[go: up one dir, main page]

JPS62175628A - Surface temperature sensing actuator - Google Patents

Surface temperature sensing actuator

Info

Publication number
JPS62175628A
JPS62175628A JP1738886A JP1738886A JPS62175628A JP S62175628 A JPS62175628 A JP S62175628A JP 1738886 A JP1738886 A JP 1738886A JP 1738886 A JP1738886 A JP 1738886A JP S62175628 A JPS62175628 A JP S62175628A
Authority
JP
Japan
Prior art keywords
memory alloy
shape memory
temperature
shape
alloy element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1738886A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Hoshioka
星丘 和敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Stainless Steel Co Ltd
Original Assignee
Nippon Stainless Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Stainless Steel Co Ltd filed Critical Nippon Stainless Steel Co Ltd
Priority to JP1738886A priority Critical patent/JPS62175628A/en
Publication of JPS62175628A publication Critical patent/JPS62175628A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To obtain a highly accurate and handy temperature sensing actuator, by utilizing a shape memory alloy as thermosensitive element. CONSTITUTION:Firstly, a surface temperature sensing actuator 2 is set on the surface of an object 1 to be detected as shown by (a) and a base section 3 of the shape memory alloy element 5 is put tight on the surface of the object 1. Under such a condition, the temperature rise of the object 1 starts and when the surface temperature is above the transformation point of the shape memory alloy, the temperature of the element 5 rises above the transformation point without delay by the heat transmitted from the base section 3 so that it will return to the initial shape (A) memorized. At this point, as spiral spring as deforming force adding means 6 is elongated by return force and a display mark as a means 7 of indicating the arrival at the specified return shape will appear at a display window 10. Thus, it is possible to detect quickly and surely that the surface temperature of the object 1 reaches the temperature equivalent to the transformation of the shape memory alloy.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、射出成形機やモータ等の如き機械装置類、
或いはその他各種物体の表面温度が特定温度に達したこ
とを迅速・確実に検知して表示するところの、繰返し使
用できる簡易な表面温度感知作動器に関するものである
[Detailed Description of the Invention] <Industrial Application Field> This invention is applicable to mechanical devices such as injection molding machines and motors,
Alternatively, the present invention relates to a simple surface temperature sensing actuator that can be used repeatedly and quickly and reliably detects and displays that the surface temperature of various objects has reached a specific temperature.

〈背景技術〉 例えばプラスチックの射出成形作業を例にとれば、射出
作業開始にあたって射出成形機のスIJ−ブや金型を所
定温度に予熱することが行われている。従って、この場
合には該スリーブや金型が所定温度に達したことを迅速
・確実に検出しなければならない。
<Background Art> For example, in the case of plastic injection molding work, the injection molding machine's sleeve and mold are preheated to a predetermined temperature before starting the injection work. Therefore, in this case, it is necessary to quickly and reliably detect that the sleeve or mold has reached a predetermined temperature.

従来、このような射出成形機の各部温度が所定温度に達
したことを検知する手段としては、熱電対とミリボルト
記録計とを組合わせた温度測定装置を採用するのが一般
的であった。
Conventionally, as a means for detecting that the temperature of each part of such an injection molding machine has reached a predetermined temperature, it has been common to employ a temperature measuring device that combines a thermocouple and a millivolt recorder.

しかしながら、熱電対装置で温度検知を行う方法ではミ
リボルト記録計等を組入れた電気配線が欠かせないこと
から、この配線が射出成形作業に少なからぬ支障を及ぼ
すとの問題が指摘されており、また温度検知装置全体の
価格も相当に高いものであるので、小規模な射出成形機
の使用が主体となるような現場ではその改善が強く要望
されてもいたのである。
However, the method of detecting temperature using a thermocouple device requires electrical wiring that incorporates a millivolt recorder, etc., and it has been pointed out that this wiring poses a considerable hindrance to injection molding work. Since the price of the temperature detection device as a whole is quite high, there is a strong demand for improvements in the field where small-scale injection molding machines are mainly used.

なお、一般の物体表面温度検知手段として赤外線温度計
を用いる方法やヒートラベルを使用する方法等も知られ
ているが、赤外線温度計は非常に高価なものであってそ
の用途がどうしても制限されてしまい、一方、ヒートラ
ベルは繰返しの使用ができないことに加えて所定温度到
達時点を正確に捕えることが困難であるなど、やはりコ
スト面や用途面で満足できるものとは言えなかった。
Note that methods such as using an infrared thermometer or using a heat label as a general means of detecting the surface temperature of an object are also known, but infrared thermometers are very expensive and their uses are inevitably limited. On the other hand, heat labels cannot be used repeatedly, and it is difficult to accurately determine the point at which a predetermined temperature is reached, so they cannot be said to be satisfactory in terms of cost and usage.

また、これらとは別に、近年、形状記憶合金の特性を利
用した温度感知スイッチ類の提案(例えば、特開昭50
−65884号公報や特開昭52−126273号公報
を参照されたい)もなされているが、これらはいずれも
雰囲気温度を感知するだめのものであって、物体表面の
温度を正確に検知することはできなかった。
Apart from these, in recent years, temperature sensing switches that utilize the properties of shape memory alloys have been proposed (for example,
(Please refer to Japanese Patent Application Laid-open No. 65884 and Japanese Patent Application Laid-open No. 126273/1983), but these are all devices that cannot detect the ambient temperature, and cannot accurately detect the temperature of the surface of an object. I couldn't.

〈問題点を解決するだめの手段〉 本発明者等は、従来の温度検知装置にみられる上記問題
点を踏まえた上で、各種物体の表面温度が特定の温度に
まで達したことを迅速・確実に検知して表示する簡易彦
表面温度検知装置を提供すべく、特に、格別な電気配線
が不要でかつ繰返し使用が可能な形状記憶合金を感温素
子として利用することを目脂して鋭意研究を行ったとこ
ろ、以下(α)〜(切に示される如き知見が得られたの
である。
<Means to Solve the Problems> Based on the above-mentioned problems found in conventional temperature detection devices, the present inventors have developed a method to quickly and efficiently detect when the surface temperature of various objects has reached a specific temperature. In order to provide a simple Hiko surface temperature detection device that can detect and display data reliably, we are working hard to utilize shape memory alloys as temperature-sensitive elements, which do not require special electrical wiring and can be used repeatedly. As a result of the research, the following findings (α) to () were obtained.

即ち、 (α)形状記憶合金を感温素子として表面温度を正しく
検知するには、対象物体表面に形状記憶合金素子を比較
的広い面積に亘って十分に密着させるための受感部を設
ける必要があること、(b)従って、この条件を満足さ
せるには、形状記憶合金素子を板状とすることが望まし
いこと、(C)  形状記憶合金を物体表面温度の感知
作動子として使用する場合、該形状記憶合金素子の作動
(記憶形状への復帰)が物体表面から離れてしまう方向
に生じると表面温度に対する応答が不完全になって正確
な温度検知ができないが、この作動方向を逆にして、対
象物体表面へ密着するような初期形状を記憶させた後に
該物体表面から離隔する如き形状に変形させた形状記憶
合金素子を使用すれば、形状記憶合金素子の作動によっ
て該素子は対象物体表面への密着度を一層増すこととな
るので、表面温度に対する応答をより迅速・確実にでき
ること、 (ψ ところで、形状記憶合金素子を繰り返し使用する
ためには、変態温度以上の温度にまで昇温して初期形状
に復帰した形状記憶合金素子を温度低下後に再び作動前
の変形形状に戻す必要があり、。
In other words, (α) In order to correctly detect the surface temperature using a shape memory alloy as a temperature sensing element, it is necessary to provide a sensing part on the surface of the target object to sufficiently bring the shape memory alloy element into close contact over a relatively wide area. (b) Therefore, in order to satisfy this condition, it is desirable that the shape memory alloy element be in the form of a plate; (C) When the shape memory alloy is used as an actuator for sensing the surface temperature of an object, If the operation of the shape memory alloy element (return to the memorized shape) occurs in the direction away from the object surface, the response to the surface temperature will be incomplete and accurate temperature detection will not be possible.However, by reversing this operation direction, If a shape memory alloy element is used, which has an initial shape that is in close contact with the surface of a target object and then is deformed into a shape that is separated from the surface of the target object, the element will be able to move onto the surface of the target object by the operation of the shape memory alloy element. By the way, in order to use shape memory alloy elements repeatedly, it is necessary to raise the temperature to above the transformation temperature. The shape memory alloy element that has returned to its initial shape must be returned to its deformed shape before activation after the temperature has decreased.

厚さの薄い形状記憶合金素子を使用したり変形外力(コ
イルバネや螺旋バネ等による)が大きかったりすると形
状記憶合金素子が局部的に回復限界以上の変形を受ける
危険性が懸念されるが、このような場合であっても、上
記形状記憶合金素子が外力によって変形させられる方向
にこれと対向させてガイド部材(例えば円弧形状面を有
する接触支持部材等)を配置することで上記危険性は完
全に払拭されること。
If a thin shape memory alloy element is used or the external deformation force (such as from a coil spring or helical spring) is large, there is a risk that the shape memory alloy element may be locally deformed beyond its recovery limit. Even in such a case, the above danger can be completely eliminated by arranging a guide member (for example, a contact support member having an arc-shaped surface) in a direction opposite to the shape memory alloy element in the direction in which it is deformed by external force. to be wiped out.

この発明は、上記知見に基づいてなされたものであり、
第1図として記載した概略構成図に例示される如く、 物体1の表面温度感知作動器2を、物体表面に密着させ
る基部(受感部)3、及び前記物体表面に密着する初期
形状(A)を記憶せしめられた後に該物体表面から離隔
する如くに変形(B)された作動部4を有する板状の形
状記憶合金素子5と、変態温度以上の温度にまで昇温し
て初期形状(A)に復帰した形状記憶合金素子5を温度
低下後に再度作動前の変形形状(B)に戻すための、前
記形状記憶合金素子作動部4に係合した変形力付加手段
(螺旋バネ)6と、該変形力付加手段6に設けられた形
状記憶合金素子5が成る所定の形状にまで復帰したこと
を表示する所定復帰形状到達表示手段(表示マーク)7
とを備えしめて構成するか、或いは、第3図に示される
如く、更に上記変形力付加手段6による変形力によって
大きな局部的変形を生じさせないための形状記憶合金素
子5に対向配置された変形ガイド部材8をも備えしめて
構成した点、 に特徴を有するものである。
This invention was made based on the above findings,
As illustrated in the schematic configuration diagram shown in FIG. ) is memorized and then deformed (B) so as to be separated from the object surface. A deforming force applying means (helical spring) 6 engaged with the shape memory alloy element actuating section 4 to return the shape memory alloy element 5 which has returned to the shape memory alloy element 5 to the deformed shape (B) before actuation after the temperature decreases; , a predetermined return shape attainment display means (display mark) 7 for indicating that the shape memory alloy element 5 provided in the deformation force applying means 6 has returned to the predetermined shape.
or, as shown in FIG. 3, a deformation guide disposed opposite to the shape memory alloy element 5 in order to prevent large local deformation from occurring due to the deformation force by the deformation force applying means 6. The present invention is characterized by the fact that it also includes a member 8.

なお、図面において、符号9で示されるものは表面温度
感知作動器の函体であり、符号10で示されるものは表
示窓、そして符号11で示されるものは変形力調整ねじ
である。
In the drawings, the reference numeral 9 is a case for the surface temperature sensing actuator, the reference numeral 10 is a display window, and the reference numeral 11 is a deformation force adjustment screw.

ここで、「形状記憶合金」としては、各々50原子パー
セント附近のNi−Ti合金や、Au−cd金合金CS
 −Al −Ni合金、(:x −Z?$合金等(DI
/にずれヲ採用しても良く、用途(要求される表示温度
等)に応じて適宜選択すれば良い。
Here, the "shape memory alloy" includes a Ni-Ti alloy with a concentration of around 50 atomic percent, and an Au-cd gold alloy CS.
-Al -Ni alloy, (:x -Z?$ alloy, etc. (DI
/ may be employed, and may be selected as appropriate depending on the application (required display temperature, etc.).

また、作動終了後の形状記憶合金素子を再度作動前の変
形形状に戻すための「変形力付加手段」としては、螺旋
バネやコイルバネのほか、重錘或いは“重錘とてことを
組合わせたもの“等を採用するのが経済性の点からみて
好ましい。
In addition, in addition to spiral springs and coil springs, the "deformation force applying means" for returning the shape memory alloy element to the deformed shape before the operation after the operation is completed include a weight or a combination of a weight and a lever. From an economic point of view, it is preferable to adopt

そして、前記「所定復帰形状到達手段」としては、例え
ば第1図及び第3図で示したような〃螺旋バネ上に付し
た表示マーク(目印)7#が最も簡単なものであるが、
後に説明するような“表示器“や“表示棒“等を採用し
ても良く、また電気的な表示器具を取り付けて良いこと
も勿論である。
The simplest example of the "predetermined return shape attainment means" is, for example, the display mark (mark) 7# attached to the helical spring as shown in FIGS. 1 and 3.
It goes without saying that a "display" or "display bar" etc., which will be explained later, may be employed, and an electrical display device may also be attached.

一方、第2図は、本発明例である第1図に示した表面温
度感知作動器の作動状態を示す概略構成図であシ、第4
図は同じく本発明の別の例である第3図に示した表面温
度感知作動器の作動前の斜視外観図、第5図はその作動
状態を示す概略構成図、そして第6図はそのとき(作動
時〕の斜視外観、図である。・ 以上に例示した表面温度感知作動器2によって昇温され
る物体10表面温度が所定値になった時点を検知するに
は、まず、第1図に示す如く表面温度感知作動器2を対
象物体lの表面にセットし、その形状記憶合金素子5の
基部3を物体1の表面に密着させる。
On the other hand, FIG. 2 is a schematic configuration diagram showing the operating state of the surface temperature sensing actuator shown in FIG. 1, which is an example of the present invention.
The figure is a perspective external view of the surface temperature sensing actuator shown in FIG. 3, which is another example of the present invention, before operation, FIG. 5 is a schematic configuration diagram showing its operating state, and FIG. FIG. 1 is a perspective view of the external appearance (during operation). In order to detect when the surface temperature of the object 10 heated by the surface temperature sensing actuator 2 exemplified above reaches a predetermined value, first, FIG. As shown in the figure, the surface temperature sensing actuator 2 is set on the surface of the object 1, and the base 3 of the shape memory alloy element 5 is brought into close contact with the surface of the object 1.

この場合、第5図(これは第3乃至6図で示される表面
温度感知作動器の底面図例であるが、第1乃至2図で示
されるものの底面図例としても一層に差し支えない)で
示すように、表面温度感知作動器2の底面部に磁石12
を取り付けておけば形状記憶合金素子5の基部3を対象
物体表面に密着させることが容易となる上、水平面上以
外への表面温度感知作動器20セツトも一層簡単になる
が、これに拘泥されるものではない。
In this case, FIG. 5 (which is an example of a bottom view of the surface temperature sensing actuator shown in FIGS. 3 to 6, but may even be used as an example of a bottom view of the surface temperature sensing actuator shown in FIGS. 1 to 2) As shown, a magnet 12 is attached to the bottom of the surface temperature sensing actuator 2.
If the base 3 of the shape memory alloy element 5 is attached to the surface of the target object, it will be easier to bring the base 3 of the shape memory alloy element 5 into close contact with the surface of the target object, and it will also be easier to set the surface temperature sensing actuator 20 on a surface other than the horizontal surface. It's not something you can do.

さて、この状態で物体1が昇温し始めてその表面温度が
形状記憶合金の変態点以上の温度になると、形状記憶合
金素子5も基部3からの速かな熱伝達によって遅れを生
じることなく変態点以上の温度に昇温し、記憶されてい
る初期形状(A)に復帰しようとするが、このとき、第
1図に示される表面温度感知作動器にあっては第2図の
如くに、また第3図に示されるものにあっては第5図及
び第6図の如くに変形力付加手段6たる螺旋バネが前記
復帰力にて引き伸ばされ、所定復帰形状到達表示手段7
たる表示マークが表示窓10に現われることとなるので
、物体1の表面温度が形状記憶合金の変態点に相当する
温度に達したことを迅速・確実に検知することができる
。なお、この際に形状記憶合金素子5の形状復帰動作は
該形状記憶合金素子5が物体1の表面により強く(より
多く)接触するような方向に進行するので、物体表面か
ら形状記憶合金素子への熱伝達は更に十分となり、。
Now, when the temperature of the object 1 starts to rise in this state and its surface temperature reaches a temperature higher than the transformation point of the shape memory alloy, the shape memory alloy element 5 also reaches the transformation point without any delay due to rapid heat transfer from the base 3. The temperature rises to a temperature above and attempts to return to the memorized initial shape (A), but at this time, the surface temperature sensing actuator shown in FIG. In the case shown in FIG. 3, as shown in FIGS. 5 and 6, the helical spring serving as the deforming force applying means 6 is stretched by the return force, and the predetermined return shape reaching display means 7
Since the barrel display mark appears on the display window 10, it is possible to quickly and reliably detect that the surface temperature of the object 1 has reached a temperature corresponding to the transformation point of the shape memory alloy. Note that at this time, the shape-returning operation of the shape-memory alloy element 5 progresses in a direction such that the shape-memory alloy element 5 comes into stronger (more) contact with the surface of the object 1, so that the shape-memory alloy element 5 moves from the object surface to the shape-memory alloy element. The heat transfer will be even more sufficient.

該素子の応答が不完全となることはない。The response of the element will not be incomplete.

この後、物体1の表面温度が形状記憶合金の変態温度よ
シも低くなると形状記憶合金素子5も温度低下してその
形状復帰力が消滅するので、変形力付加手段6たる螺旋
バネによって形状記憶合金素子5は再び作動前の変形形
状(B)に戻され、次の繰り返し使用に備えることとな
る。
After this, when the surface temperature of the object 1 becomes lower than the transformation temperature of the shape memory alloy, the temperature of the shape memory alloy element 5 also decreases and its shape restoring force disappears, so the shape memory is stored by the helical spring serving as the deformation force applying means 6. The alloy element 5 is returned to the deformed shape (B) before activation, and is ready for the next repeated use.

この形状記憶合金素子が作動前の形状に戻される際、や
やもすると局部的に大きな変形(歪率で7チ引上)を起
こして以後の作動時の形状回復がI不完全となる恐れも
あるが、第3乃至6図に示される如く、形状記憶合金素
子5に対向させて例えば円弧形状等の変形ガイド部材8
を配置しておくとこのような弊害は完全に防止され、形
状記憶合金素子の厚さを薄くしても安定した性能を維持
することが可能となる。
When this shape memory alloy element is returned to its pre-operation shape, there is a risk that large local deformation (strain rate of 7 degrees) may occur, resulting in incomplete shape recovery upon subsequent operation. However, as shown in FIGS. 3 to 6, a deformable guide member 8 having a circular arc shape or the like is placed opposite the shape memory alloy element 5.
By arranging the shape memory alloy element, such adverse effects can be completely prevented, and stable performance can be maintained even if the thickness of the shape memory alloy element is reduced.

ところで、第8図、第9図及び第10図は、それぞれこ
の発明に係る表面温度感知作動器の更に別の例を示す概
略構成図であり、第8図は「変形力付加手段」としてコ
イルバネσを用いたものを、第9図は「変形力付加手段
」として“重錘13とてこ14との組合わせ体”を用い
るとともに「形状記憶合金素子の所定復帰形状到達表示
手段」として重錘に連結した表示旗15を使用したもの
を、そして第10図は「変形力付加手段」として“重錘
13、てこ14及び線材16の組合わせ体“を用いると
ともに「形状記憶合金素子の所定復帰形状到達表示手段
」として表示棒17(てこ14に連結されている)を使
用したものを示している。
By the way, FIGS. 8, 9, and 10 are schematic configuration diagrams showing still other examples of the surface temperature sensing actuator according to the present invention, and FIG. 8 shows a coil spring as the "deformation force applying means". Fig. 9 uses a "combination of a weight 13 and a lever 14" as a "deformation force applying means" and a weight as a "means for indicating that the shape memory alloy element has reached a predetermined return shape." 10 uses a "combination of a weight 13, a lever 14, and a wire rod 16" as a "deformation force applying means" and "returns the shape memory alloy element to a predetermined value." A display rod 17 (connected to a lever 14) is used as a "shape attainment display means".

なお、図面において符号18で示されるものは、てこ1
4の回転軸である。
In addition, what is indicated by the reference numeral 18 in the drawings is a lever 1.
4 rotation axis.

また、第8図(α)、第9図(α)及び第10図(α)
はそれぞれの表面温度感知作動器の作動前の状態を示し
、一方、第8図(6)、第9図(b)及び第10図(b
)はそれらの作動時の状態を示していることは言うまで
もなく、これら各図面の記載からして上記各表面温度感
知器の機能は十分に理解されるはずである。
In addition, Fig. 8 (α), Fig. 9 (α) and Fig. 10 (α)
8(6), 9(b) and 10(b) show the state before activation of each surface temperature sensing actuator.
It goes without saying that ) shows their operating states, and the functions of the above-mentioned surface temperature sensors should be fully understood from the description of each of these drawings.

そして、この発明に係る表面温度感知器の感知温度は使
用する形状記憶合金素子の種類によって定まるが、感知
温度を変えたい場合には、使用する形状記憶合金素子の
合金種や組成を変えれば良いことはもちろんであり、変
形力付加手段によって付加されるパイアスカを調整する
ことで感知器の応答速度を変化させることもできる。な
お、該感知器の函体や変形ガイド部材の材質は格別に制
限されるものではないが、プラスチック製又は金属製と
するのが一般的である。
The sensing temperature of the surface temperature sensor according to the present invention is determined by the type of shape memory alloy element used, but if you want to change the sensing temperature, you can change the alloy type or composition of the shape memory alloy element used. Of course, the response speed of the sensor can also be changed by adjusting the bias applied by the deforming force applying means. Note that the material of the housing and deformation guide member of the sensor is not particularly limited, but is generally made of plastic or metal.

〈総括的な効果〉 以上に説明した如く、この発明によれば、射出成形機や
熱プレス機等の作業開始適温到達時期を検知したり、モ
ータの過熱や変電所の断路器等の過熱を的確に感知した
りできるばかりか、家庭用や業務用のアイロンの過熱に
よる危険を表示したり、電磁調理器の適温到達検知や浴
槽の湯が所定温度になったことの検知(この場合には、
適当な容器を湯面に浮かべ、その上に温度感知作動機を
載置しておけば良い)、或いは冷蔵庫で冷やす氷菓子等
の上に載置(塩化ビニリデンラップ等を介しても良い)
して食べ頃の検知を行うこともできるところの、高精度
で簡易な表面温度感知作動器を提供することができるな
ど、産業上、更には日常生活上極めて有用な効果がもた
らされるのである。
<Overall Effects> As explained above, according to the present invention, it is possible to detect when an injection molding machine, a heat press machine, etc. have reached the appropriate temperature for starting work, and to prevent overheating of motors and disconnectors at substations. Not only can it accurately sense, but it can also display the danger of overheating in household and commercial irons, detect when an electromagnetic cooker has reached the appropriate temperature, and detect when the water in a bathtub has reached a predetermined temperature (in this case, ,
Float a suitable container on the surface of the hot water and place a temperature sensing actuator on top of it), or place it on top of an ice cream, etc. to be cooled in the refrigerator (you can also put it through vinylidene chloride wrap, etc.)
This provides extremely useful effects in industry and daily life, such as providing a highly accurate and simple surface temperature sensing actuator that can detect when food is ripe.

【図面の簡単な説明】[Brief explanation of drawings]

第1乃至2図は本発明に係る表面温度感知作動器の1例
を示す概略図であり、第1図は作動前の状態を示す概略
構成図、第2図は作動時の状態を示す概略構成図、 第3乃至6図は本発明に係る表面温度感知作動器の別の
例を示す概略図であり、第3図は作動前の状態を示す概
略構成図、第4図は作動前の状態を示す外観概略斜視図
、第5図は作動時の状態を示す概略構成図、第6図は作
動時の状態を示す外観概略斜視図、 第7図は、第3乃至6図で示した表面温度感知作動器の
底部外面に吸着用磁石を取り付けたものの例を示す底面
概略図、 第8乃至10図は本発明に係る表面温度感知作動器の更
に別の例を示す概略図であり、第8図()、第9図()
及び第10図()はそれぞれ作動前の状態を示す概略構
成図、第8図()、第9図()及び第10図()は作動
時の状態を示すそれぞれの概略構成図である。 図面において、 1・・・表面温度感知対象物体、 2・・・表面温度感知作動器、 3・・・形状記憶合金素子の基部、 4・・・形状記憶合金素子の作動部、 5・・・形状記憶合金素子、 6・・・変形力付加手段(螺旋バネ)、6・・・変形力
付加手段(コイルバネ)、7・・・所定復帰形状到達表
示手段(表示マーク)、 8・・・変形ガイド部材、 9・・・表面温度感知作動器の函体、 10・・・表示窓、 11・・・変形力調整ねじ、12
・・・磁石、  13・・・重錘、14・・・てこ、 
 15・・・表示族、16・・・線材、  17・・・
表示棒、18・・・てこの回転軸、 A・・・初期形状、B・・・変形形状。 渡3図 箒8図
1 and 2 are schematic diagrams showing one example of the surface temperature sensing actuator according to the present invention, FIG. 1 is a schematic configuration diagram showing a state before operation, and FIG. 2 is a schematic diagram showing a state during operation. 3 to 6 are schematic diagrams showing other examples of the surface temperature sensing actuator according to the present invention, FIG. 3 is a schematic diagram showing the state before operation, and FIG. 4 is a schematic diagram showing the state before operation. Fig. 5 is a schematic configuration diagram showing the state in operation, Fig. 6 is a schematic perspective view of the appearance showing the state in operation, and Fig. 7 is the same as shown in Figs. 3 to 6. A schematic bottom view showing an example of a surface temperature sensing actuator with an adsorption magnet attached to the bottom outer surface; FIGS. 8 to 10 are schematic views showing still another example of the surface temperature sensing actuator according to the present invention; Figure 8 (), Figure 9 ()
10() are schematic configuration diagrams showing the state before operation, and FIGS. 8(), 9(), and 10() are respective schematic configuration diagrams showing the state during operation. In the drawings, 1... Surface temperature sensing target object, 2... Surface temperature sensing actuator, 3... Base of shape memory alloy element, 4... Actuating part of shape memory alloy element, 5... Shape memory alloy element, 6... Deformation force applying means (helical spring), 6... Deforming force applying means (coil spring), 7... Predetermined return shape attainment indicating means (display mark), 8... Deformation Guide member, 9... Case of surface temperature sensing actuator, 10... Display window, 11... Deformation force adjustment screw, 12
...magnet, 13...weight, 14...lever,
15...Display group, 16...Wire rod, 17...
Display rod, 18... Lever rotation axis, A... Initial shape, B... Deformed shape. Watari 3 diagrams Broom 8 diagrams

Claims (2)

【特許請求の範囲】[Claims] (1)温度測定対象物表面に密着させる基部、及び前記
温度測定対象物表面に密着する初期形状を記憶せしめら
れた後に該温度測定対象物表面から離隔する如くに変形
された作動部を有する板状の形状記憶合金素子と、変態
温度以上の温度にまで昇温して初期形状に復帰した形状
記憶合金素子を温度低下後に再度作動前の変形形状に戻
すための前記形状記憶合金素子作動部に係合した変形力
付加手段と、前記変形力付加手段に設けられた形状記憶
合金素子の所定復帰形状到達表示手段とを備えて成るこ
とを特徴とする表面温度感知作動器。
(1) A plate having a base that is brought into close contact with the surface of the object to be temperature measured, and an actuating portion that is deformed so as to be separated from the surface of the object to be temperature measured after the initial shape of the object that is in close contact with the surface of the object to be measured is memorized. the shape memory alloy element, and the shape memory alloy element actuating section for returning the shape memory alloy element, which has been heated to a temperature higher than the transformation temperature and returned to its initial shape, to the deformed shape before actuation after the temperature is lowered. A surface temperature sensing actuator comprising: a deforming force applying means engaged with each other; and a means for indicating that a shape memory alloy element has reached a predetermined return shape provided in the deforming force applying means.
(2)温度測定対象物表面に密着させる基部、及び前記
温度測定対象物表面に密着する初期形状を記憶せしめら
れた後に該温度測定対象物表面から離隔する如くに変形
された作動部を有する板状の形状記憶合金素子と、変態
温度以上の温度にまで昇温して初期形状に復帰した形状
記憶合金素子を温度低下後に再度作動前の変形形状に戻
すための前記形状記憶合金素子作動部に係合した変形力
付加手段と、これによる変形力によって大きな局部的変
形を生じさせないための形状記憶合金素子に対向配置さ
れた変形ガイド部材と、前記変形力付加手段に設けられ
た形状記憶合金素子の所定復帰形状到達表示手段とを備
えて成ることを特徴とする表面温度感知作動器。
(2) A plate having a base that is brought into close contact with the surface of the object to be temperature measured, and an actuating portion that is deformed so as to be separated from the surface of the object to be temperature measured after the initial shape of the object that is in close contact with the surface of the object to be temperature measured is memorized. the shape memory alloy element, and the shape memory alloy element actuating section for returning the shape memory alloy element, which has been heated to a temperature higher than the transformation temperature and returned to its initial shape, to the deformed shape before actuation after the temperature is lowered. The engaged deformation force applying means, a deformation guide member disposed opposite to the shape memory alloy element to prevent large local deformation from occurring due to the deformation force caused by the deformation force, and the shape memory alloy element provided in the deformation force applying means. A surface temperature sensing actuator comprising: means for indicating that a predetermined return shape has been reached.
JP1738886A 1986-01-29 1986-01-29 Surface temperature sensing actuator Pending JPS62175628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1738886A JPS62175628A (en) 1986-01-29 1986-01-29 Surface temperature sensing actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1738886A JPS62175628A (en) 1986-01-29 1986-01-29 Surface temperature sensing actuator

Publications (1)

Publication Number Publication Date
JPS62175628A true JPS62175628A (en) 1987-08-01

Family

ID=11942614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1738886A Pending JPS62175628A (en) 1986-01-29 1986-01-29 Surface temperature sensing actuator

Country Status (1)

Country Link
JP (1) JPS62175628A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030006152A (en) * 2001-07-11 2003-01-23 지엠피바이오(주) Temperature sensor using shape memory alloy
WO2004099730A3 (en) * 2003-05-02 2005-09-15 Alfmeier Praez Ag Gauge pointer with integrated shape memory alloy actuator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030006152A (en) * 2001-07-11 2003-01-23 지엠피바이오(주) Temperature sensor using shape memory alloy
WO2004099730A3 (en) * 2003-05-02 2005-09-15 Alfmeier Praez Ag Gauge pointer with integrated shape memory alloy actuator
US7082890B2 (en) * 2003-05-02 2006-08-01 Alfmeier Prazision Ag Baugruppen Und Systemlosungen Gauge pointer with integrated shape memory alloy actuator

Similar Documents

Publication Publication Date Title
US3652969A (en) Method and apparatus for stabilizing and employing temperature sensitive materials exhibiting martensitic transitions
US3594675A (en) Temperature-sensing probe
US3483752A (en) Temperature monitor
CA1218396A (en) Bistable shape memory effect thermal transducers
US3748197A (en) Method for stabilizing and employing temperature sensitive material exhibiting martensitic transistions
US5735607A (en) Shape memory alloy thaw sensors
US4419023A (en) Fast-response thermocouple probe
US6898982B2 (en) Force measurement of bimetallic thermal disc
US4114559A (en) Temperature monitoring
US4829843A (en) Apparatus for rocking a crank
JPS62175628A (en) Surface temperature sensing actuator
EP4129638A1 (en) Pop up controller for heat press
EP4129684A1 (en) Method and apparatus to control heat press
US2389686A (en) Thermostat
EP0651412B1 (en) Safety device with a thermostat with an immersion rod sensor
Makino et al. Thermo-mechanical properties of TiNi shape memory thin film formed by flash evaporation
Barmatz et al. Elastic behavior of 2 H− Ta Se 2
GB2023818A (en) Temperature-responsive actuating-elements
JP2943298B2 (en) Shape memory alloy device of continuous temperature memory type
RU1778814C (en) Thermosensitive switch
US4117442A (en) Differential-temperature-sensitive device
EP4147261A1 (en) A bi-metal actuator
RU2122712C1 (en) Device measuring temperature of surface
JPS60176123A (en) Temperature sensitive actuator
RU14693U1 (en) HEAT FIRE DETECTOR