[go: up one dir, main page]

JPS62171127A - Method of detecting end point of etching - Google Patents

Method of detecting end point of etching

Info

Publication number
JPS62171127A
JPS62171127A JP1190386A JP1190386A JPS62171127A JP S62171127 A JPS62171127 A JP S62171127A JP 1190386 A JP1190386 A JP 1190386A JP 1190386 A JP1190386 A JP 1190386A JP S62171127 A JPS62171127 A JP S62171127A
Authority
JP
Japan
Prior art keywords
light
etching
intensity
etched
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1190386A
Other languages
Japanese (ja)
Inventor
Takuya Fukuda
福田 琢也
Yutaka Misawa
三沢 豊
Masatake Nametake
正剛 行武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1190386A priority Critical patent/JPS62171127A/en
Publication of JPS62171127A publication Critical patent/JPS62171127A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To detect the end point of etching with high sensitivity and accuracy, by utilizing a phenomenon that an amount of regulator reflection of unidirectional light applied onto the surface of a substance to be etched is varied by the height of a step of the surface of the substance to be etched. CONSTITUTION:Plasma is generated in an etching apparatus 3 and thereby a board to be processed is etched. In parallel with etching, a laser beam 5 of 633(nm) is applied to a desired region of a surface to be etched in the board to be processed, and regular reflection light 7 and plasma light are led into an optical filter 9 by a condenser 8. By this filter, only the desired regular reflection light 7 obtained from the laser beam 5 is separated, and a variation in the intensity thereof is detected by a light intensity detecting device 11. A light S reflected in the direction other than the direction of a desired reflection angle theta by the surface of a step (h) formed between a pattern 15 exposed on the surface by etching and a film 16 is not contained in the regulator reflection light 7, and the mount of light in the direction of the desired angle thetadecreases dependently on the step (h). Since the intensity of the regular reflection light detected from the point of time at which etchback is ended lowers sharply, the end of the etchback can be detected distinctly.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はエツチング方法に用いられる終点検出方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an end point detection method used in an etching method.

〔発明の背景〕[Background of the invention]

半導体装置の製造工程等に用いられるエツチングに於い
て、エツチングの終点を検出する手段として、トライ・
エツチングでは、エツチングの際に発生するプラズマ光
の中に含まれる、エツチング生成物質のプラズマ光の強
度変化により検出する方法が広く用いられている。然し
この方法に於いては、プラズマ光の中に種々な波長の光
が含まれており、その分光を完全に行うのが困難なこと
In etching used in the manufacturing process of semiconductor devices, try-
In etching, a method is widely used in which a change in the intensity of an etching product contained in plasma light generated during etching is used to detect the intensity of the plasma light. However, in this method, the plasma light contains light of various wavelengths, and it is difficult to perform complete spectroscopy.

エツチング領域の面積が小さい場合に強度変化が少ない
ことにより終点の検出感度が充分とはいえず、又プラズ
マが不安定なために検出値が不確実になるという問題が
ある。同様な事は、エツチング廃ガスのマス・スペクト
ル分析による終点検出方法等に於ても同様の問題がある
When the area of the etching region is small, there is a problem that the detection sensitivity of the end point is not sufficient due to the small intensity change, and the detection value becomes uncertain due to the instability of the plasma. Similar problems arise in end point detection methods using mass spectrum analysis of etching waste gas.

また、多層配線技術などの半導体装置表面の平坦化技術
(以下エッチバックと言う)が必要となって来ているが
、このエッチバックの終点は、上記方法では検出が困難
であるという問題もある。
In addition, there is an increasing need for flattening technology (hereinafter referred to as etch-back) for the surface of semiconductor devices, such as multilayer wiring technology, but there is also the problem that it is difficult to detect the end point of this etch-back using the above methods. .

このエッチバック終点検出方法には、半導体装置表面全
面に塗布した絶縁材等の被膜と、エツチングにより被膜
から露出させる金属などのパターン膜の材質のある入射
光の散乱強度の違いから検出する方法もあるが、この方
法においては、適用出来る被膜とパターンの材質が限ら
れるという問題がある。また、パターンによる回折光の
強度変化から検出する方法もあるが、これには、厚さも
幅も等しい回折格子パターンが半導体装置表面にあるこ
とが必要となる欠点がある。
This etchback end point detection method includes a method of detecting the difference in scattering intensity of incident light between a film such as an insulating material applied to the entire surface of the semiconductor device and a pattern film such as metal exposed from the film by etching. However, this method has a problem in that the materials that can be used for the coating and pattern are limited. There is also a method of detection based on changes in the intensity of diffracted light due to a pattern, but this method has the drawback that it requires a diffraction grating pattern of equal thickness and width to be present on the surface of the semiconductor device.

〔発明の目的〕[Purpose of the invention]

本発明は、上記従来法の問題点に鑑み、被エツチング物
の種類や、パターンの模様には依存せず高感度でしかも
正確にエツチングの終点を検出することが出来るエツチ
ングの終点検知方法と装置を提供することである。
In view of the above problems of the conventional method, the present invention provides a method and apparatus for detecting the end point of etching, which can detect the end point of etching with high sensitivity and accuracy, regardless of the type of object to be etched or the pattern of the pattern. The goal is to provide the following.

〔発明の概要〕[Summary of the invention]

本発明は、被エツチング物の表面に単一指向の光を照射
しながらエツチングを行い、眩光の被エツチング物平面
に対する入射角と等しい所望の反射角方向に正反射され
る光の内、エツチングにより被エツチング面に生じる段
差面からの所望角方向外に、反射された光の減少分は、
上記段差高に依存する事を利用したエツチングの終点検
出方法及び装置である。
In the present invention, etching is performed while irradiating the surface of the object to be etched with unidirectional light, and among the light that is specularly reflected in the direction of a desired reflection angle equal to the incident angle of the dazzling light with respect to the plane of the object to be etched, the etching process is performed. The decrease in light reflected from the stepped surface on the etched surface in a direction other than the desired angle is:
This is a method and apparatus for detecting the end point of etching using the dependence on the step height.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を多層配線半導体装置の製造工程等に於て
、ある層の半導体装置表面上にアルミニウム層(Afl
)をドライ・エツチング法を用いてパターニングして、
A2からなる電極を形成しこれにレジスト材等の絶縁被
膜を装置表面全面に塗布し、これをエッチバックするこ
とにより、所望の半導装置層を形成する際等に適用する
例について、第1図に示す一実施例における製造装置に
模式図、第2図に示す被エツチング半導体装置(以下被
処理板と言う)の一部所面図と光反射面の模式図、及び
第3図に示す一実施例における所望の反射角における正
反射光強度プロファイル図々用いて詳細に説明する。
Hereinafter, the present invention will be described in a manufacturing process of a multilayer wiring semiconductor device, etc., in which an aluminum layer (Afl
) using dry etching method,
The first example describes an example in which an electrode made of A2 is formed, an insulating film such as a resist material is applied to the entire surface of the device, and this is etched back to form a desired semiconductor device layer. A schematic diagram of the manufacturing apparatus in one embodiment shown in the figure, a partial partial view and a schematic diagram of a light reflecting surface of a semiconductor device to be etched (hereinafter referred to as a target plate) shown in FIG. 2, and a schematic diagram of a light reflecting surface shown in FIG. A specularly reflected light intensity profile at a desired reflection angle in one embodiment will be described in detail with reference to the drawings.

例えば、本発明の方法に用いるプラズマ・エツチング装
置は、第1図に示すように、対向する下部電極1と上部
電極2を有する平行平板型プラズマ・エツチング装置3
、下部電極1上に載置した被処理板4に、良質の単一指
向光であるレーザビーム5を照射するためのヘリウム−
ネオン(He−Ne)レーザ6、被処理板4の所望の平
面に対する入射角Oと等しい角度で正反射して来る。レ
ーザビーム5からの正反射光7と、エツチングの際に生
ずるプラズマ光の一部を所望の角度θで集める集光器8
、該集光器8により導入された光から、レーザビームの
正反射光7のみを分離するための光学フィルタ、該分離
光7を電気信号に変換するフォトダイオード10、該電
気信号の強度を測定する光検出装置11を有している。
For example, the plasma etching apparatus used in the method of the present invention is a parallel plate type plasma etching apparatus 3 having a lower electrode 1 and an upper electrode 2 facing each other, as shown in FIG.
, helium for irradiating the target plate 4 placed on the lower electrode 1 with a laser beam 5 which is a high quality unidirectional light.
The neon (He-Ne) laser 6 is specularly reflected at an angle equal to the incident angle O with respect to the desired plane of the plate 4 to be processed. A condenser 8 that collects specularly reflected light 7 from the laser beam 5 and a part of the plasma light generated during etching at a desired angle θ.
, an optical filter for separating only the regularly reflected light 7 of the laser beam from the light introduced by the condenser 8, a photodiode 10 for converting the separated light 7 into an electrical signal, and measuring the intensity of the electrical signal. It has a photodetecting device 11 that performs

なお1図に於て、12は高周波(RF)電源、13はガ
ス導入管、14は排気管を表わしている。
In FIG. 1, 12 represents a radio frequency (RF) power source, 13 represents a gas introduction pipe, and 14 represents an exhaust pipe.

本発明装置の一実施例に於ては、前述のようにAQパタ
ーンを形成させた半導体装置層表面に、電気絶縁材等を
塗布させた被処理板を用い、レーザ光源としては、例え
ば633 [nmlの発振波長を有し、5[mW]程度
の光出力を有するHa−Neレーザを用い、また、63
3[nmlの波長を有する光のみを通過せしめる光学フ
ィルタを使用する。
In one embodiment of the apparatus of the present invention, a plate to be processed is used, in which an electrical insulating material or the like is coated on the surface of a semiconductor device layer on which an AQ pattern is formed as described above. Using a Ha-Ne laser having an oscillation wavelength of nml and an optical output of about 5 [mW],
3 [Use an optical filter that allows only light having a wavelength of nml to pass through.

そして第1図に示すエツチング装置3内にガス導入管を
得て、例えば酸素(02)等のエツチングガスを導入し
、排気管14から所定の流量で排気を行いエツチング装
置3内のガス圧を10[Pal程度にし、RF電源によ
り電極間に例えば13.56[MHzlの高周波を印加
し、上部電極2と下部電極1の間にプラズマを発生せし
め被処理板のエツチングを行う。
Then, a gas introduction pipe is provided in the etching apparatus 3 shown in FIG. A high frequency of, for example, 13.56 MHz is applied between the electrodes using an RF power source to generate plasma between the upper electrode 2 and the lower electrode 1, thereby etching the substrate to be processed.

一部エッチングと並行して、前記He−Neレーザ6で
発生せしめた633[nmlのレーザビーム5を被処理
板に於ける被エツチング面の所望の領域に照射し、被処
理板平面に対する入射角と等しい反射角をもった正反射
光と、上下電極間から該方向に発生しているプラズマ光
を集光器8で、633[r++++]の波長のみを透過
させる光学フィルタ9に導入し、レーザビームによる所
望の正反射光のみを分離し、正反射光強度を例えばフォ
トダイオードで電気信号に変換し、光強度検出装置によ
りその強度変化を検知する。
In parallel with the partial etching, a laser beam 5 of 633 [nml] generated by the He-Ne laser 6 is irradiated onto a desired area of the surface to be etched of the plate to be processed, and the incident angle with respect to the plane of the plate to be processed is adjusted. Specularly reflected light with a reflection angle equal to Only the desired specularly reflected light by the beam is separated, the intensity of the specularly reflected light is converted into an electrical signal by, for example, a photodiode, and a change in the intensity is detected by a light intensity detection device.

そして、上記ビームの被処理板面に対する所望の角度θ
に正反射された光には、第2図に示すようにエツチング
により表面に露出したパターン15と被膜16との段差
り面により、所望の反射角θ以外の方向に反射された光
Sは含まれず、その結果、エツチングに判って現われた
段差りに起因する。所望角θ方向の光量が減少する。該
減少量は、角度θとパターン15の幅Qが一定であるか
ら、段差りに依存している。従って、塗布された被膜が
パターン上に存在している場合、もしくは被膜がパター
ンが同一平面の場合には、検出される正反射光強度は大
きく、エツチングがさらに進み被膜とパターンとの間に
段差が生じた場合には、前記状況下にある時よりも、検
出される正反射光強度は著しくホさくなる。そのため第
3図に示すように、エッチバックが終了した時点から検
出される正反射光強度は急激に低下するので、エッチバ
ック終了が明確に検出出来る。また、被膜のエツチング
における終点も、検出正反射光強度が一定となる時点か
ら明確に検出出来る。なお、第3図に於て、Rは所望の
反射角の正反射強度。
Then, the desired angle θ of the beam with respect to the surface of the plate to be processed is determined.
As shown in FIG. 2, the light that is specularly reflected includes the light S that is reflected in a direction other than the desired reflection angle θ due to the stepped surface between the pattern 15 and the coating 16 exposed on the surface by etching. As a result, a step appears in the etching. The amount of light in the desired angle θ direction decreases. The amount of decrease depends on the level difference because the angle θ and the width Q of the pattern 15 are constant. Therefore, if the applied film is on the pattern, or if the pattern is on the same plane as the film, the intensity of the specularly reflected light detected is high, and etching progresses further, causing a step difference between the film and the pattern. If this occurs, the intensity of the specularly reflected light detected will be significantly lower than under the above situation. Therefore, as shown in FIG. 3, the intensity of the specularly reflected light detected from the point at which the etch-back is completed rapidly decreases, so that the end of the etch-back can be clearly detected. Furthermore, the end point of film etching can be clearly detected from the point in time when the detected specularly reflected light intensity becomes constant. In addition, in FIG. 3, R is the specular reflection intensity at a desired reflection angle.

Sは段差による所望反射角の光強度減少分、tはエツチ
ング時間、Eはエッチバック終点、Fは被膜のエツチン
グ終点を表わしている。
S represents the reduction in light intensity at the desired reflection angle due to the step, t represents the etching time, E represents the end point of etch back, and F represents the end point of etching of the film.

〔発明の効果〕〔Effect of the invention〕

本発明に於て単一指向光源として用いるHe −Naレ
ーザ等は、強い光出力を有するので、特定波長に於ける
正反射強度は、その波長に於けるプラズマ光の強度に比
べて著しく大きい。従って本発明によれば、プラズマ光
の強度に影響されずに高感にしかも正確にエッチバック
、及び通常のエツチング終点の検出が出来る。又レーザ
光の強度の極めて安定して得られるので、この点でもよ
り検出精度が向上する。
Since a He-Na laser or the like used as a unidirectional light source in the present invention has a strong optical output, the specular reflection intensity at a specific wavelength is significantly larger than the intensity of plasma light at that wavelength. Therefore, according to the present invention, etch-back and normal etching end points can be detected with high sensitivity and accuracy without being affected by the intensity of plasma light. Furthermore, since the intensity of the laser beam is extremely stable, the detection accuracy is further improved in this respect as well.

なお、上記実施例に於ては単一指向光源としてHe −
N eレーザを使用しているが、上記以外の指向性の優
れた高出力の光源1例えばAr+レーザや水銀ランプを
用いても良いし、強度の強い正反射光を分光するために
モノクロメータ等さらに分解能の高い分光機器を用いて
も良い、また、光強度を電気信号に変換するのに光電子
増倍管など、他の光検出素子あるいは機器を用いても良
い。
In addition, in the above embodiment, He − is used as a unidirectional light source.
Although a Ne laser is used, other high-power light sources with excellent directivity other than the above may also be used, such as an Ar+ laser or a mercury lamp, or a monochromator or the like can be used to separate specularly reflected light with strong intensity. Furthermore, a spectroscopic device with higher resolution may be used, and other photodetector elements or devices such as a photomultiplier tube may be used to convert the light intensity into an electrical signal.

更に又、本発明の方法は、上記ドライエツチング以外に
ウェット・エツチングにも適用出来る。
Furthermore, the method of the present invention can be applied to wet etching in addition to the above-mentioned dry etching.

以上説明したように本発明によれば、エツチングの終点
を感度よく、しがち正確に検出することが出来るので、
半導体装置の製造歩留まりの向上が図れる。
As explained above, according to the present invention, the end point of etching can be detected with high sensitivity and accuracy.
The manufacturing yield of semiconductor devices can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例における装置構造の模式図
、第2図は、被処理板の一部断面図と光反射面の模式図
、第3図は、本発明の一実施例における正反射強度のプ
ロファイル図である。 3・・・プラズマ・エツチング装置、4・・・被処理板
、5・・・レーザビーム、7・・・正反射光、8・・・
集光器、9・・・干渉フィルタ、10・・・フォトダイ
オード、11・・・正反射光検出装置、12・・・RF
定電源15・・・パターン、16・・・被膜。
FIG. 1 is a schematic diagram of an apparatus structure according to an embodiment of the present invention, FIG. 2 is a partial sectional view of a plate to be processed and a schematic diagram of a light reflecting surface, and FIG. 3 is a schematic diagram of an embodiment of the present invention. FIG. 3 is a profile diagram of specular reflection intensity in FIG. 3... Plasma etching device, 4... Processed plate, 5... Laser beam, 7... Specularly reflected light, 8...
Concentrator, 9... Interference filter, 10... Photodiode, 11... Specular reflection light detection device, 12... RF
Constant power source 15...pattern, 16...coat.

Claims (1)

【特許請求の範囲】[Claims] 1、被エッチング物をエッチングする際に、被エッチン
グ物の表面に単一指向の光を照射し、該光の正反射光量
が、エッチングにより生じた被エッチング物表面の段差
高により変化することを利用したことを特徴とするエッ
チングの終点検出方法。
1. When etching an object to be etched, the surface of the object to be etched is irradiated with unidirectional light, and the amount of specularly reflected light changes depending on the height of the step on the surface of the object to be etched, which is caused by etching. A method for detecting the end point of etching, characterized by the use of the method.
JP1190386A 1986-01-24 1986-01-24 Method of detecting end point of etching Pending JPS62171127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1190386A JPS62171127A (en) 1986-01-24 1986-01-24 Method of detecting end point of etching

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1190386A JPS62171127A (en) 1986-01-24 1986-01-24 Method of detecting end point of etching

Publications (1)

Publication Number Publication Date
JPS62171127A true JPS62171127A (en) 1987-07-28

Family

ID=11790687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1190386A Pending JPS62171127A (en) 1986-01-24 1986-01-24 Method of detecting end point of etching

Country Status (1)

Country Link
JP (1) JPS62171127A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6704107B1 (en) 1997-11-04 2004-03-09 Micron Technology, Inc. Method and apparatus for automated, in situ material detection using filtered fluoresced, reflected, or absorbed light
US7102737B2 (en) 1997-11-04 2006-09-05 Micron Technology, Inc. Method and apparatus for automated, in situ material detection using filtered fluoresced, reflected, or absorbed light
JP2018014538A (en) * 2011-11-14 2018-01-25 エスピーティーエス テクノロジーズ リミティド Etching device and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6704107B1 (en) 1997-11-04 2004-03-09 Micron Technology, Inc. Method and apparatus for automated, in situ material detection using filtered fluoresced, reflected, or absorbed light
US6831734B2 (en) * 1997-11-04 2004-12-14 Micron Technology, Inc. Method and apparatus for automated, in situ material detection using filtered fluoresced, reflected, or absorbed light
US7102737B2 (en) 1997-11-04 2006-09-05 Micron Technology, Inc. Method and apparatus for automated, in situ material detection using filtered fluoresced, reflected, or absorbed light
JP2018014538A (en) * 2011-11-14 2018-01-25 エスピーティーエス テクノロジーズ リミティド Etching device and method
KR20200001587A (en) * 2011-11-14 2020-01-06 에스피티에스 테크놀러지스 리미티드 Etching Apparatus and Methods
EP2592646B1 (en) * 2011-11-14 2020-09-23 SPTS Technologies Limited Etching Apparatus and Methods

Similar Documents

Publication Publication Date Title
US5807761A (en) Method for real-time in-situ monitoring of a trench formation process
JP3292029B2 (en) Dry etching end point monitoring method and apparatus therefor
US5731874A (en) Discrete wavelength spectrometer
USRE39145E1 (en) Method and apparatus for in-situ monitoring of plasma etch and deposition processes using a pulsed broadband light source
US4454001A (en) Interferometric method and apparatus for measuring etch rate and fabricating devices
US4479848A (en) Etching method and apparatus
JP4925507B2 (en) Film thickness control using spectral interferometry
US6381008B1 (en) Method and system for identifying etch end points in semiconductor circuit fabrication
JP4567828B2 (en) End point detection method
JPH0834199B2 (en) Etching end point detection method and apparatus
US5023188A (en) Method of determining the depth of trenches formed in a semiconductor wafer
KR20030000274A (en) Multichannel spectrum analyzer for real time plasma monitoring and thin film analysis in semiconductor manufacturing process
JPS62171127A (en) Method of detecting end point of etching
JP3427085B2 (en) Etching end point detection method
JPH0789051B2 (en) Etching depth measuring method and apparatus
JPH05179467A (en) Detection of end point of etching
JPH0527256B2 (en)
JPH0157494B2 (en)
JPS61207583A (en) How to detect the end point of etching
JPS63229718A (en) Dry etching device
JPH1050662A (en) Semiconductor manufacturing method and apparatus and semiconductor element manufactured using the same
JPH0521395A (en) Etching end point detection method
JPH01222070A (en) Dry etching equipment
JP2858812B2 (en) Method and apparatus for measuring dissolution rate
JPS62271434A (en) Detection of point of completion of etching