JPS62166152A - Antiskid device for vehicle - Google Patents
Antiskid device for vehicleInfo
- Publication number
- JPS62166152A JPS62166152A JP843886A JP843886A JPS62166152A JP S62166152 A JPS62166152 A JP S62166152A JP 843886 A JP843886 A JP 843886A JP 843886 A JP843886 A JP 843886A JP S62166152 A JPS62166152 A JP S62166152A
- Authority
- JP
- Japan
- Prior art keywords
- wheel
- brake
- vehicle
- braking
- detecting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 claims description 6
- 238000010586 diagram Methods 0.000 description 17
- 230000035485 pulse pressure Effects 0.000 description 11
- 238000000034 method Methods 0.000 description 8
- 230000001133 acceleration Effects 0.000 description 6
- 239000012530 fluid Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000000594 atomic force spectroscopy Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Landscapes
- Regulating Braking Force (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は車両のブレーキ時の車輪ロックを防止する車両
用アンチスキッド装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an anti-skid device for a vehicle that prevents wheels from locking during braking of a vehicle.
従来のアンチスキッド装置は、特開昭60−3.564
7号などに示されるように、車輪速度センサの信号をも
とに車輪速度、車輪加減速度、又は車体速度を近似した
基準速度などを作成し、それらの組合せにより最適なブ
レーキ力の変調を得るようにしている。The conventional anti-skid device is disclosed in Japanese Patent Application Laid-Open No. 60-3.564.
As shown in No. 7, etc., a wheel speed, wheel acceleration/deceleration, or a reference speed that approximates the vehicle speed is created based on the signal of the wheel speed sensor, and the optimal braking force modulation is obtained by combining these. That's what I do.
また、車輪へのブレーキ力を緩め、保持、増加の各モー
ドの選択切換にて調整するものとしては特開昭59−2
06250号などがある。In addition, the method of adjusting the braking force to the wheels by selecting and switching the modes of loosening, holding, and increasing the braking force is disclosed in Japanese Patent Application Laid-open No. 59-2.
06250 etc.
これら従来装置では、車輪速度をもとに車輪加減速度を
算出し、それらの各種設定レベルとの比較によりブレー
キ力を調整しており、車輪加減速度が一定の設定レヘル
G、以下になったときブレーキ緩めを開始し、そのブレ
ーキ緩めによる車輪回転の立上り状態を監視し、ブレー
キ保持、再増加の制御を行っている。従って、時々刻々
変化する路面と車輪間のμmS特性(摩擦係数−スリッ
プ率特性)を検知せずに制御しており、各種路面に応じ
た制御に若干の時間遅れが生じ、車輪へのブレーキ力の
変動幅が大きくなり、ブレーキフィーリングが悪化して
しまうという問題がある。In these conventional devices, the wheel acceleration/deceleration is calculated based on the wheel speed, and the braking force is adjusted by comparing it with various setting levels.When the wheel acceleration/deceleration falls below a certain setting level G, The system starts to release the brake, monitors the start-up of wheel rotation due to the release of the brake, and controls whether or not the brake is maintained or increased again. Therefore, control is performed without detecting the μmS characteristics (friction coefficient - slip rate characteristics) between the road surface and the wheels, which change from moment to moment, resulting in a slight time delay in control depending on the various road surfaces, and the braking force applied to the wheels. There is a problem in that the fluctuation range of the brake becomes large and the brake feeling worsens.
本発明は上記問題に鑑みたもので、車両のブレーキ時に
時々刻々変化するμmS特性を監視してブレーキ緩め後
の再増加を最適制御し、ブレーキ力の変動幅を小さくす
ることを目的としている。The present invention has been made in view of the above problem, and an object of the present invention is to monitor the μmS characteristic, which changes moment by moment when the vehicle is braking, to optimally control the re-increase after the brake is released, and thereby to reduce the fluctuation range of the braking force.
C問題点を解決するための手段〕
そのために本発明では、第1図の概要構成図に示すよう
に、車両のブレーキ時に車輪aに印加するブレーキ力を
緩め、保持、増加の各モードで調整するブレーキ調整手
段すを備え、さらにその車輪aと路面間の摩擦係数を求
める第1検知手段Cと、そのブレーキ中のスリップ率を
求める第2検知手段dと、時々刻々の単位時間毎の前記
スリップ率の変化分と前記摩擦係数の変化分との比に応
じて一旦緩めた後のブレーキ力の再増加割合を調整する
制御手段eとを設ける構成にしている。Means for Solving Problem C] To this end, in the present invention, as shown in the schematic diagram of FIG. A first detecting means C for determining the coefficient of friction between the wheel a and the road surface, a second detecting means d for determining the slip rate during braking, A control means e is provided for adjusting the rate at which the braking force is increased again after it has been loosened, depending on the ratio between the change in the slip ratio and the change in the friction coefficient.
上記構成によれば、車両のブレーキ時にその車輪の摩擦
係数−スリップ率特性の傾斜を監視し、その傾斜のレベ
ル判定により一旦緩めたブレーキ力の再増加割合を増減
調整して各種路面に適合した制御を行う。According to the above configuration, when the vehicle is braking, the slope of the friction coefficient-slip rate characteristic of the wheel is monitored, and based on the level of the slope, the rate of re-increase of the brake force that has been loosened is adjusted to increase or decrease to suit various road surfaces. Take control.
以下本発明を図に示す実施例について詳細に説明する。 The present invention will be described in detail below with reference to embodiments shown in the drawings.
第2図はその装置全体の構成を示す全体構成図である。FIG. 2 is an overall configuration diagram showing the overall configuration of the device.
この第2図において、1はブレーキペダルの踏込力を増
力するブレーキブースタ、2はそのブレーキブースタ1
より力に応じたブレーキ液圧を発生するマスクシリンダ
、3はマスクシリンダ2よりのブレーキ液圧を緩め、保
持、再増圧するアクチュエータであり、右前輪アクチュ
エータ3aと左前輪アクチュエータ3bと後輪アクチュ
エータ3Cを有している。4は車両の車輪(右前輪)、
4aは左前輪、4bは右後輪、4Cは左後輪である。5
は右前輪4の車両ブレーキで、右前輪アクチュエータ3
aよりの液圧を受けて車輪4にブレーキ力を加えるため
に右前輪4に連結したブレーキディスク6に摩擦力を加
えるものである。7は車輪ブレーキ5における油圧を検
出する油圧センサ、7a、7b、7cは左前輪4a、右
後輪4b、左後輪4Cに対応する油圧センサである。8
は車輪センサで、右前輪の車輪速度を検出してその大き
さに比例した周波数の車輪速度信号を発生するものであ
り、8a、8b、8cは各車輪4a、4b、4cに対応
する車輪センサである。In this Fig. 2, 1 is a brake booster that increases the pressing force of the brake pedal, and 2 is the brake booster 1.
A mask cylinder 3 generates brake fluid pressure according to force, and 3 is an actuator that loosens, holds, and increases the brake fluid pressure from the mask cylinder 2, and includes a right front wheel actuator 3a, a left front wheel actuator 3b, and a rear wheel actuator 3C. have. 4 is the vehicle wheel (right front wheel),
4a is a left front wheel, 4b is a right rear wheel, and 4C is a left rear wheel. 5
is the vehicle brake of the right front wheel 4, and the right front wheel actuator 3
A frictional force is applied to a brake disc 6 connected to the right front wheel 4 in order to apply a braking force to the wheel 4 in response to the hydraulic pressure from a. Reference numeral 7 indicates a hydraulic pressure sensor for detecting the hydraulic pressure in the wheel brake 5, and 7a, 7b, and 7c indicate hydraulic pressure sensors corresponding to the front left wheel 4a, the rear right wheel 4b, and the rear left wheel 4C. 8
8 is a wheel sensor that detects the wheel speed of the right front wheel and generates a wheel speed signal with a frequency proportional to the magnitude thereof, and 8a, 8b, and 8c are wheel sensors corresponding to each wheel 4a, 4b, and 4c. It is.
そして、右前輪4に係わる車輪ブレーキ5、ブレーキデ
ィスク6、油圧センサ7、車輪センサ8からなるものと
同じものが左前輪4a、右後輪4b、左後輪4のそれぞ
れに対応して設置されている。The same wheel brake 5, brake disc 6, oil pressure sensor 7, and wheel sensor 8 associated with the right front wheel 4 are installed corresponding to the left front wheel 4a, right rear wheel 4b, and left rear wheel 4, respectively. ing.
9は油圧センサ7よりの油圧信号を伝える信号線、10
は車輪センサ8よりの車輪速度信号を伝える信号線、1
1はアクチュエータ3への緩め指令、保持指令、増圧指
令の信号を伝える信号線、12は電子制御ユニットで、
各車輪に対応する前記油圧センサ7.7a、7b、7c
、車輪センサ8.8a、8b、8cよりの各信号を信号
vA9 。9 is a signal line that transmits the oil pressure signal from the oil pressure sensor 7; 10
1 is a signal line that transmits the wheel speed signal from the wheel sensor 8;
1 is a signal line that transmits loosening commands, holding commands, and pressure increase commands to the actuator 3; 12 is an electronic control unit;
Said oil pressure sensor 7.7a, 7b, 7c corresponding to each wheel
, the signals from wheel sensors 8.8a, 8b, and 8c are signal vA9.
IOから受けて各種演算を行い、車輪ロックを防ぐよう
に信号線11からアクチュエータ3に制御信号を加える
ものである。The control signal is received from the IO, performs various calculations, and applies a control signal to the actuator 3 from the signal line 11 to prevent wheel lock.
そして、アクチュエータ3a、3b、3cと各車輪間お
よびマスクシリンダ2とアクチュエータ3a、3b、3
c間はそれぞれの油圧配管で連結している。And between the actuators 3a, 3b, 3c and each wheel, and between the mask cylinder 2 and the actuators 3a, 3b, 3.
C is connected by respective hydraulic piping.
また、右前輪アクチュエータ3a、左前輪アクチュエー
タ3b、f&輸アクチュエータ3Cは第3図に示す如く
、それぞれ液?lを増圧、保持、減圧モードに切換かる
電磁ソレノイドバルブ31と、ブレーキ液圧の緩め時に
一時的にそのブレーキ液を蓄え、その後にマスクシリン
ダ側へもどすリザーバおよびポンプ部32とを備えてお
り、各アクチュエータ3a、3b、3cから出力されだ
液圧は各液圧配管を介して各車輪ブレーキ5のホイール
シリンダに伝達され、゛:、車輪にブレーキをかけてい
る。Further, as shown in FIG. 3, the right front wheel actuator 3a, the left front wheel actuator 3b, and the f&transport actuator 3C are each equipped with a liquid? It is equipped with an electromagnetic solenoid valve 31 that switches the brake fluid between pressure increase, hold, and pressure reduction modes, and a reservoir and pump section 32 that temporarily stores the brake fluid when the brake fluid pressure is released and then returns it to the mask cylinder side. , the hydraulic pressure output from each actuator 3a, 3b, 3c is transmitted to the wheel cylinder of each wheel brake 5 via each hydraulic pressure pipe, and brakes are applied to the wheels.
アクチュエータ内の電磁ソレノイドバルブ31は、ホイ
ールシリンダ側と連通ずる増圧モード(a−b−)、ポ
ンプ部32側と連通ずる減圧モード(b−c)、いずれ
にも連通しない保持モードの3つのモードを有する3位
置バルブとして構成している。The electromagnetic solenoid valve 31 in the actuator operates in three modes: a pressure increase mode (a-b-) in which it communicates with the wheel cylinder side, a depressurization mode (b-c) in which it communicates with the pump section 32 side, and a holding mode in which it communicates with neither. It is configured as a 3-position valve with modes.
次に、電子制御ユニット12の具体構成について第4図
に従って説明する。この第4図において、40はバッテ
リ、41は車両運転開始時に投入するイグニッションス
イッチ、42はブレーキ操作時に連動して閉成するブレ
ーキスイッチである。Next, the specific configuration of the electronic control unit 12 will be explained according to FIG. 4. In FIG. 4, 40 is a battery, 41 is an ignition switch that is turned on when the vehicle starts driving, and 42 is a brake switch that is closed in conjunction with the brake operation.
7.7a、7b、7cは各車輪の車輪ブレーキに取付け
てその油圧を検出する油圧センサ、8゜8a、8b、8
cは各車輪の速度を検出する車輪センサ、43は上記各
センサよりの各種信号を受けて演算制御する制御回路、
45は前記油圧センサ7.7a、7b、7cよりのアナ
ログの油圧信号を順次ディジタル信号に変換するA/D
変換器、46ないし49はそれぞれ波形成形回路で、各
車輪センサ8,8a、8b、8cよりの車輪速度に応じ
た周波数の車輪速度信号を矩形波の車輪パルス信号に整
形するものでしる。50はストップスイッチ42に電気
接続して信号変換するバッファ回路、51は電源回路で
、イグニッションスイッチ41の投入時にバッテリ40
より供給される電源電圧を定電圧にして装置全体に供給
するものである。7. 7a, 7b, 7c are oil pressure sensors attached to the wheel brakes of each wheel to detect the oil pressure; 8° 8a, 8b, 8
c is a wheel sensor that detects the speed of each wheel; 43 is a control circuit that receives various signals from the above-mentioned sensors and performs calculation control;
45 is an A/D that sequentially converts analog oil pressure signals from the oil pressure sensors 7.7a, 7b, and 7c into digital signals.
Converters 46 to 49 are waveform shaping circuits that shape wheel speed signals of frequencies corresponding to the wheel speeds from the respective wheel sensors 8, 8a, 8b, and 8c into rectangular wave wheel pulse signals. 50 is a buffer circuit that is electrically connected to the stop switch 42 and converts the signal; 51 is a power supply circuit; when the ignition switch 41 is turned on, the battery 40 is
This converts the power supply voltage supplied by the converter into a constant voltage and supplies it to the entire device.
52はマイクロコンピュータで、CPU52 a。52 is a microcomputer, CPU52a.
ROM52 b、RAM52 c、I10回路52dな
どより構成され、各センサよりの信号などを受け、予め
ROM52 bに記録した制御プログラムに従って所定
のディジタル演算処理を行い、各種制御信号を発生する
ものである。53,54.55はマイクロコンピュータ
52よりの緩め指令、保持指令、増圧指令の制御信号を
受けて駆動出力を発するアクチュエータ駆動回路で、右
ぜんリアクチュエータ3a、左前輪アクチュエータ3b
。It is composed of a ROM 52b, a RAM 52c, an I10 circuit 52d, etc., and receives signals from each sensor, performs predetermined digital arithmetic processing according to a control program recorded in advance in the ROM 52b, and generates various control signals. Reference numerals 53, 54, and 55 are actuator drive circuits that receive control signals such as a loosening command, a holding command, and a pressure increase command from the microcomputer 52 and generate drive outputs, which actuate the right rear wheel reactor 3a and the left front wheel actuator 3b.
.
後輪アクチュエータ3Cのそれぞれの電磁ソレノイドバ
ルブを駆動するものである。56はメインリレー駆動回
路で、常開接点57aを有するメインリレー57のコイ
ル57bに通電して接点57aを閉成させ、アクチュエ
ータ3a、3b、3cへの電源供給による作動待機状態
にするものである。58はランプ駆動回路で、インジケ
ータランプ59を点灯させるものである。It drives each electromagnetic solenoid valve of the rear wheel actuator 3C. Reference numeral 56 denotes a main relay drive circuit, which energizes the coil 57b of the main relay 57 having a normally open contact 57a to close the contact 57a and put the actuators 3a, 3b, and 3c into an operation standby state by supplying power to them. . Reference numeral 58 denotes a lamp drive circuit for lighting the indicator lamp 59.
次に、上記構成においてその作動を第5図のフローチャ
ート、第6図、第7図の特性図とともに説明する。Next, the operation of the above configuration will be explained with reference to the flowchart in FIG. 5 and the characteristic diagrams in FIGS. 6 and 7.
まず、第5図において制御ルーチンはステ・ノブ102
より開始され、車輪センサ8.8a、8b。First, in FIG.
Starting from wheel sensors 8.8a, 8b.
8Cよりの車輪速度■8、油圧センサ7.7a。Wheel speed from 8C ■8, oil pressure sensor 7.7a.
7b、7cよりのホイールシリンダ(W/C)圧Pを読
み込む。続くステップ104では路面と車輪間の摩擦係
数μを次式より求める。Read the wheel cylinder (W/C) pressure P from 7b and 7c. In the following step 104, the coefficient of friction μ between the road surface and the wheels is determined from the following equation.
11= ((1/r2)Vw + (k/r)P)/W
・・・・・・(1)
ここで、■は車輪の慣性モーメント、rは車輪の有効半
径、■いは車輪の加減速度で■。の時間微分として求め
る。kはW/C圧からブレーキングトルクへの変換係数
、PはW/C圧である。Wは車輪荷重で、荷重計により
予め測定して記憶しておくが、次式より演算推定しても
よい。11= ((1/r2)Vw + (k/r)P)/W
......(1) Here, ■ is the moment of inertia of the wheel, r is the effective radius of the wheel, and ■ is the acceleration/deceleration of the wheel. Find it as the time derivative of . k is a conversion coefficient from W/C pressure to braking torque, and P is W/C pressure. W is the wheel load, which is measured and stored in advance using a load meter, but may also be calculated and estimated using the following equation.
WF=WFO+ΔW・・・・・・(2)W、1=WRo
−ΔW ・−−−−・(31Δw=
(WIl/2) ・ (H/L) ・ (Vs/
g)・・・・・・(4)
ここで、W、は前輪荷重、W、。は静止時の前輪荷重、
ΔWは荷重移動量、WRは後輪荷重、W4゜は静止時の
後輪荷重である。W8は車両総重量、Hは重心高、Lは
ホイールベース、■8は車両減速度、gは重力加速度で
ある。尚、(2)〜(4)式は直進制御時で、かつ、サ
スペンションのバネ定数カ極めて大きいと仮定した演算
式である。WF=WFO+ΔW・・・・・・(2) W, 1=WRo
−ΔW ・−−−−・(31Δw=
(WIl/2) ・ (H/L) ・ (Vs/
g)...(4) Here, W is the front wheel load, W. is the front wheel load at rest,
ΔW is the amount of load movement, WR is the rear wheel load, and W4° is the rear wheel load when stationary. W8 is the total vehicle weight, H is the height of the center of gravity, L is the wheel base, ■8 is the vehicle deceleration, and g is the gravitational acceleration. Note that equations (2) to (4) are calculation equations assuming that the vehicle is in straight-line control and that the spring constant of the suspension is extremely large.
続くステップ106では車輪スリップ率Sを次式より算
出する。In the subsequent step 106, the wheel slip rate S is calculated using the following equation.
s= (Vll V、 ) / VIl= t
VW /v11・・・・・・(5)
上式で■、は車両速度で対地速度計や車体加速度センサ
により計測して求めてもよいが、W/C圧センサを利用
し次式より演算により求めている。s= (Vll V, ) / VIl= t
VW /v11... (5) In the above formula, ■ is the vehicle speed, which can be measured by a ground speed meter or vehicle acceleration sensor, but it can also be calculated using the following formula using a W/C pressure sensor. I'm looking for it.
v、−v。−gΣ(SaP idt” b Vwt)・
・・(6)上式でa=に/ (rW)、b= I/ (
r” W)i = 1〜n (n = 2or3or4
)である。v, -v. −gΣ(SaP idt” b Vwt)・
...(6) In the above formula, a=/ (rW), b= I/ (
r''W)i = 1~n (n = 2or3or4
).
続くステ、1108では微少時間(単位時間毎)の摩擦
係数μの差:Δμ(−μm−μ。)とスリップ率Sの差
:ΔS (” Sl so ) との比Δμ/Δ
S(μmS特性の接線勾配)をステップ104.106
で求めた演算値をもとに次式より算出する。In the following step 1108, the ratio Δμ/Δ between the difference in friction coefficient μ in minute time (per unit time): Δμ (−μm−μ.) and the difference in slip rate S: ΔS (” Sl so )
S (tangential slope of μmS characteristic) in steps 104 and 106
Calculate using the following formula based on the calculated value obtained in .
Δμ/ΔS=(μ、−μo ) / (St −3o
)・・・・・・(7)
尚、μ。+Sl)は初期値としてどちらも零を与えてお
く。(7)式によりΔμ/ΔSを算出した後、次回のΔ
μ/ΔSの演算のため次のように変数の入れ替えを行な
う。Δμ/ΔS = (μ, -μo) / (St -3o
)...(7) In addition, μ. +Sl) are both given zero as initial values. After calculating Δμ/ΔS using equation (7), the next Δ
For the calculation of μ/ΔS, variables are replaced as follows.
S0←S1 ・・・・・・(
8)μ。18m ・・・・・
・(9)続く判定ステップ110ではΔμ/ΔSと判定
基準に、との比較を行ない、Δμ/ΔS>Klが成立す
れば路面摩擦係数μはμmS特性のピーク部分(dμ/
ds=o)に近くないと判断してステップ112に進み
、アクチュエータ3に駆動信号を加え、初回および緩め
後の再増圧は単純増圧とし、安定保持後は’r、 =T
、の保持時間後にtup2の時間幅のパルス増圧制御を
行なう。この場合のパルス増圧時間tup=tup2は
第6図の特性図に示すように比較的大きく、例えばtu
p2=6msecとする。またステップ112でのパル
ス増圧前のW/C圧保持時間T、、=T2は、第7図の
特性図に示すように比較的小さく、例えばT、 = 3
0 m5ecとする。S0←S1 ・・・・・・(
8) μ. 18m...
- (9) In the subsequent judgment step 110, Δμ/ΔS is compared with the criterion, and if Δμ/ΔS>Kl holds, the road surface friction coefficient μ is at the peak part of the μmS characteristic (dμ/
ds=o), the process proceeds to step 112, where a drive signal is applied to the actuator 3, and the pressure is simply increased for the first time and again after loosening, and after maintaining stability, 'r, =T.
After the holding time of , pulse pressure increase control with a time width of tup2 is performed. In this case, the pulse pressure increase time tup=tup2 is relatively large as shown in the characteristic diagram of FIG.
Let p2=6 msec. Further, the W/C pressure holding time T, = T2 before the pulse pressure increase in step 112 is relatively small, as shown in the characteristic diagram of FIG. 7, for example, T, = 3.
0 m5ec.
一方、判定ステップ110でΔμ/ΔS>Klが成立し
なければ、判定ステップ114に進み、K、より小さい
判定基準に2とΔμ/ΔSの比較を行なう。ステップ1
14でΔμ/Δs>Kgが成立すれば、μピークまでに
まだわずかだが余裕があると判断してステップ116に
進み、ステップ112と同様に単純増圧を行い、安定保
持後はT、 −T、の保持時間後にtuplの時間幅の
パルス増圧制御を行なう。この場合のパルス増圧時間t
up=tuplは、第6図に示すように比較的小さく、
例えばtupl=3msecとする。また、ステップ1
16でのパルス増圧前のW/C圧保持時間Th−T、は
第7図に示すように比較的大きく、例えばT + −
75m56cとする。On the other hand, if Δμ/ΔS>Kl does not hold in decision step 110, the process proceeds to decision step 114, where K is compared with 2 and Δμ/ΔS using the smaller criterion. Step 1
If Δμ/Δs>Kg is established in step 14, it is determined that there is still a slight margin until the μ peak, and the process proceeds to step 116, where the pressure is simply increased in the same way as step 112, and after maintaining stability, T, -T After the holding time of , pulse pressure increase control with a time width of tupl is performed. Pulse pressure increase time t in this case
up=tupl is relatively small as shown in FIG.
For example, let tupl=3 msec. Also, step 1
As shown in FIG. 7, the W/C pressure holding time Th-T before the pulse pressure increase at step 16 is relatively long, for example, T + -
It will be 75m56c.
また判定ステップ114でΔμ/ΔS>Ktが成立しな
ければ、判定ステップ118に進み、K2よりさらに小
さい判定基準に3 (=O)とΔμ/ΔSの比較を行な
う。そして、Δμ/ΔS>K3が成立すれば、μビーク
に近づいたと判断してステ、プ120に進み、アクチュ
エータ3に駆動信号を加え、車輪ブレーキ室の保持制御
を行なう。If Δμ/ΔS>Kt does not hold in determination step 114, the process proceeds to determination step 118, where 3 (=O) and Δμ/ΔS are compared as a determination criterion smaller than K2. If Δμ/ΔS>K3 holds true, it is determined that the μ peak has been reached, and the process proceeds to step 120, where a drive signal is applied to the actuator 3 to perform holding control of the wheel brake chamber.
また、判定ステップ118でΔμ/ΔS>K3が成立し
なければ、μピークを越えそうであり、車輪ロック傾向
であると判断して、ステップ122に進み、アクチュエ
ータ3に駆動信号を加え、車輪ブレーキ圧の減圧制御を
行なう。If Δμ/ΔS>K3 does not hold in judgment step 118, it is determined that the μ peak is likely to be exceeded and the wheels are likely to lock, and the process proceeds to step 122, where a drive signal is applied to the actuator 3 and the wheel brake is applied. Perform pressure reduction control.
以上の作動を第8図の波形図に示す。すなわち、時刻t
0にてブレーキペダルを踏込んで急ブレーキ操作を行う
と、車輪4.4a、4b、4cのそれぞれの車輪ブレー
キ5の油圧が急激に上昇する。The above operation is shown in the waveform diagram of FIG. That is, time t
When the brake pedal is depressed at 0 and a sudden braking operation is performed, the oil pressure of each wheel brake 5 of the wheels 4.4a, 4b, and 4c increases rapidly.
そして、摩擦係数μとスリップ率Sの関係を示す第9図
の特性図に示すように、Δμ/ΔSとなる特性線の勾配
が急激に小さくなり、時刻t1にてΔμ/ΔSかに3以
下になって緩め指令をアクチュエータ3に加え、車輪ブ
レーキ5の油圧を緩める。Then, as shown in the characteristic diagram of FIG. 9 showing the relationship between the friction coefficient μ and the slip rate S, the slope of the characteristic line Δμ/ΔS decreases rapidly, and at time t1, Δμ/ΔS is less than 3. Then, a loosening command is applied to the actuator 3, and the hydraulic pressure of the wheel brake 5 is loosened.
この緩め制御により車輪回転が復帰し始め、それにより
Δμ/ΔSが徐々に大きくなり、K3より大きくなると
(時刻tz)と保持制御に移行し、そのときのブレーキ
油圧を保持する。そして、時刻t3になると再増圧とな
り、時刻t4でその再増圧を終えて安定保持に移行する
。As a result of this loosening control, the wheel rotation begins to recover, and as a result, Δμ/ΔS gradually increases, and when it becomes larger than K3 (time tz), the control shifts to holding control, and the brake oil pressure at that time is maintained. Then, at time t3, the pressure is increased again, and at time t4, the pressure is increased again and the state shifts to stable maintenance.
その安定保持に移行した時点で、第9図のウェット路か
らドライ路に変わっていた場合、ウェット路におけるP
IIHAXIに基いた制御からドライ路におけるP、□
8□に基いた制御に変更する必要がある。If the wet road in Figure 9 changes to a dry road when the stability is maintained, the P on the wet road
P on dry road from control based on IIHAXI, □
It is necessary to change to control based on 8□.
従って、時刻t、ではΔμ/ΔSかに、より大であり、
第5図のステップ112に進んで安定保持後のパルス増
を行う。すなわち、Th=Ttの保持時間後にパルス幅
tup=tup2のパルス増圧を行い、それによってΔ
μ/ΔSかに2より大きくかつ、K、以下になるとステ
ップ116に進み、T、=T、の保持時間後にパルス幅
tup=tuplのパルス増圧を行い、徐々に車輪のブ
レーキ油圧を上昇させ、ドライ路に適合した制御に移行
する。そして、ドライ路における最適性能を発揮する制
御油圧PBHAlt、車輪速度が急に落ち込むときの油
圧、を検知し、次の再増圧以後そのPIIMAM□に基
いた制御に切換わる。Therefore, at time t, Δμ/ΔS is larger,
Proceeding to step 112 in FIG. 5, the pulse is increased after stability is maintained. That is, after the holding time of Th=Tt, a pulse pressure increase of pulse width tup=tup2 is performed, and thereby Δ
When μ/ΔS is larger than 2 and K is less than or equal to K, the process proceeds to step 116, and after the holding time of T, = T, pulse pressure is increased with a pulse width of tup = tupl, and the brake oil pressure of the wheels is gradually increased. , shifts to control suitable for dry roads. Then, the control oil pressure PBHAlt that exhibits optimal performance on dry roads and the oil pressure when the wheel speed suddenly drops are detected, and after the next pressure increase, the control is switched to that based on PIIMAM□.
また、ドライ路からウェット路に乗り移った場合には、
その時点で車輪速度が急に落ち込み、上記と同様にその
再地圧以後ウェット路に適合した制御に切換わる。Also, when changing from a dry road to a wet road,
At that point, the wheel speed suddenly drops, and as above, after the ground pressure is re-established, control is switched to one that is suitable for the wet road.
なお、上述の実施例では、パルス増圧時間tupをΔμ
/ΔSにより可変にするものを示したが、増圧ポンプを
付加し、その増圧1pupをΔμ/ΔSにより可変にし
てもよい。その場合は、第5図のフローチャートおよび
第6図の特性図において、tuplをP□1に、tup
2をP、p2に置き換えれば他の大幅な変更なしに制御
ができる。In addition, in the above-mentioned embodiment, the pulse pressure increase time tup is set to Δμ
/ΔS is shown, but a pressure increase pump may be added and the pressure increase 1pup may be made variable by Δμ/ΔS. In that case, in the flow chart of FIG. 5 and the characteristic diagram of FIG.
By replacing 2 with P and p2, control can be achieved without any other major changes.
以上述べたように本発明によれば、車両のブレーキ時に
その車輪のμmS特性の傾斜を時々刻々監視して一旦緩
めたブレーキ力の再増加割合を順次調整し、各種路面に
適合した制御を行うことができ、ブレーキ力の変動幅を
小さくしてブレーキフィーリングを良好に維持すること
ができるという優れた効果がある。As described above, according to the present invention, when the vehicle is braking, the inclination of the μmS characteristic of the wheel is monitored moment by moment, and the rate of re-increase of the once-relaxed braking force is sequentially adjusted to perform control suitable for various road surfaces. This has the excellent effect of reducing the variation range of braking force and maintaining good brake feeling.
第1図は本発明の概要を示す概要構成図、第2図は本発
明の一実施例を示す全体構成図、第3図はそのアクチュ
エータの構成図を示す構成図、第4図はその電子制御ユ
ニットの詳細構成を示すブロック図、第5図はそのマイ
クロコンピュータの演算処理を示すフローチャート、第
6図はパルス増圧の増圧時間を示す特性図、第7図はパ
ルス増圧への保持時間を示す特性図、第8図は制御状態
を示す波形図、第9図はμmS特性を示す特性図である
。
a・・・車輪、b・・・ブレーキ調整手段、C・・・第
1検知手段、d・・・第2検知手段、e・・・制御手段
、3・・・アクチュエータ、5・・・車輪ブレーキ、6
・・・ブレーキディスク、7.7a、7b、7c・・・
油圧センサ。
8.8a、8b、8c・・・車輪センサ、12・・・電
子制御ユニット。Fig. 1 is a schematic block diagram showing an overview of the present invention, Fig. 2 is a general block diagram showing an embodiment of the present invention, Fig. 3 is a block diagram showing a block diagram of its actuator, and Fig. 4 is a block diagram showing its electronic structure. A block diagram showing the detailed configuration of the control unit, Fig. 5 is a flowchart showing the arithmetic processing of the microcomputer, Fig. 6 is a characteristic diagram showing the pressure increase time of pulse pressure increase, and Fig. 7 is a holding at pulse pressure increase. FIG. 8 is a waveform diagram showing the control state, and FIG. 9 is a characteristic diagram showing μmS characteristics. a...Wheel, b...Brake adjustment means, C...First detection means, d...Second detection means, e...Control means, 3...Actuator, 5...Wheel brake, 6
...Brake disc, 7.7a, 7b, 7c...
oil pressure sensor. 8.8a, 8b, 8c...Wheel sensor, 12...Electronic control unit.
Claims (1)
輪に印加するブレーキ力を緩め、保持、増加の各モード
で調整するブレーキ調整手段を備えた車両用アンチスキ
ッド装置において、 ブレーキ中の路面と前記車両間の摩擦係数を求める第1
検知手段と、 そのブレーキ中のスリップ率を求める第2検知手段と、 時々刻々の単位時間毎の前記スリップ率の変化分と前記
摩擦係数の変化分との比に応じて一旦緩めた後の再増加
の増加割合を調整する制御手段とを設けることを特徴と
する車両用アンチスキッド装置。[Scope of Claims] An anti-skid device for a vehicle equipped with a brake adjustment means that detects a tendency of a wheel to lock when braking a vehicle and adjusts the brake force applied to the wheel in each mode of loosening, holding, and increasing. , a first step of determining the coefficient of friction between the road surface and the vehicle during braking;
a detection means, a second detection means for determining the slip rate during the braking, and a second detection means for determining the slip rate during the braking, and a second detection means for determining the slip rate during the braking, An anti-skid device for a vehicle, comprising: a control means for adjusting the rate of increase.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP843886A JPS62166152A (en) | 1986-01-17 | 1986-01-17 | Antiskid device for vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP843886A JPS62166152A (en) | 1986-01-17 | 1986-01-17 | Antiskid device for vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62166152A true JPS62166152A (en) | 1987-07-22 |
Family
ID=11693131
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP843886A Pending JPS62166152A (en) | 1986-01-17 | 1986-01-17 | Antiskid device for vehicle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62166152A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63141866A (en) * | 1986-12-03 | 1988-06-14 | Fuji Heavy Ind Ltd | Brake hydraulic pressure control method for automobile hydraulic brake device |
JPS6456265A (en) * | 1987-08-27 | 1989-03-03 | Sumitomo Electric Industries | Car wheel speed controller |
JPH01145255A (en) * | 1987-12-01 | 1989-06-07 | Fujitsu Ten Ltd | Antiskid controller |
WO1990008056A1 (en) * | 1989-01-17 | 1990-07-26 | Sumitomo Electric Industries, Ltd. | Wheel speed controller |
US5171070A (en) * | 1990-11-30 | 1992-12-15 | Mazda Motor Corporation | Antiskid brake system for vehicle |
JPH0539018A (en) * | 1991-08-02 | 1993-02-19 | Nippon Denshi Kogyo Kk | Anti-lock braking device |
JPH0539021A (en) * | 1991-08-02 | 1993-02-19 | Nippon Denshi Kogyo Kk | Anti-lock brake device |
JP2008528374A (en) * | 2005-02-04 | 2008-07-31 | ビーワイディー カンパニー リミテッド | Vehicle skid prevention brake control system and control method |
-
1986
- 1986-01-17 JP JP843886A patent/JPS62166152A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63141866A (en) * | 1986-12-03 | 1988-06-14 | Fuji Heavy Ind Ltd | Brake hydraulic pressure control method for automobile hydraulic brake device |
JPS6456265A (en) * | 1987-08-27 | 1989-03-03 | Sumitomo Electric Industries | Car wheel speed controller |
JPH01145255A (en) * | 1987-12-01 | 1989-06-07 | Fujitsu Ten Ltd | Antiskid controller |
WO1990008056A1 (en) * | 1989-01-17 | 1990-07-26 | Sumitomo Electric Industries, Ltd. | Wheel speed controller |
US5171070A (en) * | 1990-11-30 | 1992-12-15 | Mazda Motor Corporation | Antiskid brake system for vehicle |
JPH0539018A (en) * | 1991-08-02 | 1993-02-19 | Nippon Denshi Kogyo Kk | Anti-lock braking device |
JPH0539021A (en) * | 1991-08-02 | 1993-02-19 | Nippon Denshi Kogyo Kk | Anti-lock brake device |
JP2008528374A (en) * | 2005-02-04 | 2008-07-31 | ビーワイディー カンパニー リミテッド | Vehicle skid prevention brake control system and control method |
JP4895132B2 (en) * | 2005-02-04 | 2012-03-14 | ビーワイディー カンパニー リミテッド | Vehicle skid prevention brake control system and control method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100227559B1 (en) | Anti-lock brake control unit | |
JP4142097B2 (en) | Travel stability control device | |
US4916619A (en) | Adaptive wheel slip threshold | |
US4855917A (en) | Antiskid control device | |
US4094555A (en) | Anti-skid control method and apparatus for a brake-equipped vehicle wheel | |
JPH0790764B2 (en) | Wheel lock control device | |
US6241326B1 (en) | Electronic brake proportioning for a rear wheel anti-lock brake system | |
US6161907A (en) | Brake control using proportional plus integral slip regulation and proportional pressure regulation | |
US5169215A (en) | Brake system | |
US6079801A (en) | Method for electrically actuated braking of a motor vehicle and electrically actuated brake system | |
JPS62166152A (en) | Antiskid device for vehicle | |
US5315518A (en) | Method and apparatus for initializing antilock brake control on split coefficient surface | |
JPH0370666A (en) | Anti-lock adjusting device | |
US5646848A (en) | Method for proportionally controlling the brakes of a vehicle based on tire deformation | |
JPS59213552A (en) | Anti-skid controller | |
US5941924A (en) | Method and device for controlling a vehicle braking system | |
JP3454090B2 (en) | Anti-lock brake control device, torque gradient estimating device, and braking torque gradient estimating device | |
JPH01254463A (en) | Antiskid controller | |
US5487594A (en) | Method for updating a wheel reference value by assessing proximity for the braking power curve peak | |
JP3951597B2 (en) | Braking device | |
JP2006509680A (en) | Adaptive brake torque adjustment method | |
EP0966377B1 (en) | Anti-lock braking system for vehicles having an electronic braking system | |
US6116703A (en) | Process for the braking of a vehicle | |
JPS62194963A (en) | Antiskid device for vehicle | |
JPS62143757A (en) | Antiskid device for vehicle |