[go: up one dir, main page]

JPS62167833A - Thermal expansion regulated alloy for ceramic brazing - Google Patents

Thermal expansion regulated alloy for ceramic brazing

Info

Publication number
JPS62167833A
JPS62167833A JP859786A JP859786A JPS62167833A JP S62167833 A JPS62167833 A JP S62167833A JP 859786 A JP859786 A JP 859786A JP 859786 A JP859786 A JP 859786A JP S62167833 A JPS62167833 A JP S62167833A
Authority
JP
Japan
Prior art keywords
alloy
thermal expansion
range
brazing
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP859786A
Other languages
Japanese (ja)
Other versions
JPH0621322B2 (en
Inventor
Kiyoyuki Esashi
清行 江刺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON HAIBURITSUDO TECHNOL KK
Original Assignee
NIPPON HAIBURITSUDO TECHNOL KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON HAIBURITSUDO TECHNOL KK filed Critical NIPPON HAIBURITSUDO TECHNOL KK
Priority to JP859786A priority Critical patent/JPH0621322B2/en
Publication of JPS62167833A publication Critical patent/JPS62167833A/en
Publication of JPH0621322B2 publication Critical patent/JPH0621322B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain alloy capable of brazing low thermal expansion and dense ceramic without deteriorating strength so much, by setting components ranges in Fe-Co-Ni alloy to that indicated by specified regions in ternary compsn. diagram of Fe, Co and Ni. CONSTITUTION:Components of Ni, Co are prescribed into underside range to a boundary line ab of an inequality IV in wt%. Since thermal expansion coefft. at cooling suppressed to 4.0X10<-6>/ deg.C even in max. is desired for joining with ceramic having low expansion coefft., a region between lines bc or ae, i.e., component ranges of Ni and Co satisfying inequalities V and I is prescribed. Further, as range capable of causing gamma alpha transformation at 750 - about 900 deg.C being brazing temp., region above lines ed and dc, i.e. component ranges of Ni and Co satisfying inequalities III and II is prescribed. Alloy composed of Ni, Co in a range A surrounded by abcde, with the balance Fe is the aimed alloy.

Description

【発明の詳細な説明】 本発明は1203セラミツクスよりも一段と熱膨張係数
が小さく比較的強度の高い緻密なセラミックスに対して
ろう付することの出来る熱膨張調整合金に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thermal expansion adjustment alloy that can be brazed to dense ceramics that have a much smaller coefficient of thermal expansion than 1203 ceramics and are relatively strong.

従来、セラミックスに金属をろう付するには。Conventionally, to braze metal to ceramics.

熱膨張係数の出来るだけ適合した金属や合金を選定して
、ろう付の際の冷却過程で両者の熱膨張係数の差に起因
して発生する熱応力を極力小さくするようにしたり、あ
るいは銅、銀、アルミニウム等のかなり柔軟な金属を中
間緩衝材として間に挾んでこの熱応力による歪を吸収す
るように工夫して、実施されて来た。
Select metals or alloys with matching thermal expansion coefficients as much as possible to minimize the thermal stress that occurs due to the difference in thermal expansion coefficients during the cooling process during brazing, or It has been devised to absorb the distortion caused by this thermal stress by sandwiching a fairly flexible metal such as silver or aluminum as an intermediate buffer material.

しかしながら、近年、比較的機械的性質の優れた強度が
高く、かつ熱膨張係数の小さな炭化物系。
However, in recent years, carbide-based materials have been developed that have relatively excellent mechanical properties, high strength, and a small coefficient of thermal expansion.

窒化物系のセラミックスとして1例えば常圧焼結SiC
,反応焼結8iC−8i+常圧焼結8i3N4+常圧焼
結AeN、などのセラミックス焼結体が開発されるに及
んで、これらのセラミックスにろう付することの出来る
熱膨張係数の小さな金属や合金を開発する必要に迫られ
て来た。室温〜800°Cの銀ろう付温度の昇温範囲で
熱膨張係数の最も小さな金属はWであり、その値は4.
5 X 10−’/’C程度であるのテ、S ic、 
8 to−8i  あルイはAll’N’!(M!’!
膨張係数が4〜5X10−6/’Cの範囲内程度のセラ
ミックス焼結体のろう付にはかろうじて用いることが出
来る。しかし、Wは非常に硬質で脆く。
As a nitride ceramic, for example, pressureless sintered SiC
, reaction sintered 8iC-8i + pressureless sintered 8i3N4 + pressureless sintered AeN, and other ceramic sintered bodies have been developed, and metals and alloys with small thermal expansion coefficients that can be brazed to these ceramics have been developed. We have been under pressure to develop. The metal with the smallest coefficient of thermal expansion in the rising silver brazing temperature range of room temperature to 800°C is W, and its value is 4.
It is about 5 x 10-'/'C, Sic,
8 to-8i Arui wa All'N'! (M!'!
It can barely be used for brazing ceramic sintered bodies whose expansion coefficient is within the range of 4 to 5 x 10-6/'C. However, W is extremely hard and brittle.

柔軟性に乏しいため、接合部に歪を残留させやすく、さ
らに資源的に乏しく高価であるため満足出来る材料では
ない。又従来Ae203セラミックスの接合用合金とし
て知られているCo17.0重量%。
It is not a satisfactory material because it has poor flexibility and tends to leave strain in the joint, and it is also poor in resources and expensive. Also, 17.0% by weight of Co, which is conventionally known as a bonding alloy for Ae203 ceramics.

Ni29.0重量%、残部実質的にFe よりなるコバ
ール合金は室温〜430°Cまでの温度範囲でも熱膨張
係数が4.8 X t o−’/”c程度であり、室温
〜800°Cの範囲では平均8.8 X 10−’/”
Cとなるため、前記の如き低熱膨張性のセラミックスに
適用することは困難である。
Kovar alloy, which is composed of 29.0% by weight Ni and the balance substantially Fe, has a thermal expansion coefficient of about 4.8 x t o-'/''c even in the temperature range from room temperature to 430°C, and has a thermal expansion coefficient of about 4.8 average of 8.8 x 10-'/”
C, it is difficult to apply it to ceramics with low thermal expansion as described above.

本発明は、これらの状況に鑑みてなされたものであり、
熱膨張係数の小さなs、 o x t o−’/”c以
下のセラミックスで強度が高く、抗折力20に9/−以
上の値を有するM[Jのセラミックスに対して比較的強
度を損なうことなくろう付可能な合金を提供することを
目的としている。
The present invention has been made in view of these circumstances, and
Ceramics with a small coefficient of thermal expansion of s, ox t o-'/"c or less have high strength, and have a transverse rupture strength of 20 of 9/- or more and have relatively poor strength compared to ceramics with M[J" The objective is to provide an alloy that can be brazed without any problems.

本発明のセラミックスろう付用熱膨張調整合金は、(以
下重量%の重量を省略する)第1図にへ領域とし示され
る範囲、即ち。
The thermal expansion adjustment alloy for ceramic brazing of the present invention has a range shown as a region in FIG.

40%≦Ni%+CO%、24.0%≦Ni%、Ni%
+ 0.47 Co%≧340%、81%+0.3Go
%≦34.5% 81%+0.58Co%≦37.8%、の全ての不等式
を満足するような範囲のCOとNi、さらに残部実質的
にFe及び不可避的不純物よりなることを特徴としてい
る。但し、SI+Mn1Cなどの脱酸付成分を合計0.
6%以下含むことも出来る。
40%≦Ni%+CO%, 24.0%≦Ni%, Ni%
+0.47 Co%≧340%, 81%+0.3Go
%≦34.5% 81%+0.58Co%≦37.8%. . However, the total amount of deoxidizing components such as SI+Mn1C is 0.
It can also contain up to 6%.

本発明の合金の成分は第1図中にB点として示される前
記のコバール合金や、呈湛から100°Cの温度範囲で
熱膨張係数が1.3 X 10 ’/”Oという非常に
小さな値を有することで知られている004%、Ni3
2%、残部鉄よりなり、同図中に点Cとして示されるス
ーパーインバー合金や。
The components of the alloy of the present invention include the aforementioned Kovar alloy shown as point B in FIG. 004%, known to have a value of Ni3
2%, the balance is iron, and is shown as point C in the figure.

36%Ni、残部鉄よりなり点りで示されるインバー合
金などと共に示すことが出来る。
It is composed of 36% Ni and the balance is iron, and can be shown together with invar alloys, which are indicated by dots.

従来より一般に知られているこれらの合金はいずれも、
−80’C程度の低温に冷却されても結晶構造をrから
αへと変態してしまうことのない成分範囲として1点a
、b近傍を通る曲梅よジ上側のNi、Co の多い領域
に属している。本発明合金は逆に一80°C程度の温度
以上ではこのr→α変態を発生するように成分範囲を設
定したものであるので、81%+0.3Co%≦34.
5%の境界11abの下側の範囲のNi  とGOの成
分とし、さらに冷却時の熱膨張係数が、低熱膨張セラミ
ックスとの接合のためには、最大でも4. OX 10
−’/”C未満の値に抑え几い為に直線beあるいはa
eの間の領域、即ちNi %+0.58Co%≦37.
8%と40%≦Ni%+CO%とを満足するNi  と
COの成分範囲としている。さらに、上記r→α変態の
逆変態、即ち昇温時にr→α変態がろう付温度である7
50〜900°C程度で生じ得る範囲として直線ed及
びdc以上の領域、即ちNi %+0.47%≧340
%及び24.0%≦Ni %とを満足するNi  とC
oの成分範囲としている。
All of these alloys, which have been commonly known, are
1 point a as a component range that does not transform the crystal structure from r to α even when cooled to a low temperature of about -80'C
, b belongs to the area with a large amount of Ni and Co on the upper side of the curve passing through the vicinity of b. Conversely, the alloy of the present invention has a composition range set so that this r→α transformation occurs at temperatures above about -80°C, so 81%+0.3Co%≦34.
The Ni and GO components should be in the range below the 5% boundary 11ab, and the thermal expansion coefficient during cooling should be at most 4.5% for bonding with low thermal expansion ceramics. OX10
−'/”In order to keep the value below C, the straight line be or a
The region between e, i.e. Ni%+0.58Co%≦37.
The content range of Ni and CO satisfies 8% and 40%≦Ni%+CO%. Furthermore, the reverse transformation of the above r→α transformation, that is, the r→α transformation when the temperature is increased is the brazing temperature7.
The range that can occur at about 50 to 900°C is the area above the straight lines ed and dc, that is, Ni%+0.47%≧340
% and 24.0%≦Ni%.
The component range is o.

本発明のabcdeで囲まれた成分範囲のNiとCo、
さらに残部実質的にFe よシなる熱膨張調整台金は上
記の説明の如く、室温から400℃までの勢1膨張係数
が4. OX 10−6/ ”C未満であり。
Ni and Co in the component range surrounded by abcde of the present invention,
Furthermore, the thermal expansion adjustment base, the remaining portion of which is essentially Fe, has an expansion coefficient of 4.0 from room temperature to 400°C, as explained above. less than OX 10-6/''C.

さらにろう付後の冷却中、あるいは強制的に一80°C
程度まで徐々に過冷却することにより、あるいは加工す
ることにより、容易にγ→α変態を生じる合金である。
Furthermore, during cooling after brazing, or forcedly
It is an alloy that easily undergoes γ→α transformation by gradually supercooling to a certain degree or by processing.

同図中の実線の曲線は冷却に際してのγ→α変態の開始
温度を1点線はキューリ一点の温度を示す。
The solid curve in the figure shows the starting temperature of γ→α transformation during cooling, and the dotted line shows the temperature at one point of Curie.

第2図中にコバール合金の熱膨張曲線(1)、及び本発
明の合金の例としてO″Cまで冷却されて、αとγが共
存する成分と、−80°Cまで過冷却されて殆んどαだ
けとなった成分との熱膨張曲線を各々(2) 、 (3
)として示す。即ち1本発明合金は、加熱。
Figure 2 shows the thermal expansion curve (1) of the Kovar alloy, as well as an example of the alloy of the present invention, which is cooled to O''C and has a component in which α and γ coexist, and a component that is supercooled to -80°C and almost The thermal expansion curves for the component with only α are (2) and (3
). Namely, the alloy of the present invention is heated.

昇温時に履歴を生じるので、この履歴を上手に利用して
前記のろう付によって生じる応力、歪を吸収しようとす
るものである。
Since a hysteresis is generated when the temperature is increased, this hysteresis is effectively used to absorb the stress and strain caused by the brazing.

第3図に本発明の合金とSi3N4などの熱膨張係数が
3.2 X 10 ’/”C程度のメタライズ処理を施
した焼結体とを融点が780℃の共晶銀ろうを用いてろ
う付接合する場合の原理を熱膨張曲線によって説明する
。本発明合金と窒化珪素の冷却による収縮はイロハニ、
及びチニの線で表わされ、今、合金の収縮を示す棚の力
を基準にして考えると、ろう付後銀ろうの柔軟な温度範
囲の780°C〜500℃の領域では1合金及びセラミ
ックスは各々独自にイロ、及びチリの如く収縮する。し
かし500°C以下では銀ろうによって互いに拘束され
ながら変形し、セラミックスはチリ二と平行な収縮を示
す線ロヘヌの如く収縮しようとするので。
Figure 3 shows the alloy of the present invention and a sintered body metallized with a thermal expansion coefficient of about 3.2 x 10'/''C such as Si3N4 using eutectic silver solder with a melting point of 780°C. The principle of bonding will be explained using thermal expansion curves.The shrinkage of the alloy of the present invention and silicon nitride due to cooling is
1 alloy and ceramics in the flexible temperature range of 780°C to 500°C, which is the flexible temperature range of silver solder after brazing. Each shrinks like yellow and dust independently. However, below 500°C, the ceramics deform while being restrained by the silver solder, and the ceramic tends to shrink like a line rohenu, which shows shrinkage parallel to the chirality.

室温ではヌニの分に相当する歪が残留すると考えられる
。しかしながら本発明合金の本例の合金は0°Cまで冷
却すると、一部r−α変態を生じ熱膨張曲線に変化を生
じるので11次に昇温する場合にはホヘトイの如く膨張
し、400’Cの点で前記の残留歪を殆んど吸収してし
まうことができる。その後さらに昇温を続けると若干逆
の方向の歪が生じるがろう材自身が軟化し柔軟となるの
で合金とセラミックスは互いに独自に膨張出来るように
なるので問題とはなりにくい。さらに点トでα→r変態
を生じ殆んどγのみの単一の相となる。
It is thought that at room temperature, a strain equivalent to the amount of strain remains. However, when the alloy of this example of the present invention is cooled to 0°C, it partially undergoes r-α transformation and the thermal expansion curve changes. At point C, most of the residual strain can be absorbed. If the temperature continues to rise after that, some strain will occur in the opposite direction, but this will not be a problem because the brazing material itself will soften and become flexible, allowing the alloy and ceramic to expand independently of each other. Furthermore, α→r transformation occurs at point T, resulting in a single phase consisting almost exclusively of γ.

本発明の熱膨張調整合金は上記の如く、rα変態を利用
して、ろう付の際の残留応力、歪を消滅あるいは軽減し
ようとするものであり、従来の一般に知られているコバ
ーpや42%ニッケルー鉄合金等とは本質的に思想を異
ったものとしている。
As mentioned above, the thermal expansion adjustment alloy of the present invention is intended to eliminate or reduce residual stress and strain during brazing by utilizing rα transformation, and is intended to eliminate or reduce residual stress and strain during brazing. The concept is essentially different from that of nickel-iron alloys, etc.

本発明は、前記の如く、窒化物や炭化物などのセラミッ
クスの熱膨張係数が3 X 10−’台、あるいは4X
10 ’台のセラミックスを対象とする金属とのろう付
を可能とするものであり、タングステンなどの希少金属
を使う必要がないことも考慮に入れると1本発明の効果
は極めて大きい。
As mentioned above, the present invention is applicable to ceramics such as nitrides and carbides whose coefficient of thermal expansion is on the order of 3 x 10-' or 4 x
It is possible to braze ceramics on the order of 10' with metals, and considering that there is no need to use rare metals such as tungsten, the effects of the present invention are extremely large.

以下実施例によって本発明を説明する。The present invention will be explained below with reference to Examples.

実施例1゜ 本発明合金として、第1表に記載の成分の合金を配合溶
解しさらに熱間圧延によって10fiより5IIsの板
厚とし、さらに冷間圧延によって3111Iの板材とし
た。その後、熱膨張試験片を切り出して1000℃で熱
処理後、0 ’Cあるいは一80°Cに冷却して、?膨
張係数及び熱膨張曲線によυα。
Example 1 As an alloy of the present invention, an alloy having the components listed in Table 1 was blended and melted, and then hot rolled to a plate thickness of 10fi to 5IIs, and further cold rolled to form a 3111I plate. After that, a thermal expansion test piece was cut out and heat treated at 1000°C, then cooled to 0'C or -80°C. υα according to the expansion coefficient and thermal expansion curve.

rの識別をして同表記載の如き結果を得、いずれも−8
0°C以上でr→α変態を生じ、rの熱膨張係数は4.
0 X t o−6/”c未満であることを証明し几。
I identified r and obtained the results listed in the same table, both of which were -8
At temperatures above 0°C, r→α transformation occurs, and the thermal expansion coefficient of r is 4.
Prove that it is less than 0 x t o-6/"c.

実施例2゜ 本発明合金として前記実施例中の45./Vh10を選
びSi3N4の常圧焼結セラミックスをNi、Or。
Example 2 As the alloy of the present invention, 45. /Vh10 and Si3N4 pressureless sintered ceramics with Ni, Or.

Zr を含むメタライズ用組成物を用いて、メタライズ
処理後、共晶銀ろうを用い、2mの厚みの中間緩佃I材
利としてこれらの合金を用い、直径12鱈の炭素鋼にろ
う付後、−80°Cに適冷さ却せて、室温の剪断強度を
測定した。又、比較の為にコバーμ合金を用いた場合に
ついても測定した。煮10は7.9#/d、扁5は9.
5 kg / d 、コバールの場合は8.5 k(i
 /−の値を示し、本発明合金が室温においても残留応
力を緩和していることを示した。
After metallizing using a metallizing composition containing Zr, using eutectic silver solder, using these alloys as a 2 m thick intermediate loose I material, after brazing to carbon steel with a diameter of 12 mm, It was cooled appropriately to -80°C, and the shear strength at room temperature was measured. For comparison, measurements were also made using Kovar μ alloy. Boiled 10 is 7.9#/d, flattened 5 is 9.
5 kg/d, 8.5 k(i
/-, indicating that the alloy of the present invention relaxes residual stress even at room temperature.

以上の如く本発明は低熱膨張セラミックスのろう付に関
して新規な手法を提供するものであり、従来解決出来な
かった困難な問題を解決するうえで非常に有効である。
As described above, the present invention provides a new method for brazing low thermal expansion ceramics, and is very effective in solving difficult problems that could not be solved conventionally.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の熱膨張調整合金の成分範囲を示すpe
、 Co+ ”  の3元組成図であり、へ領域はけ本
発明合金の成分範囲、B、O,D点は各々従来より公知
のコバール、スーパーインバー、インバーの各合金を示
し、各黒点は第1表中記載の各合金の成分を示す。又実
線は冷却に際してγ→α変態が開始する温度を示し、点
線はキューリ一点を示す。 第2図はコバーy合金2零 の屋9の合金及び屋フの合金の熱膨張曲線を各々(1)
 、 (2) 、 (3)で示し、(1) 、 (2)
は0°Cまで冷却、(3)は−80°Cまで過冷却させ
た場合である。 第3図は本発明合金の1組成のものと、窒化珪素セラミ
ックス焼結体の熱膨張及びろう付による残留歪を図示し
、本発明合金の原理を示す図である。 出I禎人 日本ハイブリッドチクノロシーズ株式会社第
1目 !”、(1 Co(%〕 第2回 温度 (0C) 箋30 温度 (°C)
Figure 1 shows the range of components of the thermal expansion adjustment alloy of the present invention.
, Co+'', where the area is the component range of the present invention alloy, points B, O, and D indicate the conventionally known alloys Kovar, Super Invar, and Invar, respectively, and each black dot indicates the number The composition of each alloy listed in Table 1 is shown.The solid line shows the temperature at which the γ→α transformation starts upon cooling, and the dotted line shows the Curie point. The thermal expansion curves of each Yaf alloy (1)
, (2), (3), (1), (2)
(3) is the case of supercooling to -80°C. FIG. 3 is a diagram illustrating one composition of the alloy of the present invention and the residual strain due to thermal expansion and brazing of a silicon nitride ceramic sintered body, and is a diagram illustrating the principle of the alloy of the present invention. Sadahito from Japan Hybrid Chikunoro Seeds Co., Ltd.'s first product! ”, (1 Co (%) 2nd temperature (0C) Note 30 Temperature (°C)

Claims (1)

【特許請求の範囲】[Claims] 40%≦Ni%+Co%、24.0%≦Ni%、Ni%
+0.47Co%≧34.0%、Ni%+0.3Co%
≦34.5%、Ni%+0.58Co%≦37.8%(
重量%の重量を省略)の全ての不等式を満足するような
範囲の、CoとNi、さらに残部実質的にFe及び不可
避的不純物よりなることを特徴とするセラミックスろう
付用熱膨張調整合金。
40%≦Ni%+Co%, 24.0%≦Ni%, Ni%
+0.47Co%≧34.0%, Ni%+0.3Co%
≦34.5%, Ni%+0.58Co%≦37.8% (
1. A thermal expansion adjustment alloy for ceramic brazing, characterized by comprising Co and Ni, with the balance substantially consisting of Fe and unavoidable impurities, in a range that satisfies all inequalities of (wt%).
JP859786A 1986-01-17 1986-01-17 Ceramic expansion brazing alloy for brazing Expired - Lifetime JPH0621322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP859786A JPH0621322B2 (en) 1986-01-17 1986-01-17 Ceramic expansion brazing alloy for brazing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP859786A JPH0621322B2 (en) 1986-01-17 1986-01-17 Ceramic expansion brazing alloy for brazing

Publications (2)

Publication Number Publication Date
JPS62167833A true JPS62167833A (en) 1987-07-24
JPH0621322B2 JPH0621322B2 (en) 1994-03-23

Family

ID=11697377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP859786A Expired - Lifetime JPH0621322B2 (en) 1986-01-17 1986-01-17 Ceramic expansion brazing alloy for brazing

Country Status (1)

Country Link
JP (1) JPH0621322B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05139857A (en) * 1991-11-14 1993-06-08 Ngk Spark Plug Co Ltd Joint form made up of ceramic and metal
WO2021192060A1 (en) * 2020-03-24 2021-09-30 新報国製鉄株式会社 Low-thermal-expansion casting and method for manufacturing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05139857A (en) * 1991-11-14 1993-06-08 Ngk Spark Plug Co Ltd Joint form made up of ceramic and metal
WO2021192060A1 (en) * 2020-03-24 2021-09-30 新報国製鉄株式会社 Low-thermal-expansion casting and method for manufacturing same
EP4130299A4 (en) * 2020-03-24 2023-12-20 Shinhokoku Material Corp. Low-thermal-expansion casting and method for manufacturing same

Also Published As

Publication number Publication date
JPH0621322B2 (en) 1994-03-23

Similar Documents

Publication Publication Date Title
GB2080541A (en) Semiconductor pressure transducer
JPH0482185B2 (en)
CA1038205A (en) Low expansion iron-nickel based alloys
JPS60166165A (en) Joining method of metal and ceramics
EP0362711B1 (en) Joined body of ceramic member and metallic member
JPS62167833A (en) Thermal expansion regulated alloy for ceramic brazing
JPS6040687A (en) Brazing filler metal of active metal
JP4069442B2 (en) Low thermal expansion alloy and low thermal expansion alloy plate
JPS57207154A (en) Low thermal expansion invar type fe-ni alloy with superior weld crack resistance at high temperature
JP2523677B2 (en) Low thermal expansion lead frame material
US4490437A (en) Ductile nickel based brazing alloy foil
JPH0672290B2 (en) High strength low thermal expansion alloy
JPH0270040A (en) High-strength low thermal expansion alloy
JPS61231138A (en) Low thermal expansion alloy having superior strength at high temperature
JPH01205053A (en) Joining stress buffer alloy of ceramics and metal and joined body of ceramics and metal formed by using said buffer alloy
US5215605A (en) Niobium-aluminum-titanium intermetallic compounds
JPH02101144A (en) Low thermal expansion sealing alloy
JPS59141395A (en) Brazing filler material
JPS6278167A (en) Bonded body of ceramic tungsten or molybdenum
JPH0142914B2 (en)
JPS62227596A (en) Ceramics-metal joining member
JPH0469035B2 (en)
JP2822200B2 (en) Ceramics for aluminum alloy diffusion bonding
Heap et al. Method of brazing
JPS63206365A (en) Joined body of ceramics and metal