[go: up one dir, main page]

JPS621766B2 - - Google Patents

Info

Publication number
JPS621766B2
JPS621766B2 JP58110617A JP11061783A JPS621766B2 JP S621766 B2 JPS621766 B2 JP S621766B2 JP 58110617 A JP58110617 A JP 58110617A JP 11061783 A JP11061783 A JP 11061783A JP S621766 B2 JPS621766 B2 JP S621766B2
Authority
JP
Japan
Prior art keywords
adsorption
gas
carbon dioxide
pressure
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58110617A
Other languages
Japanese (ja)
Other versions
JPS60819A (en
Inventor
Takatsugu Hayashi
Genpei Yaji
Shigeo Matsui
Shigeki Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP58110617A priority Critical patent/JPS60819A/en
Publication of JPS60819A publication Critical patent/JPS60819A/en
Publication of JPS621766B2 publication Critical patent/JPS621766B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】 本発明は、圧力変動式吸着分離方法(以後PSA
法と呼ぶ)によつて、製鉄所排ガス主として転炉
又は高炉ガス等の主として二酸化炭素、一酸化炭
素、窒素及び水素ガスを含む混合ガスより二酸化
炭素を数100ppmまで除去する方法に関するもの
である。 従来、ガス中の二酸化炭素を除去する方法とし
て溶媒中に溶解させる湿式溶解法と合成ゼオライ
トのような二酸化炭素に対して吸着能を有する吸
着剤を使用した吸着法を使用した除去方法が一般
的に採用されている。溶媒中に二酸化炭素を溶解
させる方法は二酸化炭素を除去する効率は高いが
ガスが水分等で飽和状態になり製品ガスを乾燥さ
せる必要がある上にメンテナスがやつかいであ
る。 又吸着法による二酸化炭素の除去には二酸化炭
素を吸着した吸着剤を加熱、冷却による温度変動
式吸着法(TSA法)と、吸着剤の雰囲気ガス圧
力差による圧力変動式吸着法(PSA法)の2通り
の方法がある。 温度変動式吸着法は吸着塔加熱・冷却のためエ
ネルギーが必要で吸着塔切替時間が長くなり、吸
着剤の必要量も多くなる等の欠点がある。これに
くらべて圧力変動式吸着法は加熱・冷却のエネル
ギーが不要で吸着塔切替時間も短かくすることが
出来るため吸着剤の必要量も少なくて良い等の利
点がある。この圧力変動式吸着法も今迄は空気中
の二酸化炭素或は水素、ヘリウム等の吸着剤に対
する難吸着ガス成分中の二酸化炭素の除去が目的
であつた。 製鉄所排ガス主として転炉又は高炉ガス等の主
として一酸化炭素、二酸化炭素、窒素及び水素ガ
スを含む該混合ガスより〓PSA法により二酸化炭
素を除去することを試みたが、通常のPSA法では
吸着塔の再生が不充分で高濃度の一酸化炭素ガス
が得られないことがわかつた。これは一酸化炭素
と二酸化炭素、窒素がともにゼオライト系吸着剤
に対して易吸着ガス成分であるため共吸着を行い
吸着剤からの脱着が窒素・一酸化炭素・二酸化炭
素の順に行なわれるためと吸着剤に対する吸着速
度及び脱着速度が異なり二酸化炭素の脱着には常
圧パージでは再生ができないことによるものであ
る。 本発明は易吸着ガス成分或は吸着剤に対する共
吸着ガス成分における二酸化炭素を数100ppmに
除去することが可能な圧力変動式吸着法を提供す
ることにある。 一酸化炭素を含む製鉄所排ガスの如き混合ガス
より炭酸ガスを除去することに圧力変動式吸着法
を使用することは再生が困難であつたり再生用に
製品ガスを30〜40%も使用するなど不経済で実用
に供されていない。しかしながら本発明者は実
験、研究の結果、一酸化炭素を含む混合ガスより
二酸化炭素を数100ppmに除去する方法を見出し
本発明を完成したものである。 以下本発明を詳しく説明する。 吸着法を使用して製鉄所排ガス中の二酸化炭素
を分離除去するに際し、ゼオライト系吸着剤を充
填した2つ以上の吸着塔を使用その方法は、 再生が完了した1つの塔に該混合ガスを導入
して、吸着工程の終点又は終点近くまで吸着剤
に主として二酸化炭素を吸着させて製品ガスを
得る吸着工程、 吸着工程終了後、好ましくは向流方向に吸着
塔の圧力を大気圧又は大気圧近くまで降下させ
る減圧放圧工程、 減圧放圧終了後、好ましくは向流方向に塔内
を真空近くまで排気ポンプを使用して塔内ガス
を排気する減圧排気工程、 減圧排気した吸着塔に製品ガス或は窒素ガス
を向流に導入しながら減圧排気を行う排気パー
ジ工程、 排気パージが終つた塔に好ましくは向流方向
に製品ガスを流してその塔の加圧を行う製品加
圧工程、 から成り定期的に吸着塔間の流れを変えて、全て
の吸着塔において上記操作を繰返すことを特徴と
した方法に関する。 本発明の工程(i)は吸着塔に該混合ガスを導入し
て吸着剤に二酸化炭素等の易吸着成分ガスを加圧
状態で吸着させる吸着工程で塔内圧力は一定に保
たれ、塔の底部より該混合ガスは導入され、精製
されたガスは製品ガスとして上部より出る。 工程(ii)は減圧工程で原料ガスの塔内への導入を
停止後塔内を減圧して向流方向にガスを流出させ
大気圧又は大気圧近くで減圧ガス放出弁を閉じ
る。 工程(iii)は排気工程である。減圧工程のみでは二
酸化炭素等の吸着成分の脱着が充分でないため向
流方向の真空排気により残留二酸化炭素を脱着さ
せる。この場合の吸着塔の真空度は目的とする製
品ガス中に含まれる二酸化炭素の分圧附近に保た
れる様にすればよい。。 この真空排気と、上述の減圧或は減圧工程と常
圧でのパージを用いた従来のPSA法による二酸化
炭素の除去方法では脱着が充分に行なわれない
か、再生が出来るにしても精製した製品ガスの40
〜50%をパージガスとして使用して製品ガスの回
収率が悪いため回収率を向上させると共に吸着剤
より二酸化炭素の脱着効果を充分に撥揮させるべ
く発明者は吸着、減圧排気等の諸工程共吸着が行
なわれる混合ガス中の吸・脱着速度等を鋭意検討
した結果、製品ガスによるパージを真空排気中で
行う排気、パージを排気工程の後に実施すること
で良好な結果を得ることを見いだした。 工程(iv)は排気パージ工程である。減圧排気を行
つた吸着塔に製品ガス或は窒素ガスを向流に導入
し吸着剤に脱着されずに残つている二酸化炭素を
製品ガスの二酸化炭素の分圧或は窒素ガスによつ
て同伴脱着効果によつて、吸着剤より二酸化炭素
を脱着させようとするものである。 工程(v)は製品ガス加圧工程である。排気パージ
工程が終つた塔に製品ガスを導入して吸着塔内の
吸着剤のガス濃度分布を均一にするために製品ガ
スでもつて吸着塔を加圧する工程である。 本発明で使用される吸着剤として活性アルミナ
で該混合ガス中の水分を、ゼオライト主吸着剤、 活性炭系吸着剤で該混合ガス中の二酸化炭素を吸
着させ除去するが該混合ガス中の二酸化炭素の濃
度によつて、それぞれ吸着剤を使い分けることに
よつて製品ガス中の二酸化炭素の濃度を変えるこ
とが出来る。 以下本発明の代表的な具体例である転炉排ガス
中の二酸化炭素を除去する方法について詳しく説
明するが本発明の方法はこれらの具体例に限定さ
れるものではない。 本発明において使用できる吸着剤は、天然又は
合成ゼオライト、活性炭、シリカゲル等である。 活性アルミナ層とゼオライト系吸着剤層との組
合せ、活性アルミナ層と活性炭系吸着剤層との組
合せ或は活性アルミナ層と活性炭吸着剤およびゼ
オライト系吸着剤との組合せが好ましく、吸着塔
において下から記載の順序でこれらの層を設け
る。 第1図は吸着法により連続的に転炉排ガスから
二酸化炭素を除去するためのフローシートであ
る。 吸着塔A,Bは二酸化炭素等の易吸着成分を選
択的に吸着する吸着剤が収納されている。吸着塔
A,Bを真空ポンプ16を用いて減圧排気、
100Torr以下好ましくは60Torr以下まで行い、今
吸着塔Aに原料ガスを加圧導入し、真空状態より
吸着圧力まで昇圧させるためにバルブ2を開くこ
とによつて行う。このときバルブ2以外のバルブ
はすべて閉である。吸着塔Bはこのステツプで
は、まだ真空状態を保持している。吸着塔Aは吸
着圧力まで昇圧後、吸着圧力0.01Kg/cm2Gから
3.0Kg/cm2Gまで好ましくは0.5Kg/cm2Gから1.0
Kg/cm2Gの吸着圧力を保つ様にバルブ5が開か
れ、易吸着ガス成分である二酸化炭素と一酸化炭
素及び窒素の一部が吸着剤に吸着し、残りは製品
ガスとして回収される。一定時間或は一定量の吸
着工程終了後、該混合ガス導入バルブ2及び出口
バルブ5は閉じバルブ3を開き、吸着塔Aの塔内
圧力を大気圧力附近まで減圧放出させる。吸着塔
Aが大気圧付近になるとバルブ3は閉じられ吸着
塔下部よりバルブ4を開にし真空ポンプを用いて
減圧排気を行い吸着剤に吸着している易吸着ガス
成分の二酸化炭素を脱着させる。この際の排気圧
力は100Torr以下好ましくは60Torr以下まで行
う。減圧排気終了後バルブ6,4を開き製品ガス
を導入しながら真空排気を行いつゝ吸着剤に残存
している二酸化炭素の脱着を行う。このときバル
ブ4はパージ量に比しいだけ開かれている。一定
時間或は一定量の製品ガスパージ工程終了後バル
ブ4及び6は閉じ、バルブ7を開にして製品ガス
を吸着塔に導入し、塔内圧力を吸着圧力にまで高
める。 上記操作をそれぞれの吸着塔において順次繰返
すことによつて連続的に吸着剤に二酸化炭素を吸
着させ除去しようとするものである。 実施例 (1) 以下さらに本発明を具体的に説明するためCO
―CO2の混合ガスによる二酸化炭素の分離・除去
を行つた結果である。。 分離・除去工程として既述の如く「原料加圧―
減圧―排気―排気パージ―製品加圧」の精製サイ
クルにもとづいて実施した。 活性化したゼオハーブ1/8″ペレツトを一塔当り
0.5Kgを充填した鋼製の吸着塔(1B×1m)を真空
排気し60Torrに保つた後CO2=3.8%CO=96.2%
を線速6.6cm/secで塔下部より導入して二酸化炭
素の除去実験を実施した。 実験条件 吸着剤充填量 ゼオハーブ ZE―501 500g 操作温度 25℃ 吸着圧力 1.0Kg/cm2G 原料供給量 29.1 排気パージガス量 3.4 パージ真空度 150Torr 製品ガスCO2濃度400ppm 製品ガス量 22.6 従来技術の常圧パージ法では二酸化炭素吸着後
の再生に使用するパージガス量は精製処理済の製
品ガスの40〜50%、真空排気法のみの場合には、
処理量が排気パージ法にくらべ1/3〜1/4であつ
た。 実施例 (2) 実施例(1)と同一装置を用いて下記実験条件で分
離除去を行つた結果である。 実験条件 ガス組成 CO=96.3% CO2=3.7% 吸着剤充填量 シラサギG 300g 操作温度 25℃ 吸着圧力 1.0Kg/cm2G 吸着速度 6.5cm/sec 原料供給量 31.9 排気パージ量 3.5 パージ真空度 135Torr 製品ガスCO2濃度 330ppm 製品ガス量 21.7 実施例 (3) 実施例(1)と同一装置を用いて下記実験条件で分
離除去を行つた結果である。 実験条件 ガス組成 CO=96.3% CO2=3.7% 吸着剤充填量 活性炭 シラサギG 200g ゼオ―ハーブZE―501 130g 操作温度 25℃ 吸着圧力 1.0Kg/cm2G 吸着速度 6.5cm/sec 原料供給量 30.3 排気パージ量 3.6 パージ真空度 200Torr 製品ガス濃度 380ppm 製品ガス量 20.7 実施例 (4) 活性化した吸着剤を鋼製の吸着塔(12B×
2.7m)2塔に充填、転炉排ガスを使用して二酸
化炭素の分離除去実験を実施した。 実験条件 ガス組成 CO=85%、 N2=4%、 CO2=4%、H2=7% 吸着剤充填量 ゼオハーブZE―501 66Kg/塔 吸着速度 6.6cm/sec 原料供給量 48.9M3/H 排気パージ量 4.4M3/H パージ真空度 100Torr 製品ガス濃度 CO2=400ppm CO=87.55% N2=4.3% H2=8.0% 製品ガス量 42.9M3/H を得た。 以上述べたように本発明によれば、今迄共吸着
が存在するガス組成では困難であつた圧力変動式
吸着法による二酸化炭素の除去を数100ppmまで
分離除去することが出来た。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pressure fluctuation adsorption separation method (hereinafter referred to as PSA
The present invention relates to a method for removing carbon dioxide up to several hundred ppm from steelworks exhaust gas, mainly converter or blast furnace gas, which is a mixed gas mainly containing carbon dioxide, carbon monoxide, nitrogen, and hydrogen gas. Traditional methods for removing carbon dioxide from gas include a wet dissolution method in which it is dissolved in a solvent, and an adsorption method that uses an adsorbent that has the ability to adsorb carbon dioxide, such as synthetic zeolite. has been adopted. The method of dissolving carbon dioxide in a solvent is highly efficient in removing carbon dioxide, but the gas becomes saturated with moisture, etc., and the product gas needs to be dried, and maintenance is difficult. To remove carbon dioxide by adsorption, there are two methods: a temperature fluctuation adsorption method (TSA method) in which the adsorbent adsorbing carbon dioxide is heated and cooled, and a pressure fluctuation adsorption method (PSA method) in which the atmospheric gas pressure difference between the adsorbent and the adsorbent is used. There are two methods. The temperature fluctuation type adsorption method requires energy to heat and cool the adsorption tower, and has disadvantages such as a long adsorption tower switching time and a large amount of adsorbent. In comparison, the pressure fluctuation adsorption method does not require energy for heating and cooling, and the adsorption tower switching time can be shortened, so it has advantages such as requiring less adsorbent. Until now, this pressure fluctuation adsorption method has been aimed at removing carbon dioxide from the air, or carbon dioxide from gas components that are difficult to adsorb to adsorbents such as hydrogen and helium. An attempt was made to remove carbon dioxide from steelworks exhaust gas, mainly converter or blast furnace gas, which mainly contains carbon monoxide, carbon dioxide, nitrogen, and hydrogen gas, by the PSA method, but the normal PSA method cannot adsorb carbon dioxide. It was found that the regeneration of the tower was insufficient and high concentration carbon monoxide gas could not be obtained. This is because carbon monoxide, carbon dioxide, and nitrogen are all gas components that are easily adsorbed to the zeolite adsorbent, so they are co-adsorbed and desorbed from the adsorbent in the order of nitrogen, carbon monoxide, and carbon dioxide. This is because the adsorption rate and desorption rate for the adsorbent are different, and desorption of carbon dioxide cannot be regenerated by normal pressure purge. The object of the present invention is to provide a pressure fluctuation type adsorption method capable of removing carbon dioxide in easily adsorbed gas components or co-adsorbed gas components to an adsorbent to several hundred ppm. Using the pressure fluctuation adsorption method to remove carbon dioxide gas from a mixed gas such as steelwork exhaust gas containing carbon monoxide is difficult to regenerate and requires 30 to 40% of the product gas for regeneration. It is uneconomical and has no practical use. However, as a result of experiments and research, the present inventor discovered a method for removing carbon dioxide to several hundred ppm from a mixed gas containing carbon monoxide, and completed the present invention. The present invention will be explained in detail below. When separating and removing carbon dioxide from steelworks exhaust gas using the adsorption method, two or more adsorption towers filled with zeolite-based adsorbents are used.The method uses two or more adsorption towers filled with zeolite-based adsorbents. An adsorption step in which carbon dioxide is mainly adsorbed on an adsorbent until the end point or near the end point of the adsorption step to obtain a product gas; After the depressurization and depressurization is completed, the depressurization and exhaust process uses an exhaust pump to exhaust the gas inside the tower to near vacuum, preferably in the countercurrent direction.The product is transferred to the depressurized adsorption tower. an exhaust purge step in which depressurized exhaust is performed while introducing gas or nitrogen gas in a countercurrent direction; a product pressurization step in which the product gas is preferably flowed in a countercurrent direction into the tower after exhaust purging to pressurize the tower; The method is characterized in that the above operation is repeated in all the adsorption towers by periodically changing the flow between the adsorption towers. Step (i) of the present invention is an adsorption step in which the mixed gas is introduced into the adsorption tower and gases that are easily adsorbed, such as carbon dioxide, are adsorbed onto the adsorbent under pressure. The mixed gas is introduced from the bottom, and the purified gas exits from the top as a product gas. Step (ii) is a pressure reduction step in which the introduction of raw material gas into the tower is stopped, the pressure inside the tower is reduced, the gas flows out in the countercurrent direction, and the reduced pressure gas release valve is closed at atmospheric pressure or near atmospheric pressure. Step (iii) is an exhaust step. Since the depressurization step alone is not enough to desorb adsorbed components such as carbon dioxide, residual carbon dioxide is desorbed by evacuation in the countercurrent direction. In this case, the degree of vacuum in the adsorption tower may be kept close to the partial pressure of carbon dioxide contained in the target product gas. . With this evacuation and the conventional PSA method of removing carbon dioxide using the above-mentioned depressurization or depressurization process and purge at normal pressure, desorption may not be sufficient or the purified product may be regenerated. 40 of gas
The recovery rate of the product gas is poor by using ~50% as purge gas, so in order to improve the recovery rate and to sufficiently repel the carbon dioxide desorption effect from the adsorbent, the inventors combined various processes such as adsorption and depressurized exhaust. As a result of careful consideration of the adsorption/desorption rate in the mixed gas in which adsorption is performed, we found that good results can be obtained by performing purge with product gas in a vacuum evacuation process, and by performing purge after the evacuation process. . Step (iv) is an exhaust purge step. Product gas or nitrogen gas is introduced countercurrently into an adsorption tower that has been evacuated under reduced pressure, and carbon dioxide remaining without being desorbed by the adsorbent is entrained and desorbed by the partial pressure of carbon dioxide in the product gas or nitrogen gas. The effect is to desorb carbon dioxide from the adsorbent. Step (v) is a product gas pressurization step. This is a step in which the product gas is introduced into the tower after the exhaust purging step and the adsorption tower is pressurized with the product gas in order to make the gas concentration distribution of the adsorbent in the adsorption tower uniform. As the adsorbent used in the present invention, activated alumina is used to remove moisture in the mixed gas, and zeolite main adsorbent and activated carbon adsorbent are used to adsorb and remove carbon dioxide in the mixed gas. By using different adsorbents, the concentration of carbon dioxide in the product gas can be changed depending on the concentration of carbon dioxide. Hereinafter, a method for removing carbon dioxide from converter exhaust gas, which is a typical example of the present invention, will be described in detail, but the method of the present invention is not limited to these examples. Adsorbents that can be used in the present invention include natural or synthetic zeolites, activated carbon, silica gel, and the like. A combination of an activated alumina layer and a zeolite adsorbent layer, a combination of an activated alumina layer and an activated carbon adsorbent layer, or a combination of an activated alumina layer, an activated carbon adsorbent, and a zeolite adsorbent is preferable. These layers are applied in the order listed. FIG. 1 is a flow sheet for continuously removing carbon dioxide from converter exhaust gas by an adsorption method. Adsorption towers A and B house adsorbents that selectively adsorb easily adsorbable components such as carbon dioxide. Adsorption towers A and B are depressurized and evacuated using a vacuum pump 16,
The pressure is increased to 100 Torr or less, preferably 60 Torr or less, and the raw material gas is introduced into the adsorption tower A under pressure, and the valve 2 is opened to increase the pressure from the vacuum state to the adsorption pressure. At this time, all valves other than valve 2 are closed. Adsorption tower B still maintains a vacuum state at this step. After increasing the pressure of adsorption tower A to the adsorption pressure, the adsorption pressure increases from 0.01Kg/cm 2 G.
Up to 3.0Kg/cm 2 G, preferably 0.5Kg/cm 2 G to 1.0
Valve 5 is opened so as to maintain an adsorption pressure of Kg/cm 2 G, and part of easily adsorbed gas components such as carbon dioxide, carbon monoxide, and nitrogen are adsorbed on the adsorbent, and the rest is recovered as product gas. . After completion of the adsorption process for a certain period of time or a certain amount, the mixed gas introduction valve 2 and the outlet valve 5 are closed, and the valve 3 is opened to reduce the internal pressure of the adsorption tower A to near atmospheric pressure. When the adsorption tower A reaches near atmospheric pressure, the valve 3 is closed, and the valve 4 is opened from the bottom of the adsorption tower to evacuate the adsorption tower under reduced pressure using a vacuum pump to desorb carbon dioxide, which is an easily adsorbed gas component adsorbed on the adsorbent. At this time, the exhaust pressure is set to 100 Torr or less, preferably 60 Torr or less. After the evacuation is completed, the valves 6 and 4 are opened and the product gas is introduced while evacuation is performed and the carbon dioxide remaining in the adsorbent is desorbed. At this time, the valve 4 is opened by an amount relative to the purge amount. After completing the product gas purge process for a certain period of time or a certain amount, valves 4 and 6 are closed, valve 7 is opened to introduce the product gas into the adsorption tower, and the pressure inside the tower is increased to the adsorption pressure. By sequentially repeating the above operations in each adsorption tower, carbon dioxide is continuously adsorbed onto the adsorbent and removed. Example (1) In order to further specifically explain the present invention, CO
- This is the result of separating and removing carbon dioxide using a mixed gas of CO 2 . . As mentioned above, the separation/removal process involves “raw material pressurization”.
It was carried out based on the purification cycle of "depressurization - exhaust - exhaust purge - product pressurization". Activated Zeo Herb 1/8″ pellets per tower
After evacuating a steel adsorption tower (1B x 1m) filled with 0.5Kg and maintaining it at 60Torr, CO 2 = 3.8% CO = 96.2%
A carbon dioxide removal experiment was carried out by introducing from the bottom of the column at a linear velocity of 6.6 cm/sec. Experimental conditions Adsorbent filling amount Zeoherb ZE-501 500g Operating temperature 25℃ Adsorption pressure 1.0Kg/cm 2 G Raw material supply amount 29.1 Exhaust purge gas amount 3.4 Purge vacuum degree 150Torr Product gas CO 2 concentration 400ppm Product gas amount 22.6 Normal pressure of conventional technology In the purge method, the amount of purge gas used for regeneration after carbon dioxide adsorption is 40 to 50% of the purified product gas, and in the case of only the vacuum evacuation method,
The throughput was 1/3 to 1/4 compared to the exhaust purge method. Example (2) These are the results of separation and removal performed under the following experimental conditions using the same apparatus as in Example (1). Experimental conditions Gas composition CO = 96.3% CO 2 = 3.7% Adsorbent filling amount Shirasagi G 300g Operating temperature 25℃ Adsorption pressure 1.0Kg/cm 2 G Adsorption rate 6.5cm/sec Raw material supply amount 31.9 Exhaust purge amount 3.5 Purge vacuum degree 135Torr Product gas CO 2 concentration 330 ppm Product gas amount 21.7 Example (3) These are the results of separation and removal using the same equipment as in Example (1) under the following experimental conditions. Experimental conditions Gas composition CO = 96.3% CO 2 = 3.7% Adsorbent filling amount Activated carbon Shirasagi G 200g Zeo-Herb ZE-501 130g Operating temperature 25℃ Adsorption pressure 1.0Kg/cm 2 G Adsorption rate 6.5cm/sec Raw material supply amount 30.3 Exhaust purge amount 3.6 Purge vacuum degree 200Torr Product gas concentration 380ppm Product gas amount 20.7 Example (4) The activated adsorbent was transferred to a steel adsorption tower (12B×
A carbon dioxide separation and removal experiment was carried out using the converter flue gas filled into two columns (2.7m). Experimental conditions Gas composition CO = 85%, N 2 = 4%, CO 2 = 4%, H 2 = 7% Adsorbent filling amount Zeoherb ZE-501 66Kg/Tower adsorption rate 6.6cm/sec Raw material supply amount 48.9M 3 / H Exhaust purge amount 4.4M 3 /H Purge vacuum degree 100Torr Product gas concentration CO 2 = 400 ppm CO = 87.55% N 2 = 4.3% H 2 = 8.0% Product gas amount 42.9M 3 /H was obtained. As described above, according to the present invention, it has been possible to separate and remove carbon dioxide down to several 100 ppm using the pressure fluctuation adsorption method, which has been difficult with gas compositions in which co-adsorption exists. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明を実施するフロシートを示す。 The figure shows a flowsheet implementing the invention.

Claims (1)

【特許請求の範囲】 1 二酸化炭素に対し選択吸着性を有する吸着剤
を充填した2つ以上の吸着塔を使用して主として
CO2、CO、N2を含む混合ガスからCO2を除去す
る方法において、 (a) 再生が完了した一つの塔に該混合ガスを導入
して吸着工程の終点又は終点近くまで吸着圧力
に於て吸着剤に主として二酸化炭素を吸着させ
て製品ガスを得る吸着工程、 (b) 吸着工程終了後吸着塔の圧力を大気圧又は大
気圧近くまで降下させる減圧放圧工程、 (c) 塔内を大気圧力より真空近くまで排気する排
気工程、 (d) 減圧排気した吸着塔に製品ガス或は製品ガス
に近い二酸化炭素の少くないガス又は窒素ガス
を向流に導入しながら吸着剤に吸着している二
酸化炭素を排気を行いながらパージする排気パ
ージ工程、 (e) 排気パージ工程が終つた塔に製品ガスを流し
てその塔を加圧する、製品加圧工程、 から成り定期的に吸着塔間の流れを変えて全ての
吸着塔において、上記操作を繰返すことを特徴と
した方法。
[Claims] 1. Mainly using two or more adsorption towers filled with adsorbents that have selective adsorption properties for carbon dioxide.
In a method for removing CO 2 from a mixed gas containing CO 2 , CO, and N 2 , (a) the mixed gas is introduced into one column that has completed regeneration, and the adsorption pressure is maintained at or near the end of the adsorption process. (b) After the adsorption step, the pressure in the adsorption tower is lowered to atmospheric pressure or close to atmospheric pressure. (c) The inside of the tower is (d) An evacuation process in which the gas is evacuated from atmospheric pressure to near vacuum. (d) The product gas or a gas close to the product gas that does not contain a small amount of carbon dioxide or nitrogen gas is introduced countercurrently into the adsorption tower that has been evacuated to a reduced pressure and adsorbed onto the adsorbent. (e) a product pressurization process in which the product gas is passed through the column after the exhaust purge process and the column is pressurized; A method characterized by repeating the above operation in all adsorption towers by changing the flow.
JP58110617A 1983-06-20 1983-06-20 Method for separating and removing carbon dioxide in gaseous mixture containing carbon monoxide by using adsorption method Granted JPS60819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58110617A JPS60819A (en) 1983-06-20 1983-06-20 Method for separating and removing carbon dioxide in gaseous mixture containing carbon monoxide by using adsorption method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58110617A JPS60819A (en) 1983-06-20 1983-06-20 Method for separating and removing carbon dioxide in gaseous mixture containing carbon monoxide by using adsorption method

Publications (2)

Publication Number Publication Date
JPS60819A JPS60819A (en) 1985-01-05
JPS621766B2 true JPS621766B2 (en) 1987-01-16

Family

ID=14540348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58110617A Granted JPS60819A (en) 1983-06-20 1983-06-20 Method for separating and removing carbon dioxide in gaseous mixture containing carbon monoxide by using adsorption method

Country Status (1)

Country Link
JP (1) JPS60819A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3669120D1 (en) * 1985-03-19 1990-04-05 Siemens Ag MANIPULATOR HEAD WITH MACHINING TOOL FOR TUBES OR PIPELINES.
JPS6427614A (en) * 1987-07-21 1989-01-30 Kansai Coke & Chemicals Separation and removal of co2
JPH0412582A (en) * 1990-05-01 1992-01-17 Sangyo Souzou Kenkyusho Co laser apparatus
CN101898066A (en) * 2010-07-26 2010-12-01 成都嘉禾联创科技有限公司 Method for finely removing carbon dioxide from carbon monoxide
JP5875111B2 (en) * 2012-02-21 2016-03-02 住友精化株式会社 Method and apparatus for separating and recovering carbon monoxide
JP7312688B2 (en) * 2019-12-13 2023-07-21 株式会社豊田中央研究所 Hydrocarbon production device, hydrocarbon production method, and computer program

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL297067A (en) * 1962-09-04 1900-01-01
JPS5313595B2 (en) * 1972-07-28 1978-05-11

Also Published As

Publication number Publication date
JPS60819A (en) 1985-01-05

Similar Documents

Publication Publication Date Title
FI85953C (en) FOERFARANDE FOER FRAMSTAELLNING AV EN SYREPRODUKT MED EN RENHETSGRAD AV 95% FRAON OMGIVANDE LUFT.
EP0489555B1 (en) Hydrogen and carbon monoxide production by pressure swing adsorption purification
US5540758A (en) VSA adsorption process with feed/vacuum advance and provide purge
JPS6137968B2 (en)
CA1188231A (en) Repressurization for pressure swing adsorption system
JP3073917B2 (en) Simultaneous pressure change adsorption method
US5415682A (en) Process for the removal of volatile organic compounds from a fluid stream
KR19980086952A (en) Pressure swing adsorption method using single adsorption bed
JPH01172204A (en) Recovery of gaseous co2 from gaseous mixture by adsorption
JPS6026571B2 (en) Method and apparatus for increasing the proportion of component gases in a gas mixture
AU649567B2 (en) Recovery of flammable materials from gas streams
JPH0459926B2 (en)
US5512082A (en) Process for the removal of volatile organic compounds from a fluid stream
JPS621766B2 (en)
JPS6137970B2 (en)
US5503658A (en) Process for the removal of volatile organic compounds from a fluid stream
JPS621767B2 (en)
US10259711B2 (en) Pressure swing adsorption for oxygen production
KR19980016382A (en) Pressure swing adsorption method for producing high purity carbon dioxide
CA1182765A (en) Repressurization for pressure swing adsorption system
JPH04227018A (en) Manufacture of inert gas of high purity
CA1176994A (en) Repressurization for pressure swing adsorption system
JPS62117612A (en) Regenerating method for adsorption tower
JPH0239293B2 (en)
JPS6139090B2 (en)