide that is most easily eluted. moreover,
Strong radioactivity and a large amount of heat generation are major factors that make it difficult to pre-evaluate the safety of vitrified materials during handling and transportation, long-term storage, and storage stability. This should be considerably reduced if radioactive strontium and cesium, which account for more than 90% of the total radioactivity and heat generated, can be removed in advance. In addition, these radionuclides have great industrial utility value, and radioactive cesium in particular is expected to be in great demand in the future as an irradiation source for sterilizing surplus sludge from activated sludge treatment of urban sewage and other sources, as well as for sterilizing various foods.
以上の背景のもとに、高レベル放射性廃液から放射性ス
トロンチウムとセシウムをあらかじめ分離する方式が最
近注目されてきた(例えば、“入n alterna
tive strategy for comm
ercia+high−1evel radio−a
etive manazement−、IAEA−5
M−261734(1983年))。Based on the above background, a method for pre-separating radioactive strontium and cesium from high-level radioactive waste liquid has recently attracted attention (for example, "input na alterna").
tive strategy for comm
ercia+high-1 level radio-a
tive management-, IAEA-5
M-261734 (1983)).
高レベル放射性廃液からのセシウムの除去法としては、
無機イオン交換体や選択性イオン交換樹脂による吸着法
、クラウンエーテルなどを用いる溶媒抽出法、重金属塩
と可溶性フェロシアン化物又はフェリシアン化物塩併用
による共沈法、セシウム沈殿試薬による化学処理法など
が公知である。As a method for removing cesium from high-level radioactive waste liquid,
Adsorption methods using inorganic ion exchangers or selective ion exchange resins, solvent extraction methods using crown ether, coprecipitation methods using a combination of heavy metal salts and soluble ferrocyanide or ferricyanide salts, chemical treatment methods using cesium precipitation reagents, etc. It is publicly known.
このうち、除染係数(初濃度十除染後の濃度)、耐放射
線性、藺便性等の点で従来開発の重点はゼオライト、リ
ンモリブデン酸アンモニウム、不溶性フェロシアン化物
等無機イオン交換体に向けられてきた。しかし、これら
の無機イオン交換体は、濃厚硝酸酸性廃液中に溶解する
各種核分裂生成物やその他の重金属溶解成分による妨害
のため、回分式では除染係数や吸着量が十分でなく、カ
ラム式の場合粒度の点で難点があるなど、実用化には問
題が多い。Among these, conventional development has focused on inorganic ion exchangers such as zeolite, ammonium phosphomolybdate, and insoluble ferrocyanide in terms of decontamination coefficient (initial concentration 10 concentration after decontamination), radiation resistance, and fecal resistance. It's been directed at me. However, these inorganic ion exchangers do not have sufficient decontamination coefficients or adsorption amounts in the batch method due to interference from various fission products and other dissolved components of heavy metals dissolved in the concentrated nitric acid waste solution, and the column method There are many problems in practical application, such as the problem of particle size.
一方、最近、放射性セシウムの分離を濃厚硝酸酸性廃液
から直接行わないで−たん水酸化ナトリウムで中和処理
後に行う方式が実用化に向っているじTreatmen
t and eonditioningof wast
es fromnuclear fuel p
rocessing plants in
the UnitedStates of
America−、IAEA−CM−437187(1
984年))。On the other hand, recently, a method for separating radioactive cesium from concentrated nitric acid waste solution, rather than directly, but after neutralizing it with sodium hydroxide, is moving toward practical use.
t and eonditioning of waste
es from nuclear fuel p
rocessing plants in
the United States of
America-, IAEA-CM-437187 (1
984)).
本方式の利点は、セシウムの分離を妨害する重金属溶解
成分を水酸化物沈殿からなる少量の高レベル放射性廃棄
物として分離し、処理液中に残留する放射性セシウム、
ストロンチウムと@量のプルトニウム、テクネチウムを
除去すれば、溶解塩類は低レベル放射性廃棄物として処
分できることである。さらに、回収されろ放射性セシウ
ムを各種用途に有効利用するか、セラミック固化物等安
定な固化体として別途に処分することにより、ガラス固
化処理に伴う困難を解消又は軽減できる利点がある。The advantage of this method is that the dissolved heavy metal components that interfere with cesium separation are separated as a small amount of high-level radioactive waste consisting of hydroxide precipitates, and the radioactive cesium remaining in the treated solution is removed.
By removing strontium, plutonium, and technetium, dissolved salts can be disposed of as low-level radioactive waste. Furthermore, there is the advantage that the difficulties associated with vitrification treatment can be eliminated or alleviated by effectively utilizing the recovered radioactive cesium for various purposes or by separately disposing of it as a stable solidified material such as a ceramic solidified product.
本方式の場合、放射性セシウムの除去法としては、特殊
な選択性イオン交換樹脂を用いるイオン交換法(入dv
anees in Ceramics、第8巻、 p、
183,92、1984年)とテトラフェニルホウ濃
酸ナトリウムを沈殿剤とする沈殿法(lteport
DP−MS−82−46,1982年)が開発されてい
る。このうち、イオン交換法は高放射能下での樹脂の安
定性や複雑なカラム操作の点て難点があり、高濃度の放
射性セシウムの除去には適していない。また、テトラフ
ェニルホウ濃酸ナトリウムの場合比較的多量に共存する
カリウムも定量的に沈殿させろため、極めて高価な当該
試薬を多量に消費すること並びζこ当該試薬は高濃度ナ
トリウムイオン存在下で溶解度力< /JXさいことな
どから、やはり高濃度の放射性セシウムの除去には適さ
ない。また、多量のカリウムカτ共沈するうえにナトリ
ウム濃度が2M以下でしょ沈殿からセシウムが再溶出す
るため、沈殿の洗浄液として2M以上のナトリウム塩を
含ませろ必要力;あろなど、沈殿中のセシウムの濃縮度
を高めるうえで難点があった。しかし、その一方、上記
各方法には除染係数が10”〜106以上と非常に高0
利点力丁ある。In the case of this method, radioactive cesium is removed using an ion exchange method using a special selective ion exchange resin.
anees in Ceramics, Volume 8, p.
183, 92, 1984) and the precipitation method using concentrated sodium tetraphenylborate as a precipitant (lteport
DP-MS-82-46, 1982) has been developed. Of these, the ion exchange method has drawbacks in terms of resin stability under high radioactivity and complicated column operations, and is not suitable for removing high concentrations of radioactive cesium. In addition, in the case of concentrated sodium tetraphenylboronate, potassium, which coexists in a relatively large amount, must be quantitatively precipitated, which requires a large amount of extremely expensive reagent. Due to the low power, etc., it is not suitable for removing high concentrations of radioactive cesium. In addition, if a large amount of potassium co-precipitates and the sodium concentration is less than 2M, cesium will re-elute from the precipitate, so it is necessary to include a sodium salt of 2M or more as a washing solution for the precipitate. There were some difficulties in raising the degree. However, on the other hand, each of the above methods has a very high decontamination coefficient of 10" to 106 or more.
There are many advantages.
く本発明の目的〉
実際の高レベル放射性廃液中のセシウム濃度(よ、冷却
期間が短い場合には最大4X10 Mとかなり高濃度
であるので、本発明は、上記のイオン交換法やテトラフ
ェニルホウ濃酸ナトリウム法等除染係数の高い公知の方
法て処理を行う前(こ、大部分の放射性セシウムを濃縮
状態で効率よく分離、回収する方法を提供する。Purpose of the present invention> Since the concentration of cesium in actual high-level radioactive waste liquids is quite high (maximum 4 x 10 M when the cooling period is short), the present invention uses the above-mentioned ion exchange method and tetraphenylboron. This provides a method to efficiently separate and recover most of the radioactive cesium in a concentrated state before treatment using a known method with a high decontamination coefficient such as the concentrated sodium method.
〈発明の構成〉
本発明は上記の目的を達成えるなめ、硝酸ナトリウムな
どのナトリウム塩含有溶液中に含まれる比較的高濃度の
セシウムイオンの除去に〕二ロシアン化亜鉛を吸着剤と
して使用することを4′!黴とする。<Configuration of the Invention> The present invention achieves the above objects by using zinc dicyanide as an adsorbent for removing relatively high concentration of cesium ions contained in solutions containing sodium salts such as sodium nitrate. 4′! Make it moldy.
一般に重金属のフェロシアン化物がセシウムイオンを吸
着しやすいことは公知であるが、水素イオン又はナトリ
ウムイオンの共存濃度の増加とともに分布係数Kd (
吸着剤1g当たりの吸着セシウム1!に/溶液1rn1
当たりの残留セシウム量)が徐々に低下し、ナトリウム
イオン濃度がIMまで増加すると、104以下に低下す
るとされていた(Radioehemical and
Radioanilytical Letters。It is generally known that the heavy metal ferrocyanide easily adsorbs cesium ions, but as the coexisting concentration of hydrogen ions or sodium ions increases, the distribution coefficient Kd (
Adsorbed cesium 1 per gram of adsorbent! to/solution 1rn1
It was thought that if the residual cesium per unit area gradually decreased and the sodium ion concentration increased to IM, it would decrease to 104 or less (Radiochemical and
Radioanilytical Letters.
第42巻、 9329〜340.1980年)。本発明
者等ζよ、フェロシアン化亜鉛が3M硝酸ナトリウム共
存下でも104以上のKd値を示し、しかもセシウム吸
着量の増加とともにKd値が上昇する領域があるなど通
常の吸着剤にない特性を見出し、本発明に到達した。Volume 42, 9329-340.1980). The present inventors ζ have discovered that zinc ferrocyanide exhibits a Kd value of 104 or higher even in the coexistence of 3M sodium nitrate, and has properties that are not found in ordinary adsorbents, such as a region in which the Kd value increases as the amount of cesium adsorbed increases. Heading, we arrived at the present invention.
第1〜3図のKd値とセシウム吸着量の関係を示す曲線
を用いて本発明の特徴を詳しく説明する。The features of the present invention will be explained in detail using curves showing the relationship between the Kd value and the amount of cesium adsorbed in FIGS. 1 to 3.
吸着剤としてはフェロシアン化亜鉛のほかに比較のため
フェロシアン化亜鉛カリウムを用いた。吸着実験は、2
5℃で7日間振とうして行った。図中、fは吸着剤の重
量(g)に対する液量(rni)の比を表したものであ
る。第1図は、フェロシアン化亜鉛を吸着剤とし、3M
硝酸ナトリウム溶液からセシウムを吸着させた場合であ
る。Kd値は吸着量が低゛いところで小さいが、その増
加と共に急激に上昇し、f=1000の場合、吸着量が
03〜4meq/gのとき104以上を示した。第2図
は水溶液からセシウムを吸着させた場合である。第1図
と比較した場合、Kd値は若干高い値を示すが、傾向は
f値によって差異のあることを含めて非常に類似してい
る。一方、第3図は、フェロシアン化亜鉛カリウムを吸
着剤とし、3M硝酸ナトリウム溶液からセシウムを吸着
させた場合である。吸着量が小さい領域を除いて全体的
に第1図に比べてKd値が著しく低い。In addition to zinc ferrocyanide, potassium zinc ferrocyanide was used as an adsorbent for comparison. The adsorption experiment consisted of 2
This was done by shaking at 5°C for 7 days. In the figure, f represents the ratio of the liquid amount (rni) to the weight (g) of the adsorbent. Figure 1 shows 3M using zinc ferrocyanide as an adsorbent.
This is a case where cesium is adsorbed from a sodium nitrate solution. The Kd value is small when the adsorption amount is low, but increases rapidly as it increases, and in the case of f=1000, it showed 104 or more when the adsorption amount was 03 to 4 meq/g. Figure 2 shows the case where cesium is adsorbed from an aqueous solution. When compared with FIG. 1, the Kd value shows a slightly higher value, but the trends are very similar, including differences depending on the f value. On the other hand, FIG. 3 shows the case where cesium was adsorbed from a 3M sodium nitrate solution using potassium zinc ferrocyanide as an adsorbent. The Kd value is significantly lower overall than in FIG. 1 except for the region where the amount of adsorption is small.
しかし、吸着量が低いところでKd値が高く一定値に近
づき、fによるKd値の差異が認められないことは通常
の吸着剤の挙動を示している。以上のように、フェロシ
アン化亜鉛は従来の常識でtよ考えられない異常な吸着
挙動を示し、とくに吸着量力9大きいところでは異常に
大きな吸着力を発現し、従来亜鉛のフェロシアン化物の
中で代表的なセシウム吸着剤と考えられていたフェロシ
アン化亜鉛カリウムに比べてとくに吸着量が3meq/
g付近でζよ実に100倍前後の吸着力のあることが見
出され、本発明の目的にとって非常に好ましいものであ
ることがわかった。上記のような異常を示す原因は明ら
かではないが、この場合単なるイオン交換による吸着で
はなく、セシウムとフェロシアン化亜鉛との間に中間化
合物が生成し、それがセシウムに対して強い吸着力を示
すことも考えられる。However, when the adsorption amount is low, the Kd value is high and approaches a constant value, and no difference in Kd value due to f is observed, indicating the normal behavior of an adsorbent. As mentioned above, zinc ferrocyanide exhibits an abnormal adsorption behavior that is unimaginable according to conventional common sense, and in particular, it exhibits an abnormally large adsorption force in areas where the adsorption amount force 9 is large. Compared to zinc potassium ferrocyanide, which was considered to be a typical cesium adsorbent, the adsorption amount is 3 meq/
It was found that the adsorption force was about 100 times that of ζ at around g, which was found to be very preferable for the purpose of the present invention. The cause of the above abnormality is not clear, but in this case it is not adsorption due to simple ion exchange, but an intermediate compound is generated between cesium and zinc ferrocyanide, which has a strong adsorption force against cesium. It is also possible to show it.
本発明において、フェロシアン化亜鉛からなる吸着剤と
しては、フェロシアン化亜鉛粉末又はその粒状化物、フ
ェロシアン化亜鉛の懸濁液、あるいは多孔質担体内でフ
ェロシアン化亜鉛を沈殿させて作製した吸着剤などが好
ましく用いられる。In the present invention, the adsorbent made of zinc ferrocyanide is prepared by zinc ferrocyanide powder or its granules, a suspension of zinc ferrocyanide, or by precipitating zinc ferrocyanide in a porous carrier. Adsorbents and the like are preferably used.
フェロシアン化亜鉛1.t、!常、フェロシアンイオン
と亜鉛イオンを水溶液中で接触させて調製されるが、カ
リウムイオンが共存すると、フェロシアン化亜鉛カリウ
ムを優先的に生成しやすいことは公知である。一方、本
発明者等は、亜鉛イオン存在下でフェロシアンイオンを
還元する場合には、カリウムイオン存在下でもフェロシ
アン化亜鉛が生成しやすいことを見出した。それ故、特
公昭57−5598号など本発明者等の方法による鉄シ
アノ錯体含有排水の処理によって生成する沈殿を利用す
ることができる。Zinc ferrocyanide 1. T,! It is usually prepared by bringing ferrocyanide ions and zinc ions into contact in an aqueous solution, but it is known that when potassium ions coexist, zinc potassium ferrocyanide tends to be preferentially produced. On the other hand, the present inventors have found that when ferrocyanide ions are reduced in the presence of zinc ions, zinc ferrocyanide is easily produced even in the presence of potassium ions. Therefore, the precipitate produced by the treatment of iron cyano complex-containing wastewater according to the method of the present inventors, such as Japanese Patent Publication No. 57-5598, can be utilized.
本発明において、セシウム濃度が10 M以上のとき
、セシウムの除去率とフェロシアン化亜鉛の単位重量当
りのセシウム吸着量が高まり、効率のよい処理ができる
。なお、10−3M以下の放射性セシウムを除くには、
非放射性のセシウムを担体として全セシウム濃度が10
−3M以上になるように添加すると効果的である。In the present invention, when the cesium concentration is 10 M or more, the cesium removal rate and the amount of cesium adsorbed per unit weight of zinc ferrocyanide increase, allowing efficient treatment. In addition, to remove radioactive cesium below 10-3M,
Using non-radioactive cesium as a carrier, the total cesium concentration is 10
It is effective to add 3M or more.
ナトリウムの共存濃度が増加するとKd値は次第に低下
するが、5M付近までは十分高い値を示す。As the coexisting concentration of sodium increases, the Kd value gradually decreases, but remains sufficiently high up to around 5M.
ビューレックス廃液の場合には、中和処理前に硝酸の一
部を分解処理(脱硝)することにより、ナトリウム濃度
を十分低く抑えろことができる。In the case of Burex waste liquid, the sodium concentration can be kept sufficiently low by decomposing a portion of the nitric acid (denitrification) before neutralization.
吸着処理に際して液のp旧よフェロシアン化亜鉛のアル
カリ性下での分解、酸性下での硝酸による酸化を避ける
なめ、1〜10の範囲かがましい。In order to avoid decomposition of zinc ferrocyanide under alkaline conditions and oxidation by nitric acid under acidic conditions, the pH of the solution is preferably set in the range of 1 to 10 during adsorption treatment.
固液分離は比較的容易であり、自然沈降、濾過、遠心分
離等が適用できる。Solid-liquid separation is relatively easy, and natural sedimentation, filtration, centrifugation, etc. can be applied.
本発明の方法において上記の条件下で回分処理を行う場
合、セシウム濃度が1×10 〜4xlOMのとき、フ
ェロシアン化亜鉛の添加量を1〜10g/lの範囲で適
当に設定することにより、3Mのナトリウムイオン含有
溶液からのセシウムの回収率、残留濃度、吸着量は各9
0〜99J1xlO〜1.5xlOM、1〜4maq/
にとなる。残留濃度が高い場合には、処理液について再
び回分処理を行えば、初濃度が4×10−”Mのもので
も2回の回分処理により残留濃度を1xlO=M以下に
下げることができる。When carrying out batch processing under the above conditions in the method of the present invention, when the cesium concentration is 1 x 10 to 4 x lOM, by appropriately setting the amount of zinc ferrocyanide added in the range of 1 to 10 g/l, The recovery rate, residual concentration, and adsorption amount of cesium from a 3M sodium ion-containing solution were 9 each.
0~99J1xlO~1.5xlOM, 1~4maq/
It becomes. If the residual concentration is high, if the treatment solution is subjected to batch processing again, even if the initial concentration is 4 x 10-''M, the residual concentration can be lowered to 1xlO=M or less by performing the batch processing twice.
なお、ナトリウムイオン以外の共存塩の影響については
、陰イオンの影響はほとんどなく、水素イオン、アルカ
リ金属イオン、アルカリ土類金属イオンについてはナト
リウムイオンに比べて非常に少ない場合には無視できろ
。最も影響を受は易い重金属類については好都合なこと
に中和沈殿処理によってあらかじめ除かれている。また
、フェロシアン化亜鉛は耐放射線性があり、通常のセシ
ウムイオンとその同位体イオンが吸着挙動においてほと
んど差異のないことは公知の知見から明らかである。そ
れ故、本発明の方法は、放射性廃液中ノCs Xc、
などセシウム同位体に対しても適用できろ。以下、
実施例に基づいて本発明を具体的に説明するが、本発明
に基づく最適条件は、対象となる廃液の性質上、個々の
状況に応じて決められるべきものであり、本発明が下記
の実施例に限定されるものではないことは勿論である。Regarding the effects of coexisting salts other than sodium ions, anions have almost no effect, and hydrogen ions, alkali metal ions, and alkaline earth metal ions can be ignored if they are very small compared to sodium ions. The most sensitive heavy metals are advantageously already removed by a neutralization precipitation process. Further, it is clear from known knowledge that zinc ferrocyanide has radiation resistance and that there is almost no difference in adsorption behavior between ordinary cesium ions and its isotope ions. Therefore, the method of the present invention provides Cs Xc in radioactive waste liquid,
It can also be applied to cesium isotopes such as below,
The present invention will be specifically explained based on examples, but the optimum conditions based on the present invention should be determined depending on the individual circumstances due to the nature of the target waste liquid. Of course, the present invention is not limited to this example.
実施例l
Zn2 Fe (CN)6に換算して0.01〜O,I
gの7 z Oシアン化亜鉛をネジ蓋付三角フラスコ(
25mt’ )に秤取し、それに塩化セシウムを1xl
Q−十〜5xlO−”M含む3 MHaNO3水溶液1
0−を添加し、25℃で7日間振とうした。なお、フェ
ロシアン化亜鉛は、フェロシアン化ナトリウムと硝酸亜
鉛を用いて常法によって水溶液から沈殿させたのち、水
洗し、風乾したものを使用した。内容物をメンブランフ
ィルタ−で速やかに濾過後、濾液中の残留セシウム濃度
を分析した。その結果に基づいて算出したセシウム回収
率、セシウム吸着量を表1に、分布係数(Kd)とセシ
ウム吸着量の関係を第1図に示す。Example 1 Zn2 Fe (CN) 0.01~O,I in terms of 6
g of 7 z O zinc cyanide in an Erlenmeyer flask with a screw cap (
25mt'), and add 1xl of cesium chloride to it.
Q-1~5xlO-''M 3M HaNO3 aqueous solution 1
0- was added and shaken at 25°C for 7 days. Note that zinc ferrocyanide was precipitated from an aqueous solution using sodium ferrocyanide and zinc nitrate in a conventional manner, washed with water, and air-dried. After the contents were quickly filtered with a membrane filter, the residual cesium concentration in the filtrate was analyzed. Table 1 shows the cesium recovery rate and cesium adsorption amount calculated based on the results, and FIG. 1 shows the relationship between the distribution coefficient (Kd) and the cesium adsorption amount.
なお、吸着量とKd値の計算は次式によった。Note that the adsorption amount and Kd value were calculated according to the following formula.
吸着量=(]セシウム初濃度(M)I−[残留セシウム
濃度(M)I)f表1
参考例l
Zn2 Fe (CM)6に換算して001〜01gの
実施例1と同一のフェロシアン化亜鉛をネジ蓋付三角フ
ラスコ(25mJ)に秤取し、それに塩化セシウムをl
X19−’%5xlQ−2M含む水溶液10−を添加し
、25℃で7日間振とうした。内容物をメンブランフィ
ルタ−で速やかに濾過後、′a液液中残留セシウム濃度
を分析した。その結果に基づいて算出した分布係数(K
dlとセシウム吸着量の関係を第2図に示す。図のよう
に吸着量の低いところでKd値が小さく、従来の常識で
はフェロシアン化亜鉛はすぐれた吸着剤でないことが判
る。それに対して、吸着量が大きいところでは、意外に
も非常に大きなKd値を示す領域があり、第1図のよう
に硝酸ナトリウム共存下でも同様な傾向を示すことが認
められる。その結果、例えば、3Mの硝酸ナトリウム溶
液からセシウムを2.5+aeq/g吸着させるときの
Kd値は、水溶液中からの吸着量が0.5meq/g以
下の場合のそれよりも大きいなど、フェロシアン化亜鉛
は吸着量の高い領域では従来の常識では考えられない高
い吸着能を示すことが判る。Adsorption amount = (] Initial cesium concentration (M) I - [Residual cesium concentration (M) I) f Table 1 Reference example 1 Same ferrocyan as in Example 1 with 001 to 01 g in terms of Zn2 Fe (CM) 6 Weigh out zinc chloride into an Erlenmeyer flask (25 mJ) with a screw cap, and add 1 l of cesium chloride to it.
An aqueous solution 10- containing 2M of After the contents were quickly filtered with a membrane filter, the residual cesium concentration in the 'a liquid was analyzed. The distribution coefficient (K
Figure 2 shows the relationship between dl and the amount of cesium adsorbed. As shown in the figure, the Kd value is small where the amount of adsorption is low, and conventional wisdom shows that zinc ferrocyanide is not an excellent adsorbent. On the other hand, in areas where the amount of adsorption is large, there are regions that surprisingly exhibit very large Kd values, and as shown in FIG. 1, it is recognized that a similar tendency is exhibited even in the coexistence of sodium nitrate. As a result, for example, the Kd value when adsorbing 2.5+ aeq/g of cesium from a 3M sodium nitrate solution is larger than that when the amount of cesium adsorbed from an aqueous solution is 0.5 meq/g or less. It can be seen that zinc chloride exhibits a high adsorption capacity that is unimaginable according to conventional wisdom in the region of high adsorption amount.
比較例1
フェロシアン化亜鉛カリウム風乾物0.01〜012g
をネジ蓋付三角フラスコ(25rni)に秤取し、それ
に塩化セシウムを1 x 10−4〜6 x 10−”
M含む3 M NaNO3水溶液1水溶液1沁
お、フェロシアン化亜鉛カリウムは、フェロシアン化カ
リウムと硫酸亜鉛を用いて常法によって水溶液から沈殿
させたのち、水洗し、風乾したものを使用した。内容物
をメンブランフィルタ−で速やかに濾過後、濾液中の残
留セシウム濃度を分析した。その結果に基づいて算出し
た分布係数(Kd)とセシウム吸着量との関係を第3図
に示す。なお、:セシウム吸着量とKdの計算に際して
、フェロシアン化亜鉛カリウムの重量は、実施例1との
比較のため、含有Fe(CM)−と当量のzn2F e
(CM)、に換算したものを用いており、以下の比較
例においても同様である。Comparative Example 1 Zinc potassium ferrocyanide air-dried product 0.01-012g
into an Erlenmeyer flask (25rni) with a screw cap, and add 1 x 10-4 to 6 x 10-" of cesium chloride to it.
Potassium zinc ferrocyanide was precipitated from an aqueous solution by a conventional method using potassium ferrocyanide and zinc sulfate, washed with water, and air-dried. After the contents were quickly filtered with a membrane filter, the residual cesium concentration in the filtrate was analyzed. FIG. 3 shows the relationship between the distribution coefficient (Kd) calculated based on the results and the amount of cesium adsorbed. In addition, when calculating the amount of cesium adsorption and Kd, the weight of potassium zinc ferrocyanide is calculated based on the weight of potassium zinc ferrocyanide, which is equivalent to the contained Fe(CM)- and the weight of potassium zinc ferrocyanide.
(CM), and the same applies to the following comparative examples.
実施例2
Z n2− F e ( C M )6に換算して00
1gの実施例1と同一のフェロシアン化亜鉛をネジ蓋付
三角フラスコ(25−)に秤取し、それに塩化セシウム
をIX10=M含む1MNaNO3水溶液10−を添加
し、25℃で振とうした。同様にして、硝酸ナトリウム
を含まない場合についても行った。所定時間振どう後、
内容物をメンブランフィルタ−で速やかに濾過し、濾液
中の残留セシウム濃度を分析した。セシウム吸着率の時
間変化を第4図に示す。図から、2日間でほぼ平衡に達
し、吸着速度はナトリウムイオン存在下の方が大きいこ
とが認められる。また、平衡時のKd値は、NaNO3
を含まない水溶液と1MNaNO3水溶液について、そ
れぞれ5. 08xlO” 、 4. 02xlO÷−
7gを示し、その差の小さいことがわかった。Example 2 Zn2-Fe(CM)6 converted to 00
1 g of the same zinc ferrocyanide as in Example 1 was weighed into an Erlenmeyer flask (25-) with a screw cap, and a 1M NaNO3 aqueous solution 10- containing IX10=M of cesium chloride was added thereto, followed by shaking at 25°C. In the same manner, a case where sodium nitrate was not included was also tested. After shaking for a specified time,
The contents were quickly filtered with a membrane filter, and the residual cesium concentration in the filtrate was analyzed. Figure 4 shows the change in cesium adsorption rate over time. From the figure, it can be seen that almost equilibrium was reached in 2 days, and the adsorption rate was higher in the presence of sodium ions. In addition, the Kd value at equilibrium is NaNO3
5. for the aqueous solution not containing and the 1M NaNO3 aqueous solution, respectively. 08xlO", 4. 02xlO÷-
It was found that the difference was small.
比較例2
典型的なセシウム吸着剤である、比較例1と同じフェロ
シアン化亜鉛カリウム、市販リンモリブテン酸アンモニ
ウム(関東化学社製)又は市販モルデナイト(ツートン
社製100Na)の各001gをネジ蓋付三角フラスコ
(25+nt’)に秤取し、それに塩化セシウムを1x
lO M含む1MNaNO3水溶液1〇−を添加し、
25℃で平衡に達するまで振とうした。Comparative Example 2 001 g of each of the typical cesium adsorbent, zinc potassium ferrocyanide, commercially available ammonium phosphomolybutate (manufactured by Kanto Kagaku Co., Ltd.) or commercially available mordenite (manufactured by Two-Tone Co., Ltd., 100Na) as in Comparative Example 1 was charged with a screw cap. Weigh into an Erlenmeyer flask (25+nt') and add 1x cesium chloride to it.
Add 10− of 1M NaNO3 aqueous solution containing 10M,
Shake at 25°C until equilibrium is reached.
同様にして、硝酸ナトリウムを含まない場合についても
行った。内容物をメンブランフィルタ−で濾過し、濾液
中の残留セシウム濃度を分析した。In the same manner, a case where sodium nitrate was not included was also tested. The contents were filtered with a membrane filter, and the residual cesium concentration in the filtrate was analyzed.
その結果に基づいて算出したKd値を表2に示す。Table 2 shows the Kd values calculated based on the results.
実施例1との比較から、これらの吸着剤は、硝酸ナトリ
ウム共存下ではセシウム吸着力が低下しやすくその性能
;よフェロシアン化亜鉛に比べてかなり劣ることが判っ
た。From a comparison with Example 1, it was found that these adsorbents tend to lose their cesium adsorption power in the coexistence of sodium nitrate, and their performance is considerably inferior to that of zinc ferrocyanide.
表2
表3
実施例3
Zn2 Fe (CN)5に換算して0.01gのフェ
ロシアン化亜鉛をネジ蓋付三角フラスコ(25rnl)
に秤取し、それに全液量が10−でかつ塩化セシウムと
硝酸ナトリウムの添加濃度が各3X10−’M、0・5
Mとなるように両塩の混合水溶液を添加し、25℃で7
日間振とうした。フェロシアン化亜鉛としては調製方法
の異なる表3に示すものを用いた。なお、ZrO2には
亜鉛以外の重金属のフェロシアン化物が混入するので、
その添加量は、含有するFa(CN)、’−量を分析し
、それと当量のZn2Fe (CM)6で示した。また
、ZFC2〜4は懸濁液の状態で使用した。内容物をメ
ンブランフィルタ−で速やかに濾過後、濾液中の残留セ
シウム濃度を分析した。その結果に基づいてKd値を計
算し、第5図の実線曲線に示した。Table 2 Table 3 Example 3 0.01 g of zinc ferrocyanide in terms of Zn2 Fe (CN) 5 was placed in an Erlenmeyer flask with a screw cap (25 rnl).
The total liquid volume was 10-'M, and the concentrations of cesium chloride and sodium nitrate were each 3 x 10-'M, 0.5
Add a mixed aqueous solution of both salts so that M
Shake for days. As zinc ferrocyanide, those shown in Table 3 with different preparation methods were used. In addition, since ZrO2 is mixed with ferrocyanide of heavy metals other than zinc,
The amount added was determined by analyzing the amount of Fa(CN),'- contained and expressed as the equivalent amount of Zn2Fe(CM)6. Moreover, ZFC2-4 was used in the state of a suspension. After the contents were quickly filtered with a membrane filter, the residual cesium concentration in the filtrate was analyzed. The Kd value was calculated based on the results and is shown in the solid curve in FIG.
比較例3
比較例1と同じフェロシアン化亜鉛カリウムの風乾物0
.0118gをネジ蓋付三角フラスコ(25mil)に
秤取し、それに塩化セシウムを3xlOM含む0〜5表
4
MNaNo、5水溶液10−を添加し、25℃で7日間
振とうした。内容物をメンブランフィルタ−で速やかに
濾過後、濾液中の残留セシウム濃度を分析した。Comparative Example 3 Same as Comparative Example 1, air-dried potassium zinc ferrocyanide 0
.. 0118 g of NaNo, 5 was weighed into an Erlenmeyer flask (25 mil) with a screw cap, and a 0-5 MNaNo, 5 aqueous solution 10- containing 3xlOM of cesium chloride was added thereto, and the mixture was shaken at 25°C for 7 days. After the contents were quickly filtered with a membrane filter, the residual cesium concentration in the filtrate was analyzed.
その結果に基づいてKd値を算出し、硝酸ナトリウム濃
度との関係を第5図の破線曲線に示した。The Kd value was calculated based on the results, and the relationship with the sodium nitrate concentration is shown in the broken line curve in FIG.
実施例4
ZnzFe (CM)6に換算して0.01gの実施例
1と同一のフェロシアン化亜鉛をネジ蓋付の三角フラス
コ(25m7)に押収し、それに表4の組成の模擬廃液
10−を添加し、25℃で所定時間振とうした。内容物
をメンブランフィルタ−で速やかに濾過し、i*[中の
残留セシウム濃度を分析した。その結果に基づいて算出
した所定時間後のセシウム回収率、セ〈発明の効果〉
以上の説明からも明らかなように本発明の方法によれば
、フェロシアン化亜鉛による高濃度硝酸ナトリウム溶液
からのセシウムイオンの吸着量が回分式吸着処理によっ
ても非常に大きいため、例えば、ビューレックス法再処
理施設より発生するセシウム濃度10 M以上の高レ
ベル放射性廃液の処理過程で生じる高濃度硝酸ナトリウ
ム溶液中の放射性セシウムを濃縮状態で極めて安価な吸
着剤を用いて効率よく分離、回収することができ、高レ
ベル放射性廃液の処理を容易にし、放射性セシウムの有
効利用を図ろうえで、多大の効果が期待できろ。Example 4 The same zinc ferrocyanide as in Example 1, weighing 0.01 g in terms of ZnzFe (CM) 6, was seized in an Erlenmeyer flask (25 m7) with a screw cap, and a simulated waste liquid 10- was added and shaken at 25°C for a predetermined time. The contents were quickly filtered with a membrane filter, and the residual cesium concentration in i* was analyzed. Cesium recovery rate after a predetermined period of time calculated based on the results, CE Because the adsorption amount of cesium ions is extremely large even in batch adsorption treatment, for example, the amount of adsorption of cesium ions in high-concentration sodium nitrate solutions generated during the treatment of high-level radioactive waste liquids with a cesium concentration of 10 M or more generated from Burex reprocessing facilities. It is possible to efficiently separate and recover radioactive cesium in a concentrated state using an extremely inexpensive adsorbent, making it easier to treat high-level radioactive waste liquid, and making effective use of radioactive cesium, which is expected to have great effects. You can do it.
第1図〜第3図は本発明の詳細な説明するための図面で
あり、第1図と第2図はフェロシアン化亜鉛を用いたと
きのKd値とセシウム吸着量の関係を示したもので、そ
れぞれ硝酸ナトリウム(3M)存在下、無存在下の結果
であり、第3図は比較のためフェロシアン化亜鉛カリウ
ムを用いたときのKd値とセシウム吸着量の関係につい
て硝酸ナトリウム(3M)存在下での結果を示したもの
である。
第4図は本発明の方法による場合、セシウムの吸着速度
に対する硝酸ナトリウム共存の影響を示した図面である
。第5図は調製方法の異なるフェロシアン化亜鉛を用い
て本発明の方法によってセシウムを吸着させたときの共
存硝酸ナトリウム濃度の影響をフェロシアン化亜鉛カリ
ウムを用いたときと比較した図面である。
竿3図
乞ンウム啜」「量(meq/g)
某S1図
NaNO2(M)
昭和62年 1月8日Figures 1 to 3 are drawings for explaining the present invention in detail, and Figures 1 and 2 show the relationship between Kd value and cesium adsorption amount when zinc ferrocyanide is used. Figure 3 shows the results in the presence and absence of sodium nitrate (3M), respectively. For comparison, Figure 3 shows the relationship between Kd value and cesium adsorption amount when zinc potassium ferrocyanide is used. The results are shown in the presence of FIG. 4 is a diagram showing the influence of the coexistence of sodium nitrate on the cesium adsorption rate when using the method of the present invention. FIG. 5 is a diagram comparing the influence of the coexisting sodium nitrate concentration when cesium is adsorbed by the method of the present invention using zinc ferrocyanide prepared in a different manner, compared to when potassium zinc ferrocyanide is used. Pole 3 figure begging umushi” Quantity (meq/g) Certain S1 figure NaNO2 (M) January 8, 1986
Claims (1)
ナトリウム若しくは炭酸水素ナトリウム又はこれらの混
合物を添加して中和処理し、含有する重金属を不溶性化
合物として除去したのち、処理液中に残留するセシウム
を分離、回収する方法において、当該処理液をpH1〜
10でフェロシアン化亜鉛からなる吸着剤と接触させて
セシウムを吸着させることを特徴とするナトリウム塩含
有処理液からのセシウムの分離、回収方法 (2)中和処理後の処理液中のセシウム濃度が10^−
^3以上である特許請求範囲第一項の方法(3)セシウ
ム含有酸性溶液中のセシウムがC_S^1^3^7、C
_S^1^3^4などセシウム同位体である特許請求範
囲第一項の方法 (4)放射性セシウム含有酸性溶液に水酸化ナトリウム
、炭酸ナトリウム若しくは炭酸水素ナトリウム又はこれ
らの混合物を添加して中和処理し、含有する重金属を不
溶性化合物として除去したのち、処理液中に残留する放
射性セシウムを分離、回収する方法において、当該処理
液中の全セシウム濃度が10^−^3M以上となるよう
に非放射性セシウムを担体として添加したのち、pH1
〜10でフェロシアン化亜鉛からなる吸着剤と接触させ
て放射性セシウムを吸着させることを特徴とするナトリ
ウム塩含有処理液からの放射性セシウムの分離、回収方
法 (5)フェロシアン化亜鉛が亜鉛イオン存在下でフェリ
シアン化物に還元剤を作用させて生成する沈殿である特
許請求範囲第一項の方法[Claims] (1) After neutralizing the cesium-containing acidic solution by adding sodium hydroxide, sodium carbonate, sodium hydrogen carbonate, or a mixture thereof to remove the heavy metals contained therein as insoluble compounds, the treated solution is In the method of separating and recovering cesium remaining in
Method for separating and recovering cesium from a sodium salt-containing treatment solution, characterized by adsorbing cesium by contacting with an adsorbent made of zinc ferrocyanide in step 10 (2) Cesium concentration in the treatment solution after neutralization treatment is 10^-
(3) The method according to claim 1 in which the cesium in the cesium-containing acidic solution is C_S^1^3^7, C
Method (4) of claim 1 which is a cesium isotope such as _S^1^3^4. Neutralization by adding sodium hydroxide, sodium carbonate, sodium hydrogen carbonate, or a mixture thereof to an acidic solution containing radioactive cesium. In the method of separating and recovering the radioactive cesium remaining in the treatment solution after treatment and removing the contained heavy metals as insoluble compounds, non-concentration is performed so that the total cesium concentration in the treatment solution is 10^-^3M or more. After adding radioactive cesium as a carrier, pH 1
A method for separating and recovering radioactive cesium from a sodium salt-containing treatment solution, characterized by adsorbing radioactive cesium by bringing it into contact with an adsorbent made of zinc ferrocyanide in steps 10 to 10. (5) Zinc ferrocyanide contains zinc ions The method according to claim 1, which is a precipitate produced by reacting ferricyanide with a reducing agent as described below.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1883886A JPS62176913A (en) | 1986-01-29 | 1986-01-29 | Process for separation and recovery of cesium from treating liquid containing sodium salt |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1883886A JPS62176913A (en) | 1986-01-29 | 1986-01-29 | Process for separation and recovery of cesium from treating liquid containing sodium salt |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62176913A true JPS62176913A (en) | 1987-08-03 |
Family
ID=11982698
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1883886A Pending JPS62176913A (en) | 1986-01-29 | 1986-01-29 | Process for separation and recovery of cesium from treating liquid containing sodium salt |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62176913A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013183675A (en) * | 2012-03-07 | 2013-09-19 | Dainichiseika Color & Chem Mfg Co Ltd | Composition for cultivation of agricultural and horticultural product |
JP2013253963A (en) * | 2012-02-14 | 2013-12-19 | National Institute Of Advanced Industrial & Technology | Cesium adsorbent |
JP2014064991A (en) * | 2012-09-26 | 2014-04-17 | Sumitomo Osaka Cement Co Ltd | Method for treating effluent including cesium |
JP5497226B1 (en) * | 2013-05-07 | 2014-05-21 | 住友大阪セメント株式会社 | Method and apparatus for treating desalted dust containing cesium |
JP2015531613A (en) * | 2012-07-18 | 2015-11-05 | ハー マジェスティー ザ クィーンイン ライト オブ カナダ,アズ リプレゼンテッド バイ ザ ミニスター オブ エンヴァイロメントHER MAJESTY THE QUEENIN RIGHT OF CANADA, as represented by THE MINISTER OF ENVIRONMENT | Universal surface decontamination agent |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5679999A (en) * | 1979-12-06 | 1981-06-30 | Hitachi Ltd | Radioactive waste processing method |
JPS56111041A (en) * | 1980-02-08 | 1981-09-02 | Hitachi Ltd | Production of zeolite attached with ferrocyanide metal compound |
-
1986
- 1986-01-29 JP JP1883886A patent/JPS62176913A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5679999A (en) * | 1979-12-06 | 1981-06-30 | Hitachi Ltd | Radioactive waste processing method |
JPS56111041A (en) * | 1980-02-08 | 1981-09-02 | Hitachi Ltd | Production of zeolite attached with ferrocyanide metal compound |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013253963A (en) * | 2012-02-14 | 2013-12-19 | National Institute Of Advanced Industrial & Technology | Cesium adsorbent |
JP2013183675A (en) * | 2012-03-07 | 2013-09-19 | Dainichiseika Color & Chem Mfg Co Ltd | Composition for cultivation of agricultural and horticultural product |
JP2015531613A (en) * | 2012-07-18 | 2015-11-05 | ハー マジェスティー ザ クィーンイン ライト オブ カナダ,アズ リプレゼンテッド バイ ザ ミニスター オブ エンヴァイロメントHER MAJESTY THE QUEENIN RIGHT OF CANADA, as represented by THE MINISTER OF ENVIRONMENT | Universal surface decontamination agent |
JP2014064991A (en) * | 2012-09-26 | 2014-04-17 | Sumitomo Osaka Cement Co Ltd | Method for treating effluent including cesium |
JP5497226B1 (en) * | 2013-05-07 | 2014-05-21 | 住友大阪セメント株式会社 | Method and apparatus for treating desalted dust containing cesium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lento et al. | Separation of cesium from nuclear waste solutions with hexacyanoferrate (II) s and ammonium phosphomolybdate | |
JP5922193B2 (en) | NOVEL ADSORBENT, METHOD FOR PRODUCING THE SAME AND USE THEREOF | |
JP3241475B2 (en) | Method of separating certain elements from aqueous solution resulting from spent nuclear fuel reprocessing | |
EP0118493B1 (en) | Fixation of anionic materials with a complexing agent | |
CN105719718B (en) | One kind removes colloidal attitude nucleic in radioactive water110mAg and60Co/58Co method | |
US4156646A (en) | Removal of plutonium and americium from alkaline waste solutions | |
EP0475635B1 (en) | Method for removing cesium from aqueous solutions of high nitric acid concentration | |
WO2011016916A2 (en) | Compositions and methods for treating nuclear fuel | |
US2766204A (en) | Method for decontamination of radioactively contaminated aqueous solution | |
JPS62176913A (en) | Process for separation and recovery of cesium from treating liquid containing sodium salt | |
JPH0319520B2 (en) | ||
JPH0727069B2 (en) | Separation method of cesium in nitric acid-containing aqueous solution | |
RU2226726C2 (en) | Method for recovering liquid radioactive wastes of nuclear power plant | |
AU2011311992B2 (en) | Process for extracting Cs-137 from an acidic solution | |
KR100764904B1 (en) | Removal method of radionuclide of cesium or strontium using ion exchanger | |
Pathak et al. | Studies on sorption of plutonium from carbonate medium on polyacrylhydroxamic acid resin | |
JPS62161097A (en) | Method of processing waste liquor containing radioactive nuclear specy | |
JP4225659B2 (en) | Decontamination method of radioactive liquid waste | |
JP2012225892A (en) | Method for removing radioactive material from solution | |
US3029200A (en) | Removal of radioactive ions from waters | |
JPS61195400A (en) | Method of treating waste liquor containing radioactive nuclide | |
Hooper | Activity removal from aqueous waste streams by seeded ultrafiltration | |
EP0456382B1 (en) | A method for the removal of radioisotope cations from an aqueous environment using modified clinoptilolite | |
US3658714A (en) | Method of decontaminating radioactive wastes | |
RU2741050C1 (en) | Boric acid recycling method |