JPS62168095A - Primary main circulating pump for liquid-metal cooled fast breeder reactor - Google Patents
Primary main circulating pump for liquid-metal cooled fast breeder reactorInfo
- Publication number
- JPS62168095A JPS62168095A JP61008489A JP848986A JPS62168095A JP S62168095 A JPS62168095 A JP S62168095A JP 61008489 A JP61008489 A JP 61008489A JP 848986 A JP848986 A JP 848986A JP S62168095 A JPS62168095 A JP S62168095A
- Authority
- JP
- Japan
- Prior art keywords
- pump
- tank chamber
- liquid metal
- outer casing
- lower tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910001338 liquidmetal Inorganic materials 0.000 title claims description 23
- 238000004891 communication Methods 0.000 claims description 25
- 238000005192 partition Methods 0.000 claims description 10
- 239000002826 coolant Substances 0.000 claims description 8
- 230000002706 hydrostatic effect Effects 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 4
- 239000007788 liquid Substances 0.000 description 23
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 11
- 229910052708 sodium Inorganic materials 0.000 description 11
- 239000011734 sodium Substances 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000005461 lubrication Methods 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000004323 axial length Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Structures Of Non-Positive Displacement Pumps (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、液体金属冷却高速増殖炉の1次主循環ポンプ
に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a primary main circulation pump for a liquid metal cooled fast breeder reactor.
液体金属を循環させる機械式ポンプは、冷却材中の静圧
軸受10(第15図参照)の潤滑剤を流動させる処理方
法によりハラム()(allam)型とフェルミ(1’
ermi )型に分けられ、両者の相違を第5図、第6
図において説明する。図において、1は羽j艮車、3は
吐出ケーシング、4は吸込ノズル、5は吐出口、7はポ
ンプ上部タンク室、8は回転軸、10は静圧軸受、15
はオーバ70−処理系、19はポンプ下部タンク室、2
oはオーバフローコラム、21はポンプ液面変動幅であ
る。Mechanical pumps that circulate liquid metal are of the allam type and the Fermi type, using a treatment method that flows the lubricant of the hydrostatic bearing 10 (see Figure 15) in the coolant.
ermi) type, and the differences between the two are shown in Figures 5 and 6.
This will be explained in the figure. In the figure, 1 is the impeller wheel, 3 is the discharge casing, 4 is the suction nozzle, 5 is the discharge port, 7 is the pump upper tank chamber, 8 is the rotating shaft, 10 is the static pressure bearing, 15
is the over 70-processing system, 19 is the pump lower tank chamber, 2
o is an overflow column, and 21 is a pump liquid level fluctuation width.
第5図に示すハラム型では、ポンプ下部タンク室19が
高圧であるため、ポンプ下部タンク室19からポンプ上
部タンク室7に流入した静圧軸受潤滑用冷却材をポンプ
下部タンク室19へ戻すことができないので、オーバフ
ローコラム20よりポンプ外部に流出させている。第7
図は中間熱交換器13の1次側出口と原子炉容器11と
の間に第5図に示すハラム型循環ポンプ12を設けた1
次主冷却系設備を示したものであり、液体金属は中間熱
交換器13側から矢印のように原子炉容311側へ送ら
れる。尚lN8LIE8Lはそれぞれ通常運転時及び配
管破損時の液体金属のレベルである。このポンプにおい
ては、オーバクローコラム20から流出した冷却材を循
環ポンプ吸込側配管に戻すためにオーバ70−処理系1
5を設ける必要がある〜尚、オーバ70−コラム20か
ら冷却材を流出させることKより、液面をオーバフロー
コラム20の近傍に保つことができる。In the Hallam type shown in FIG. 5, since the pump lower tank chamber 19 is under high pressure, the coolant for hydrostatic bearing lubrication that has flowed into the pump upper tank chamber 7 from the pump lower tank chamber 19 is returned to the pump lower tank chamber 19. Since this is not possible, it is made to flow out from the overflow column 20 to the outside of the pump. 7th
The figure shows a system in which a Hallam type circulation pump 12 shown in FIG. 5 is installed between the primary outlet of the intermediate heat exchanger 13 and the reactor vessel 11.
This figure shows the main cooling system equipment, in which liquid metal is sent from the intermediate heat exchanger 13 side to the reactor vessel 311 side as shown by the arrow. Incidentally, lN8LIE8L are the levels of liquid metal during normal operation and during pipe damage, respectively. In this pump, an overcrow 70-treatment system 1 is used to return the coolant flowing out from the overcrow column 20 to the circulation pump suction side piping.
Note that by allowing the coolant to flow out from the overflow column 20, the liquid level can be maintained near the overflow column 20.
一方、第6図に示すフェルミ型においては、ポンプ下部
タンク室19が低圧のため、軸受部潤滑材を自刃で戻す
ことが可能であシ、従って、オーバフロー処理系15が
不要であるが、ポンプ下部タンク室19内の圧力変化に
よりポンプ上部タンク室7の液面が液面変動幅21の範
囲で変動する。On the other hand, in the Fermi type shown in FIG. 6, since the pump lower tank chamber 19 has a low pressure, it is possible to return the bearing lubricant with its own blade, and therefore the overflow treatment system 15 is not necessary. Due to pressure changes in the lower tank chamber 19, the liquid level in the pump upper tank chamber 7 fluctuates within a liquid level fluctuation range 21.
特に、コールドレグポンプの場合、吸込側に中間熱交換
器があるため、流動変化による圧力損失変動が犬きく、
実証炉(実験炉と実用炉との中間過程のもの)クラスで
は約10mにも達することがあるから、ポンプ上部タン
ク室7内の液面変動幅21が大きくなり、従って、ポン
プを非常に長くする必要がある。In particular, in the case of cold leg pumps, there is an intermediate heat exchanger on the suction side, so pressure loss fluctuations due to changes in flow are severe.
In the demonstration reactor class (one in the middle stage between an experimental reactor and a practical reactor), the length can reach approximately 10 m, so the width of liquid level fluctuation 21 in the upper tank chamber 7 of the pump becomes large, and therefore the pump has to be very long. There is a need to.
また、液体金属冷却材用機械式ポンプば、第8図に示す
片吸込ポンプと第9図に示す両吸込ポンプに分けられる
。片吸込ポンプの場合、ハラム型。Furthermore, mechanical pumps for liquid metal coolant are divided into single suction pumps shown in FIG. 8 and double suction pumps shown in FIG. 9. For single suction pumps, it is the Haram type.
7エルミ型のいずれも成立するが、両吸込ポンプにおい
てはポンプ下部タンク室19が必ず低圧側となるため7
エルミ型ポンプだけが成立する。7. Both Hermi types are valid, but in a double suction pump, the pump lower tank chamber 19 is always on the low pressure side, so 7.
Only Elmi-type pumps are suitable.
第10図、第11図はそれぞれ横軸に吐出量をとり縦軸
に回転数をとって示した片吸込ポンプ及び両吸込ポンプ
の吐出量と回転数との関係の特性図であゆ、第12図、
第13図はそれぞれ横軸に吐出量をとり縦軸にポンプ径
をとって示した片吸込ポンプ及び両吸込ポンプの吐出量
とポンプ径との関係の特性図である。特に、液体金属冷
却高速増殖炉(以下FBRと称す)1次系の循環ポンプ
においては、原子炉緊急停止時においてポンプがトリッ
プした後のコーストダウン中の原子炉冷却材循JJI
Rを確保の観点から、ポンプモータ系は一定値以上の回
転エネルギ(oC回転貫性GD2X回転数N’ )を有
することが要求されている。今、設計例としてポンプモ
ータのトリップを伴う原子炉緊急停止時のポンプコース
トダウン半減時間を約6秒以上確保するものとして求め
たポンプ吐出音、回転数とGD” の関係を、横軸に吐
出量をとり縦軸に回転数をとり名14図に示す。10 and 11 are characteristic diagrams of the relationship between the discharge amount and the rotation speed of the single suction pump and the double suction pump, with the horizontal axis representing the discharge amount and the vertical axis representing the rotation speed, respectively. figure,
FIG. 13 is a characteristic diagram of the relationship between the discharge amount and pump diameter of a single suction pump and a double suction pump, with the horizontal axis representing the discharge amount and the vertical axis representing the pump diameter. In particular, in the circulation pump of the primary system of a liquid metal cooled fast breeder reactor (hereinafter referred to as FBR), reactor coolant circulation during coastdown after the pump trips during a reactor emergency shutdown is
From the viewpoint of ensuring R, the pump motor system is required to have rotational energy (oC rotational penetration GD2X rotational speed N') above a certain value. Now, as a design example, the relationship between the pump discharge sound, rotation speed, and GD, which was determined to ensure the pump coast down halving time of approximately 6 seconds or more in the event of an emergency shutdown of the nuclear reactor due to pump motor tripping, is plotted on the horizontal axis. Figure 14 shows the rotation speed on the vertical axis.
安全上の要求条件を満足したうえで、経済的見地よ抄F
BRの1次系の循環ポンプとしては下記の条件が要求さ
れている。After satisfying the safety requirements, from an economic point of view
The following conditions are required for a BR primary system circulation pump.
(1)小型であること。(1) It must be small.
両吸込が有利である。即ち、第12図、第13図の対比
より、同一条件では両吸込ポンプの方がポンプ径を小さ
くできる。Double suction is advantageous. That is, from the comparison between FIG. 12 and FIG. 13, under the same conditions, the double suction pump can have a smaller pump diameter.
(2) 高回転数であること、
両吸込が有利である。即ち、第14図により、回転数を
大きくすればGDzを小さくできる。(2) High rotation speed and dual suction are advantageous. That is, as shown in FIG. 14, GDz can be reduced by increasing the rotation speed.
第10図、第11図の対比より同一条件では両吸込ポン
プの方が回転数を高くすることができる。From the comparison between FIG. 10 and FIG. 11, under the same conditions, both suction pumps can achieve a higher rotational speed.
(3) ポンプ内液位を一定範Jに維持できること。(3) The liquid level inside the pump can be maintained within a certain range J.
従来のフェルミ型では吐出量変更時にポンプ内の液位が
変動する。In the conventional Fermi type, the liquid level inside the pump fluctuates when the discharge amount is changed.
(4) ポンプ外部にポンプオーバフロー処理系15
がないこと。(4) Pump overflow treatment system 15 outside the pump
That there is no.
ハラム型ではこの流れをポンプ吸込側に戻すためのポン
プオーバ70−処理系15が必要である。The Hallam type requires a pump over 70-treatment system 15 to return this flow to the pump suction side.
第15図は従来のハラム型の具体例を示す断面図である
。図において、9は軸封部、14は中間ケーシング、2
2はデフユーザ、26は液面、27はガス対流防止板で
める。第15図のポンプは、上記の(1)、 (2)、
(4)の条件を満足できない。また、第16図にフェ
ルミ型の1次主循項ポンプを示すが、このポンプは(3
)の条件を満足できない。FIG. 15 is a sectional view showing a specific example of a conventional Hallam type. In the figure, 9 is a shaft seal, 14 is an intermediate casing, 2
2 is a differential user, 26 is a liquid level, and 27 is a gas convection prevention plate. The pump in Fig. 15 has the above (1), (2),
Condition (4) cannot be satisfied. In addition, Fig. 16 shows a Fermi-type primary main circulation pump, which is (3
) cannot be satisfied.
尚、この種ポンプに関連し、高速炉技術(プラント設計
) Fast l(、eactor ’I’echno
logy (plant[)esign ) * イエ
ピック他(J、 Q、 ’fevick et。In connection with this type of pump, fast reactor technology (plant design)
logy (plant[)esign) * J, Q, 'fevick et.
al、 ) M、 T、 T、出版社(The M、
T、 T、 Press(PL73〜175))が知ら
れている。al, ) M, T, T, Publisher (The M,
T, T, Press (PL73-175)) are known.
本発明は上記の状況に鑑みなされたものであシ。 The present invention has been made in view of the above situation.
ポンプ外部にポンプオーバフロー処理系を設けることな
くポンプ液面変動幅を小さくしポンプを小形化できる液
体金属冷却高速増殖炉の1次主循環ポンプを提供するこ
とを目的としたものである。The object of the present invention is to provide a primary main circulation pump for a liquid metal cooled fast breeder reactor that can reduce the range of pump liquid level fluctuation and downsize the pump without providing a pump overflow treatment system outside the pump.
本発明の液体金属冷却高速増殖炉の1次主循環ポンプは
、液体金属冷却材循環用の縦軸型機械式ポンプの外ケー
シングと、該外ケーシング内に軸方向から回転軸に固定
された状態で着脱される上記ポンプの羽根車と、該羽根
車に駆動される上記液体金属により潤滑され上記外ケー
シングに保持されて上記回転軸を支持する静圧軸受と、
両吸込型の上記ポンプを収容する低圧のポンプ下部タン
ク室とを設けてなり、上記ポンプ下部タンク室及び該ポ
ンプ下部タンク室の上部に設けられたポンプ上部タンク
室を分割するように上記外ケーシング内に上記回転軸と
共に着脱可能に取り付けられた仕切板と、上記羽根車の
ディフューザ部及び上記ポンプ上部タンク室内を該ポン
プ上部タンク室内に位置するオリフィスを介在し連通ず
る連絡管と、該ポンプ上部タンク室内を上記ポンプ下部
タンク室内に該ポンプ下部タンク室内に位置するオリフ
ィスを介在し連通ずる連絡穴とを設けたものである。即
ち、高速増殖炉1次主冷却系循環ポンプに両吸込の7エ
ルミ型を用い、ポンプタンク室内に仕切板を設けてポン
プ上部タンク室とポンプ下部タンク室との間を分割し、
この仕切板に下部から上部への連絡管及び上部から下部
への連絡穴を設は上下室の圧力差により流動する液体金
属の流動抵抗により圧力を低下させ、ポンプ内液位を一
定範囲内に保てるようにしたものである。The primary main circulation pump for a liquid metal cooled fast breeder reactor of the present invention includes an outer casing of a vertical shaft type mechanical pump for circulating liquid metal coolant, and a state fixed to a rotating shaft from the axial direction within the outer casing. an impeller of the pump that is attached and detached by the impeller; a hydrostatic bearing that is lubricated by the liquid metal driven by the impeller and is held in the outer casing and supports the rotating shaft;
a low-pressure pump lower tank chamber for accommodating the double suction type pump, and the outer casing is configured to divide the pump lower tank chamber and the pump upper tank chamber provided above the pump lower tank chamber. a partition plate removably attached together with the rotating shaft inside, a communication pipe that communicates the diffuser portion of the impeller and the pump upper tank chamber through an orifice located in the pump upper tank chamber, and the pump upper portion. A communication hole is provided which communicates the tank chamber with the pump lower tank chamber through an orifice located in the pump lower tank chamber. That is, a double-suction 7-hermi type circulation pump is used for the fast breeder reactor primary main cooling system circulation pump, and a partition plate is installed in the pump tank chamber to divide the pump upper tank chamber and the pump lower tank chamber.
A communication pipe from the bottom to the top and a communication hole from the top to the bottom are installed in this partition plate to lower the pressure due to the flow resistance of the liquid metal flowing due to the pressure difference between the upper and lower chambers, and to keep the liquid level in the pump within a certain range. It was designed to be preserved.
以下本発明の液体金属冷却高速増殖炉の1次主循環ポン
プを実施例を用い従来と同部品は同符号で示し第1図、
第2図により説明する。図において、2はオリフィス、
6は連絡管、16は連絡穴、17はオリフィス、23は
バランスホール、24は案内羽、25は仕切板であり回
転軸8に回転自在に形成されている。外ケーシング14
の下部には入口ノズル4が設けられ側部には吐出ノズル
5が設置されており、内部は仕切板25によってポンプ
上部タンク室7とポンプ下部タンク室19とに分離され
ている。ポンプ下部タンク室19内部には高圧の吐出ケ
ーシング3が外ケーシング14に固定されている。回転
軸8はナトリウム中に設置されたす) IJウム潤滑静
圧軸受10及びポンプ上部の軸封部9内に設置された納
受により支持されている。そして、回転軸8の下部には
、バランスホール23を有する2段の羽根車lが取り付
けられ、羽根車1の出口に面して設置されたディフュー
ザ22は静圧軸受10とともに案内羽根24を介し仕切
板25に支持されている。In the following, the primary main circulation pump for a liquid metal cooled fast breeder reactor according to the present invention will be described as an embodiment, and the same parts as those in the conventional system will be denoted by the same reference numerals as shown in FIG.
This will be explained with reference to FIG. In the figure, 2 is the orifice;
Reference numeral 6 indicates a communication pipe, 16 indicates a communication hole, 17 indicates an orifice, 23 indicates a balance hole, 24 indicates a guide vane, and 25 indicates a partition plate, which are rotatably formed on the rotating shaft 8. Outer casing 14
An inlet nozzle 4 is provided at the lower part of the pump, and a discharge nozzle 5 is provided at the side thereof, and the inside is separated into a pump upper tank chamber 7 and a pump lower tank chamber 19 by a partition plate 25. A high-pressure discharge casing 3 is fixed to an outer casing 14 inside the pump lower tank chamber 19 . The rotating shaft 8 is supported by a lubricated hydrostatic bearing 10 (installed in sodium chloride) and a receiver installed in a shaft seal 9 at the top of the pump. A two-stage impeller l having a balance hole 23 is attached to the lower part of the rotating shaft 8, and a diffuser 22 installed facing the outlet of the impeller 1 is connected to the hydrostatic bearing 10 via a guide vane 24. It is supported by a partition plate 25.
ポンプ上部タンク室7と羽根車1の吐出側のディフュー
ザ22位置とを結んだ連絡管6は案内羽根24に設けら
れている。連絡管6のポンプ上部タンク室7内の出口に
はオリフィス2が取り付けられている。また、仕切板2
5には連絡穴16が貫通されそのポンプ下部タンク室1
9側の出口にはオリフィス17が取り付けられている。A communication pipe 6 connecting the pump upper tank chamber 7 and the position of the diffuser 22 on the discharge side of the impeller 1 is provided in the guide vane 24 . An orifice 2 is attached to the outlet of the communication pipe 6 in the pump upper tank chamber 7. In addition, partition plate 2
A communication hole 16 is penetrated through the pump lower tank chamber 1.
An orifice 17 is attached to the outlet on the 9 side.
本実施例のポンプは、配管(図示せず)に溶接された外
ケーシング14を残して内部構造物を引き抜ける構造と
なっており、外ケーシング14と内部構造物とは、外ケ
ーシング14に固定されている吐出ケーシング3に対す
るディフューザ22の嵌合部で切り離されるようになっ
ている。この嵌合部にはシールリングを設置しポンプの
通常運転時にはシールするようになっている。The pump of this embodiment has a structure in which the internal structure can be pulled out leaving the outer casing 14 welded to piping (not shown), and the outer casing 14 and the internal structure are fixed to the outer casing 14. The diffuser 22 is separated from the discharge casing 3 at the fitting portion thereof. A seal ring is installed in this fitting part to provide a seal during normal operation of the pump.
流体金属のナトリウムは、外ケーシング14下端の吸込
ノズル4から外ケーシング14のポンプ下部タンク室1
9内に流入する。そして、一部のナトリウムは下側の羽
根車1の下方から、また、一部のナトリウムは外ケーシ
ング14の内側と吐出ケーシング3の外側との間隙を通
り上側の羽根車1に吸込まれる。羽根車1で加圧された
ナトリウムは吐出ケーシング3内で合流した後吐出ノズ
ル5から流出する。ナトリウム潤滑の静圧軸受10には
、吐出ケーシング3内の加圧されたナトリウムが供給さ
れるが、ナトリウムの潤滑流路を形成させるために羽根
車1はバランスホール23付のものが用いられている。The fluid metal sodium flows from the suction nozzle 4 at the lower end of the outer casing 14 to the pump lower tank chamber 1 of the outer casing 14.
9. Then, some of the sodium is sucked into the upper impeller 1 from below the lower impeller 1, and some sodium passes through the gap between the inside of the outer casing 14 and the outside of the discharge casing 3. The sodium pressurized by the impeller 1 merges in the discharge casing 3 and then flows out from the discharge nozzle 5. Pressurized sodium in the discharge casing 3 is supplied to the sodium-lubricated hydrostatic bearing 10, and the impeller 1 is equipped with a balance hole 23 in order to form a sodium lubrication flow path. There is.
このような構造の採用により静圧軸受10の摺動面を潤
滑したナトリウムは羽根車1の背面からバランスホール
23を通り羽根車1の吸込側へ戻されると云うナトリウ
ムの潤滑流路が形成される。また1本実施例のポンプで
は、ポンプ下部タンク室19が低圧であるため、ポンプ
上部タンク室7のナトリウムを自刃でポンプ下部タンク
室19に戻すことが可能であるが、ポンプ下部タンク室
19の圧力変化(ポンプ吸込圧力変化)K伴ってポンプ
上部タンク室7の液位が変化する。By adopting such a structure, a sodium lubrication flow path is formed in which the sodium that has lubricated the sliding surface of the hydrostatic bearing 10 is returned to the suction side of the impeller 1 from the back surface of the impeller 1 through the balance hole 23. Ru. In addition, in the pump of this embodiment, since the pump lower tank chamber 19 has a low pressure, it is possible to return the sodium in the pump upper tank chamber 7 to the pump lower tank chamber 19 by self-cutting. The liquid level in the pump upper tank chamber 7 changes with the pressure change (pump suction pressure change) K.
特に、本実施例のポンプを実証炉クラスのFBRルーグ
型コールドレグポンプとして採用する場合、ポンプの吸
込圧力は、ポンプの吐出量、即ち、ルーズ内流量の変化
に伴って、ポンプ停止時の吸込圧力に対し約θ〜−10
mNaの範囲で変動する。In particular, when the pump of this example is adopted as a demonstration reactor class FBR Roug type cold leg pump, the suction pressure of the pump changes as the pump discharge amount, that is, the flow rate inside the loose, changes to the suction pressure when the pump is stopped. About θ~-10
Varies in the mNa range.
これは、炉容器からポンプ入口までのルーグ圧損による
ものであるが、この吸込圧力の変化分をポンプ内液面変
動分としてこのポンプで吸収するとすれば、ポンプの軸
長が著しく長くなり、大形化に結び付くと共に信頼性が
低下し好ましくない。This is due to the Loog pressure drop from the furnace vessel to the pump inlet, but if this change in suction pressure were to be absorbed by this pump as a fluctuation in the liquid level inside the pump, the axial length of the pump would become significantly longer, resulting in a large This is undesirable because it leads to distortion and reduces reliability.
このため1本実施例においては。For this reason, in this embodiment.
0) ポンプ下部の吸込流路とポンプ上部タンク室7と
の間をシールし隔離することにより、ポンプ吸込圧力の
変化に連動してポンプ上部タンク室7のナトリウム液面
が変化しない構造とする。0) By sealing and isolating the suction flow path at the lower part of the pump and the pump upper tank chamber 7, a structure is created in which the sodium liquid level in the pump upper tank chamber 7 does not change in conjunction with changes in pump suction pressure.
具体的には、外ケーシング14と内部構造物との間には
シールリングを設置し、回転軸8と固定側との間にはラ
ビリンス構造を用いシールすると共に(ロ)、(ハ)構
造を設けている。Specifically, a seal ring is installed between the outer casing 14 and the internal structure, and a labyrinth structure is used to seal between the rotating shaft 8 and the fixed side. It is set up.
(ロ) ポンプ上部タンク室7と羽根車吐出側とを案内
羽根24に設けた連絡管6で接続し連絡管6端部に流量
制御用オリフィスを設置している。(b) The pump upper tank chamber 7 and the impeller discharge side are connected by a communication pipe 6 provided on the guide vane 24, and an orifice for flow rate control is installed at the end of the communication pipe 6.
(ハ) ポンプ下部の吸込流路とポンプ上部タンク室7
とを連絡穴16で接続し連絡穴16の端部に流量制御用
オリフィス17を設置している。(c) Suction channel at the bottom of the pump and tank chamber 7 at the top of the pump
are connected through a communication hole 16, and a flow rate control orifice 17 is installed at the end of the communication hole 16.
ここで、上記(ロ)、(ハ)は、(イ)のポンプ下部の
吸込流路とポンプ上部タンク室7との間のシールが完全
にそれぞれの空間を隔離できないため、ポンプ内の液面
を制御するために必要となる。以下この原理について説
明する。本実施例において、ポンプ上部タンク室7と羽
根車1吐出側との連絡管6を流れるす) IJウムの流
量をQl、ポンプ下部の吸込流路とポンプ上部タンク室
7との間の連絡穴16を篭れるナトリウムの流れるft
Q z とするとQt =に+ ・ 2g (Hd−
H,) −(1)Q2=に2・ 2 g (H,−
H,) ・・・(2)但し+に1:連絡官6のオリ
フィス2の流量係数、
K2 :連絡穴16のオリフィス17の流量係数、
Hd:ポンプ吐出量8(m)
T(d=H,+H・・・・・・・・・(3)Hl:ポン
プ上部タンク室7の揚程(m)、H,=H,。−L
・・・・・・・・・(4)H3:ポンプ吸込揚程
(m)
H,=H,。−HtxQ2/頃 ・・・・・・・・・(
5)Hl。:炉停止時ポンプ吸込揚程(m)Hl:ポン
プ定格運転時、炉容器〜ポンプ入口の圧損(m)
Qo :ポンプ定格吐出量
Q :ポンプ吐出量
H:ポンプの全揚程
L :NsL〜ポンプ液面までの距離(1)式と(2
)式との釣合条件から、(6)式は(3)、 (4)、
(s)式から次のようにおける。Here, in (b) and (c) above, the seal between the suction channel at the bottom of the pump and the tank chamber 7 at the top of the pump in (a) cannot completely isolate the respective spaces, so the liquid level inside the pump required to control. This principle will be explained below. In this embodiment, the flow rate of IJum flowing through the communication pipe 6 between the pump upper tank chamber 7 and the discharge side of the impeller 1 is Ql, and the communication hole between the pump lower suction channel and the pump upper tank chamber 7 is 16 ft of flowing sodium
If Q z , then Qt = + ・2g (Hd−
H,) −(1)Q2=2・2 g (H,−
H, )...(2) However, +1: Flow coefficient of orifice 2 of liaison officer 6, K2: Flow coefficient of orifice 17 of communication hole 16, Hd: Pump discharge amount 8 (m) T (d=H , +H... (3) Hl: Lift height of pump upper tank chamber 7 (m), H, = H,.-L
・・・・・・・・・(4) H3: Pump suction head (m) H,=H,. -HtxQ2/around ・・・・・・・・・(
5) Hl. : Pump suction head when the furnace is stopped (m) Hl: Pressure drop between the furnace vessel and the pump inlet when the pump is in rated operation (m) Qo : Pump rated discharge amount Q : Pump discharge amount H: Pump total head L : NsL ~ Pump liquid Distance to the plane (1) and (2
), equation (6) becomes (3), (4),
From equation (s), it can be determined as follows.
ここで、ポンプ定格運転時、炉容器〜ポンプ入口の圧損
H1を7mとし、ポンプ内の液面変動幅を4m以下とな
る条件を(7)式から定め、オリフィス2とオリフィス
17の流量係数比、K 1/ K zを0.3とすると
、横軸に吐出量をとり縦軸に全揚程をとって示したポン
プ内液面制御上定まる運転範囲説明図の第4図の斜線に
示す運転範囲が可能と云う条件が求められる。この運転
範囲は1次主循環ポンプに要求される運転範囲を充分に
満足することができるものでろ、る。Here, during rated pump operation, the pressure drop H1 between the furnace vessel and the pump inlet is 7 m, and the conditions under which the liquid level fluctuation range in the pump is 4 m or less are determined from equation (7), and the flow coefficient ratio of orifice 2 and orifice 17 is determined. , K 1 / K z is 0.3, the operation range shown by diagonal lines in Fig. 4 of the diagram for explaining the operation range determined by the control of the liquid level in the pump, where the horizontal axis represents the discharge amount and the vertical axis represents the total head. The condition that the range is possible is required. This operating range can sufficiently satisfy the operating range required for the primary main circulation pump.
上記の如く、7エルミ型ポンプにおいて、上記(イ)、
(ロ)、(ハ)のように構成することにより、ポンプ内
液位変動を小さくすることができる。即ち、連絡管6及
び連絡穴16を設けその連通部の大きさを適宜調整する
ことにより、ポンプ下部タンク室19からポンプ上部タ
ンク室7へ、また、ポンプ上部タンク室7からポンプ下
部タンク室19へ流体の移動時の流動抵抗により圧力を
低下させボンダ液面変動幅を小さくできる。従って、ポ
ンプの長さが短くなりポンプコストが低減できると共に
る。As mentioned above, in the 7-hermi type pump, the above (a),
By configuring as in (b) and (c), fluctuations in the liquid level within the pump can be reduced. That is, by providing the communication pipe 6 and the communication hole 16 and adjusting the size of the communication portion as appropriate, it is possible to connect the pump lower tank chamber 19 to the pump upper tank chamber 7 and from the pump upper tank chamber 7 to the pump lower tank chamber 19. The pressure can be lowered by the flow resistance when the fluid moves to the bonder liquid level, and the width of bonder liquid level fluctuation can be reduced. Therefore, the length of the pump is shortened, and the cost of the pump can be reduced.
このように本実施例の液体金属冷却高速増殖炉の1次主
循環ポンプは、外ケーシング内をポンプ部を内蔵するポ
ンプ下部タンク室とポンプ上部タンク室とに仕切板を介
し区切り、仕切板に連通路及び連通穴を設けて羽根車の
ディヒユーザ部分とポンプ上部タンク室間、ポンプ上部
タンク室とポンプ下部タンク室間をそれぞれ連通し圧力
差による流体流動時の流動抵抗により減圧させるように
したので、ポンプ液面変動幅を、ポンプ外部にポンプオ
ーバ70−処理系を不要とし小さくすることができる。In this way, the primary main circulation pump of the liquid metal cooled fast breeder reactor of this embodiment has a partition plate that divides the inside of the outer casing into a pump lower tank chamber containing a built-in pump part and a pump upper tank chamber. A communication passage and a communication hole are provided to communicate between the impeller dihyuser part and the upper tank chamber of the pump, and between the upper tank chamber of the pump and the lower tank chamber of the pump, respectively, so that the pressure is reduced by the flow resistance during fluid flow due to the pressure difference. The range of fluctuation in the pump liquid level can be reduced by eliminating the need for a pump over 70-processing system outside the pump.
そして、ポンプを小形化し経済性を向上できる。In addition, the pump can be made smaller and economical efficiency can be improved.
第3図は他の実施例を示す。本実施例は上記実施例の流
量制御用のオリフィス2に外部から操作可能なニードル
弁18を設は操作することにより、(7)式における。FIG. 3 shows another embodiment. In this embodiment, a needle valve 18 that can be operated from the outside is installed and operated in the orifice 2 for controlling the flow rate of the above embodiment, thereby satisfying equation (7).
Kl /に2を調整できる。従って、本実施例では、運
転開始後ポンプ内液位変動幅21が当初の計画より大き
く異なった場合等にニードル弁18を操作することによ
ね所定の変動幅に設定し直すことが可能である他、上記
実施例と同様の作用効果を有する。2 can be adjusted to Kl/. Therefore, in this embodiment, if the liquid level fluctuation range 21 in the pump after the start of operation is significantly different from the original plan, it is possible to reset it to a predetermined fluctuation range by operating the needle valve 18. In addition, it has the same effects as the above embodiment.
以上記述した如く本発明の液体金属冷却高速増殖炉の1
次主循環ポンプは、ポンプ外部にポンプオーバ70−処
理系を不要としポンプ液面変動幅を小さくしポンプを小
形化できる効果を有するものである。As described above, 1 of the liquid metal cooled fast breeder reactor of the present invention.
The secondary main circulation pump has the effect of eliminating the need for a pump over 70-processing system outside the pump, reducing the width of pump liquid level fluctuation, and making the pump more compact.
第1図は本発明の液体金属冷却高速増殖炉の1次主循環
ポンプの実施例の縦断面図、第2図は第1図のA部詳細
図、第3図は本発明の液体金属冷却高速増殖炉の1次主
循環ポンプの他の実施例の第1図のN部詳細図、第4図
は第1図のポンプのポンプ内液面制御上定まる運転範囲
説明図、第5図、第6図は通常の液体金属循環駆動用の
機械式ポンプのそれぞれハラム型、フェルミ型の説明図
、第7図は第5図のハルミ型ポンプの1次主冷却系概略
説明図、第8図は第6図のポンプの片吸込ポンプ説明図
、第9図は第6図のポンプの両吸込ポンプの説明図、第
10図、第11図はそれぞれ第8図、第9図の片吸込9
両吸込ポンプの吐出量と回転数との関係の特性図、第1
2図、第13図はそれぞれ第8図、第9図の片吸込1両
吸込ポンプの吐出量とポンプ径との関係説明図、第14
図は通常の液体金属循環用ポンプの吐出量、回転数と回
転慣性説明図、第15図、第16図はそれぞれ従来のハ
ラム型、フェルミ型ポンプの説明図である。
1・・・羽根車、2.17・・・オリフィス、6・・・
連絡管、7・・・ポンプ上部タンク室、8・・・回転軸
、10・・・静圧軸受、14・・・外ケーシング、16
・・・連絡穴、工8・・・ニードル弁、19・・・ポン
プ下部タンク室、感1図
め2口
第30
第4日
昨−1障(K’/、、ル)
第5囚
委乙 圀
めδ口
第1θ口
O丈出引ボン−lにン
鐸AH[r尻ゲγlπ)
第12の
第(3(2)
of:を量(J/B;71)
U拙量(* J/$7ツジ
卿(S 口Fig. 1 is a longitudinal sectional view of an embodiment of the primary main circulation pump for a liquid metal cooled fast breeder reactor according to the present invention, Fig. 2 is a detailed view of section A in Fig. 1, and Fig. 3 is a liquid metal cooled fast breeder reactor according to the present invention. A detailed view of the N section in FIG. 1 of another embodiment of the primary main circulation pump for a fast breeder reactor, FIG. Figure 6 is an explanatory diagram of Hallam type and Fermi type mechanical pumps for driving the circulation of liquid metal, Figure 7 is a schematic illustration of the primary main cooling system of the Halumi type pump in Figure 5, and Figure 8 is an explanatory diagram of the single suction pump of the pump in Figure 6, Figure 9 is an explanatory diagram of the double suction pump of the pump in Figure 6, and Figures 10 and 11 are the single suction 9 of the pump in Figures 8 and 9, respectively.
Characteristic diagram of the relationship between the discharge amount and rotation speed of both suction pumps, 1st
Figures 2 and 13 are explanatory diagrams of the relationship between the discharge amount and pump diameter of the single-suction, single-suction pump shown in Figures 8 and 9, respectively, and Figure 14.
The figure is an explanatory diagram of the discharge amount, rotational speed, and rotational inertia of a conventional liquid metal circulation pump, and FIGS. 15 and 16 are explanatory diagrams of conventional Hallam type and Fermi type pumps, respectively. 1... Impeller, 2.17... Orifice, 6...
Communication pipe, 7... Pump upper tank chamber, 8... Rotating shaft, 10... Static pressure bearing, 14... Outer casing, 16
...Connection hole, work 8...needle valve, 19...pump lower tank chamber, 1st figure, 2nd port, 30th 4th day yesterday - 1 failure (K'/,,ru) 5th prison committee Otsu Kunime δ mouth 1st θ mouth O length withdrawal Bon-l Nitontaku AH [r buttge γlπ) 12th (3(2) of: amount (J/B; 71) U my amount (* J/$7 Lord Tsuji (S mouth
Claims (1)
ーシングと、該外ケーシング内に軸方向から回転軸に固
定された状態で着脱される上記ポンプの羽根車と、該羽
根車に駆動される上記液体金属により潤滑され上記外ケ
ーシングに保持されて上記回転軸を支持する静圧軸受と
、両吸込型の上記ポンプを収容する低圧のポンプ下部タ
ンク室とを設けたものにおいて、上記ポンプ下部タンク
室及び該ポンプ下部タンク室の上部に設けられたポンプ
上部タンク室を分割するように上記外ケーシング内に上
記回転軸と共に着脱可能に取り付けられた仕切板と、上
記羽根車のディフューザ部及び上記ポンプ上部タンク室
内を該ポンプ上部タンク室内に位置するオリフィスを介
在し連通する連絡管と、該ポンプ上部タンク室内を上記
ポンプ下部タンク室内に該ポンプ下部タンク室内に位置
するオリフィスを介在し連通する連絡穴とを設けたこと
を特徴とする液体金属冷却高速増殖炉の1次主循環ポン
プ。 2、上記仕切板から上記ポンプ上部タンク室に突設され
た上記連絡管の上部開口部に外部から操作可能なニード
ル弁が対設されている特許請求の範囲第1項記載の液体
金属冷却高速増殖炉の1次主循環ポンプ。[Scope of Claims] 1. An outer casing of a vertical shaft mechanical pump for circulating liquid metal coolant, and an impeller of the pump that is attached to and removed from the outer casing while being fixed to the rotating shaft from the axial direction. a hydrostatic bearing lubricated by the liquid metal driven by the impeller and held in the outer casing to support the rotating shaft; and a low-pressure pump lower tank chamber housing the dual-suction type pump. a partition plate removably attached to the outer casing together with the rotating shaft to divide the pump lower tank chamber and the pump upper tank chamber provided above the pump lower tank chamber; A communication pipe that communicates the diffuser portion of the impeller and the pump upper tank chamber through an orifice located in the pump upper tank chamber, and a communication pipe that communicates the pump upper tank chamber with the pump lower tank chamber and the pump lower tank chamber. 1. A primary main circulation pump for a liquid metal cooled fast breeder reactor, characterized in that it is provided with a communication hole that communicates with an orifice interposed therebetween. 2. The high-speed liquid metal cooling system according to claim 1, wherein an externally operable needle valve is provided opposite to the upper opening of the connecting pipe that protrudes from the partition plate to the upper tank chamber of the pump. Primary main circulation pump of a breeder reactor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61008489A JPS62168095A (en) | 1986-01-18 | 1986-01-18 | Primary main circulating pump for liquid-metal cooled fast breeder reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61008489A JPS62168095A (en) | 1986-01-18 | 1986-01-18 | Primary main circulating pump for liquid-metal cooled fast breeder reactor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62168095A true JPS62168095A (en) | 1987-07-24 |
Family
ID=11694527
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61008489A Pending JPS62168095A (en) | 1986-01-18 | 1986-01-18 | Primary main circulating pump for liquid-metal cooled fast breeder reactor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62168095A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58150094A (en) * | 1982-03-02 | 1983-09-06 | Mitsubishi Atom Power Ind Inc | Free liquid level type mechanical pump |
JPS59162390A (en) * | 1983-03-04 | 1984-09-13 | Mitsubishi Heavy Ind Ltd | Pump with outer casing |
-
1986
- 1986-01-18 JP JP61008489A patent/JPS62168095A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58150094A (en) * | 1982-03-02 | 1983-09-06 | Mitsubishi Atom Power Ind Inc | Free liquid level type mechanical pump |
JPS59162390A (en) * | 1983-03-04 | 1984-09-13 | Mitsubishi Heavy Ind Ltd | Pump with outer casing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3221661A (en) | Low-suction head pumps | |
US3574473A (en) | Method and apparatus for cooling parts of pumps in nuclear reactors or the like | |
EP0305945B1 (en) | Reactor coolant pump hydrostatic sealing assembly with externally pressurized hydraulic balance chamber | |
WO2010137274A1 (en) | Refrigeration cycle device | |
JPS585495A (en) | Liquid sealed vacuum pump | |
WO1998028754A1 (en) | Nuclear reactor with improved natural coolant circulation | |
CN106246559A (en) | A kind of Double pump body double-suction type canned motor pump | |
CN107588008A (en) | A kind of double outlet multipurpose external-mix self-priming pumps with similar spiral shape suction room | |
US3910714A (en) | Liquid metal pump for nuclear reactors | |
CA1038835A (en) | Low vacuum pumping system | |
CN102562609A (en) | Nuclear three-stage waste heat discharge pump for AP1000 nuclear power station | |
JPS62168095A (en) | Primary main circulating pump for liquid-metal cooled fast breeder reactor | |
US3431860A (en) | Centrifugal pump of the free surface type | |
CN108105114A (en) | A kind of backwash type canned motor pump with metering pump for pumping the medium containing particulate matter | |
CN205618369U (en) | Hua longyi nuclear power technology uses and fills pump | |
JPH08557Y2 (en) | Pump shaft seal cooling structure | |
CN212080837U (en) | Lubricating device applied to unit sudden stop | |
CN1270097C (en) | Oil-submersible pump | |
CN208281194U (en) | Acid and alkali-resistance pumping configuration for electric plating filter | |
CN100348867C (en) | Method and structure for improving efficiency and reliability of vertical vortex compressor | |
CN206903923U (en) | Lubricating oil flow guide assembly, motor, compressor and air conditioner | |
CN209354420U (en) | Horizontal pump is lubricated from medium | |
CN209244849U (en) | Horizontal-type radial subdivision volute-type dual-cylinder pump | |
CN206694257U (en) | It is a kind of that there is the water-ring vacuum pump for reducing sealing coolant-temperature gage | |
CN2578572Y (en) | Submersible pumps |