[go: up one dir, main page]

JPS62165647A - Optical recording medium - Google Patents

Optical recording medium

Info

Publication number
JPS62165647A
JPS62165647A JP61008336A JP833686A JPS62165647A JP S62165647 A JPS62165647 A JP S62165647A JP 61008336 A JP61008336 A JP 61008336A JP 833686 A JP833686 A JP 833686A JP S62165647 A JPS62165647 A JP S62165647A
Authority
JP
Japan
Prior art keywords
electron
substance
optical recording
group
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61008336A
Other languages
Japanese (ja)
Other versions
JPH0443572B2 (en
Inventor
Takashi Yamadera
山寺 隆
Toshinori Tagusari
寿紀 田鎖
Nobuyuki Hayashi
信行 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP61008336A priority Critical patent/JPS62165647A/en
Publication of JPS62165647A publication Critical patent/JPS62165647A/en
Publication of JPH0443572B2 publication Critical patent/JPH0443572B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/249Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing organometallic compounds
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/249Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing organometallic compounds
    • G11B7/2492Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing organometallic compounds neutral compounds
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/249Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing organometallic compounds
    • G11B7/2495Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing organometallic compounds as anions
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/249Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing organometallic compounds
    • G11B7/2498Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing organometallic compounds as cations

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)

Abstract

PURPOSE:To enable the nondestructive optical writing and readout of informa tion by using a complex of a transition metal selected among specified compounds as at least one between an electron donative substance and an electron accepting substance. CONSTITUTION:A complex of a transition metal capable of producing a mixed valence state and represented by formula I, II or III is used as at least one between an electron donative substance and an electron accepting substance. In the formulae I-III, Z is O, S or NR (R is H or alkyl), each of X and X' is H, alkyl or the like, Z' is S or NR (R is H or alkyl), Y is H, alkyl or the like, m is an integer of +2--2, A is an anion, a cation or a group of anions or cations having electric charges required to neutralize electric charges defined by m, and M is an ion of a transition metal. Thus, light for readout can be completely distinguished from light for writing, so destructive readout is avoided in principle.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光記録媒体に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to optical recording media.

(従来の技術) 光記録方式は、安価、大容量の記録媒体が得られるため
開発がさかんな分野である。従来この分野では無機系金
属薄膜を記録膜として、半導体レーザの近赤外出力を一
度熱に変換し、その熱を利用して記録膜に穴をあけ、或
いは相変化を生じさせてこれによる表面反射率の変化を
読みとるいわゆるヒートモードの光記録方式が実用化さ
れてきた。さらに近年有機染料を記録膜とするヒートモ
ード光記録方式が新たに提案されている。しかし。
(Prior Art) Optical recording systems are a field of active development because they allow inexpensive, large-capacity recording media to be obtained. Conventionally, in this field, an inorganic metal thin film is used as a recording film, and the near-infrared output of a semiconductor laser is converted into heat, and the heat is used to make a hole in the recording film or to cause a phase change to change the surface. A so-called heat mode optical recording method that reads changes in reflectance has been put into practical use. Furthermore, in recent years, a new heat mode optical recording method using an organic dye as a recording film has been proposed. but.

ヒートモードを用いた光記録方法では、半導体レーザの
出力を熱に変換する際に基板等を通じて熱が発散するた
めに感度に限界があり、又、穴をあける方式に基づくも
のでは情報の消去が困難である。これらの観点より、吸
収した光を熱として発散することが少なく記録膜の変形
をも防ぐ方法として、吸収した光を光子エネルギーとし
てそのまま利用し、引きつづき起こる光反応を情報の記
録再生に用いようという、フォトンモードの光記録方法
が提案されており、特に情報の消去が可能な可逆型光記
録材料を得るための手段として精力的に研究が行われて
いる。これらの目的のためにフォトクロミンク材料を記
録膜材料とする提案がなされており1例えば特開昭57
−59956号公報には直鎖アルキル基を有するスピロ
ピラン誘導体が、特開昭60−123838号公報には
同様のスピロピラン化合物の化学蒸着膜を記録層とする
提案がなされている。又同様の目的により、ヘラ−(A
、 He1ler )  らはジャーナルオプケミカル
キ ソサエティーバー贅ンI (J、 Chem、 Soc
 I’erkin1)、202頁(1981)において
フルシトと称されるフォトクロミンク化合物の特性とそ
の光記録材料への応用につき述べている。これらの化合
物の光記録方法については種々提案されているが、一般
的には紫外光線を全面に照射してスピロピラン類、フル
シト化合物等のフォトクロミンク化合物を強く着色させ
て初期化を行い9次いで。
Optical recording methods using heat mode have a limit in sensitivity because heat is dissipated through the substrate etc. when converting the output of a semiconductor laser into heat, and methods based on hole-drilling have a limited ability to erase information. Have difficulty. From these points of view, as a method to prevent the absorbed light from dissipating as heat and preventing deformation of the recording film, it is possible to use the absorbed light as it is as photon energy and use the subsequent photoreactions to record and reproduce information. A photon mode optical recording method has been proposed and is being actively researched as a means to obtain reversible optical recording materials that can erase information. For these purposes, proposals have been made to use photochromic materials as recording film materials.
JP-A-59956 proposes a spiropyran derivative having a linear alkyl group, and JP-A-60-123838 proposes a chemical vapor deposited film of a similar spiropyran compound as a recording layer. Also, for the same purpose, Hella (A
J. Chem, Soc.
I'erkin 1), p. 202 (1981) describes the properties of a photochromic compound called flucyto and its application to optical recording materials. Various methods have been proposed for optical recording of these compounds, but in general, photochromic compounds such as spiropyrans and flucyto compounds are initialized by irradiating the entire surface with ultraviolet light to strongly color them. .

フォトクロミンク化合物の変色域にあわせた可視光線照
射によって情報の記録、読み出しを行っている。これら
は一般に紫外〜可視光線の領域で行われるが、最近、半
導体レーザの発振波長域にマツチングしたスピロピラン
類の発表(例えば日本化学会第50春季年会予稿集1.
P2S5(1985))もなされている。
Information is recorded and read out by irradiating visible light that matches the color change range of the photochromink compound. These are generally carried out in the ultraviolet to visible light range, but recently there have been publications on spiropyrans that match the oscillation wavelength range of semiconductor lasers (for example, in Proceedings of the 50th Spring Annual Meeting of the Chemical Society of Japan, 1.
P2S5 (1985)) has also been made.

(発明が解決しようとする問題点) しかしながら、従来のフォトクロ、ミンク化合物を光記
録材料として用いる際の問題点としてあげられるものは
これらフォトクロミンク化合物による情報の読み出し破
壊である。これは、フォトクロミンク化合物の初期状態
および着色状態は共通ないしは高い確率で交差した励起
状態を有しており9着色種の吸収に光照射をして情報を
記録することと、後に読み出し光による情報の読みとり
とは同値の励起状態に至り、読み出し破壊が避けられな
いことによる。この問題を回避する方法として通常読み
出し光の光強度を弱くする方法がとられるが、光励起そ
のものが唯一の反応過程であるため、しきい値による区
別は不可能であり、常K 一定程度の確率で読み出し破
壊が起こりうるため。
(Problems to be Solved by the Invention) However, one of the problems when using conventional photochromic and mink compounds as optical recording materials is that these photochromic compounds destroy information when read. This is because the initial state and colored state of photochromic compounds have common or crossed excited states with a high probability, and information can be recorded by irradiating the absorption of nine colored species with light, and later by readout light. This is because reading information leads to the same excitation state and read destruction is unavoidable. A method to avoid this problem is to weaken the light intensity of the readout light, but since optical excitation itself is the only reaction process, it is impossible to differentiate by threshold value, and the probability of K is always constant. read corruption may occur.

情報のくり返し読み出しの際に問題を生じる。Problems arise when reading information repeatedly.

(問題点を解決するための手段) 本発明はこのような問題に鑑みてなされたものであり、
従来のフォトクロミック材料と異なり。
(Means for solving the problems) The present invention has been made in view of these problems,
Unlike traditional photochromic materials.

読み出し破壊を起こさずに情報の記録再生を行うことの
できる光記録媒体を提供するものである。
An object of the present invention is to provide an optical recording medium on which information can be recorded and reproduced without causing reading damage.

本発明は、光増感剤、電子供与性物質および電子受容性
物質を含有し、かつ前記電子供与性物質および前記電子
受容性物質の少なくとも一方を混合原子価状態をとりう
る物質としてなる光記録媒体に関する。
The present invention provides an optical recording medium containing a photosensitizer, an electron-donating substance, and an electron-accepting substance, and at least one of the electron-donating substance and the electron-accepting substance is a substance capable of taking a mixed valence state. Regarding the medium.

本発明になる光記録媒体においては書き込み光によって
記録を行う分子となる光増感剤と、読みとり分子となる
電子供与性物質および/又は電子受容性物質並びにそれ
らが光増感剤の光励起状態との相互作用によって、電子
供与性物質から電子受容性物質に電子を移動した反応生
成物とは異なる分子であり9両者の励起状態は区別でき
、読み出し光は書き込み光と完全に区別することができ
In the optical recording medium of the present invention, a photosensitizer is used as a molecule for recording by writing light, an electron donor substance and/or an electron acceptor substance is used as a reading molecule, and they are in a photoexcited state of the photosensitizer. The reaction product that transfers electrons from an electron-donating substance to an electron-accepting substance through the interaction of .

読み出し破壊は原理的に回避される。これを図示したの
が第1図(1)である。第1図(1)では光増感剤Sが
書き込み光により励起型の光増感剤S“となる。
Read corruption can be avoided in principle. This is illustrated in FIG. 1 (1). In FIG. 1(1), the photosensitizer S becomes an excited type photosensitizer S'' by the writing light.

S“は活性であり、電子受容性物質Aに電子を受けわた
してそれぞれ酸化型S+□、還元型A−”となる。S 
+−はまだ活性であり、引き続き電子供与性物質りと反
応してその酸化型D +−を与え、自身はSとなって光
増感剤を再生する。このときD+□八−のうちの少なく
とも一方に生じた物理的・光学的変化を先の書き込みの
際に用いた波長と異な′る波長で光学的に読みとること
により、非破壊の読み出しが達成される。なお第1図(
2)は遷移状態下の反応性のわずかな差を区別したもの
であり、第1図の(1)と本質的な差はないが、可逆性
を考えるときは重要である。このような光増感酸化還元
反応は古くから知られている。例えば、水の光分解反応
を目的として、トリエタノールアミンを電子供与性物質
、ルテニウム+II)トIJスビビリジル錯体に光増感
剤、メチルビオロゲンを電子受容性物質とした系を用い
、可視光照射によるメチルビオロゲンカチオンラジカル
の蓄積(ダレツツエル(M。
S" is active and transfers electrons to the electron-accepting substance A to become oxidized S+□ and reduced A-", respectively. S
+- is still active and subsequently reacts with the electron donating substance to give its oxidized form D+-, which itself becomes S and regenerates the photosensitizer. At this time, non-destructive reading is achieved by optically reading the physical and optical changes that occur in at least one of D+□8- at a wavelength different from the wavelength used for previous writing. Ru. In addition, Figure 1 (
2) distinguishes a slight difference in reactivity under a transition state, and although there is no essential difference from (1) in FIG. 1, it is important when considering reversibility. Such photosensitized redox reactions have been known for a long time. For example, for the purpose of a water photolysis reaction, a system was used in which triethanolamine was used as an electron donating substance, ruthenium + IJ subbiridyl complex was used as a photosensitizer, and methyl viologen was used as an electron accepting substance. Accumulation of methyl viologen cation radicals (Daretzzel (M.

巻、701頁(1979))、あるいはジメチルアニリ
ン−ポルフィリン−ナフトキン系(ヴアシエンハ フスキ(M、 Was ie I ewsk i )ら
、ジャーナルオプアメリカンケミカルソサエティー(J
、Amer。
Vol., p. 701 (1979)), or the dimethylaniline-porphyrin-naftquine system (M., Wasie Iewski et al., Journal of the American Chemical Society (J.
, Amer.

Chem、 Soc、)第107巻、5562頁(19
85))による電荷分離反応等が報告されている。しか
しなからこのような報告例では電荷分離後の生成物は非
常に不安定であり、一般に短寿命であって。
Chem, Soc, Volume 107, Page 5562 (19
85)) have been reported. However, in such reported examples, the products after charge separation are extremely unstable and generally have a short lifetime.

記録材料として用いることは不可能である。このことは
一つには生成物が不安定なために、他の分子と反応、或
いは自分自身が変化するため、又は電荷分離後の状態が
不安定なため逆反応による電荷の再結合が起こることが
最大の原因である。本発明ではこの問題を克服するため
に、光増感酸化還元反応における電子供与性物質および
電子受容性物質のいずれか一方又は両方を混合原子価状
態をとりうる物質とすることで対処している。ここで混
合原子価状態とは中性又は荷電状態の複数の状態か存在
又は混在している状態をさす。混合原子価状態をとりう
る物質では一つの物質に二種以上の酸化状態が存在し、
これらは安定に又は準安定に存在しうる。又、これら異
なる酸化状態のまま独立に或いは共存して存在しうる。
It is impossible to use it as a recording material. This is partly because the product is unstable, reacting with other molecules or changing itself, or because the state after charge separation is unstable, causing charge recombination through a reverse reaction. This is the biggest cause. In order to overcome this problem in the present invention, one or both of the electron-donating substance and the electron-accepting substance in the photosensitized redox reaction is a substance that can take a mixed valence state. . Here, the mixed valence state refers to a state in which a plurality of neutral or charged states exist or are mixed. In substances that can have mixed valence states, two or more oxidation states exist in one substance,
These can exist stably or metastablely. Further, these different oxidation states may exist independently or coexist.

従って光照射前および光照射後の電荷分離した生成物の
それぞれの熱力学的安定性には問題がない。更に混合原
子価状態をとりうる物質を用いることは他の動力学的安
定性の問題をも解決する糸口となりうる。
Therefore, there is no problem in the thermodynamic stability of the charge-separated products before and after light irradiation. Furthermore, the use of substances that can have mixed valence states may be a clue to solving other kinetic stability problems.

一般に混合原子価状態をとりうる物質ではその酸化還元
電位は狭い幅に集中しており、特に大気中でも両酸化状
態が安定に存在しうる条件を加味するとその幅は更にせ
ばまる。このような系における光照射と他の一般系の光
照射とを比較して第2図に示した。第2図で(1)は一
般の光照射系である。
In general, the redox potential of a substance that can have a mixed valence state is concentrated in a narrow range, and the range becomes even narrower when taking into account the conditions under which both oxidation states can exist stably even in the atmosphere. A comparison of light irradiation in such a system and light irradiation in other general systems is shown in FIG. In FIG. 2, (1) is a general light irradiation system.

通常光化学反応では何らかの意味での光エネルギーの蓄
積が行われており、先にあげた反応例も。
Normally, photochemical reactions involve the accumulation of light energy in some sense, as in the reaction examples listed above.

光エネルギー(太陽エネルギー)の貯蔵変換をめざした
ものである。したがって生成物は高エネルギー状態とな
っておゆ、このことから先にのべた不安定性が生ずる。
The aim is to store and convert light energy (solar energy). The product is therefore in a high energy state, which results in the instability mentioned above.

又、一般に電荷移動後の電子供与性物質と電子受容性物
質との酸化還元電位差は大きく(通常1.0V以上)こ
のことは熱力学的推進力とともに動力学的にも逆反応を
推進しやすくしている。これに対して本発明では混合原
子価状態をとりうる物質を電子供与性物質および/又は
電子受容性物質として用いることにより、電子供与性物
質と電子受容性物質とのエネルギー差を小さくすること
ができる。第2図(2)及び(3)はこの状態をあられ
しており、光照射後も、高エネルギーが系に蓄積されて
おらず、系の安定性に寄与する。また電子供与性物質と
電子受容性物質とのエネルギー差も小さい(約1.Oe
V以内)ために逆反応速度がおそくなる。特にこの差を
小さくすれば(0,5eV以内)逆反応の推進力そのも
のも小さくなり、系の安定性に大きく寄与する。第2図
(3)は極端な例であり、この系では熱力学的には光を
用いる必要もなく1本来臼発的に反応が進みうる系であ
るが、光を用いての電子移動制御が可能となることを示
している。このように、光エネルギーの蓄積をあまりせ
ずに、単なる書き込みの際のスイッチング作用をもたす
ことによって、このような光増感酸化還元系の安定性を
大きく改善でき。
In addition, in general, the redox potential difference between the electron donating substance and the electron accepting substance after charge transfer is large (usually 1.0 V or more), which tends to promote the reverse reaction kinetically as well as thermodynamically. are doing. In contrast, in the present invention, by using a substance that can take a mixed valence state as an electron donating substance and/or an electron accepting substance, it is possible to reduce the energy difference between the electron donating substance and the electron accepting substance. can. Figures 2 (2) and (3) illustrate this state, and even after light irradiation, high energy is not accumulated in the system, contributing to the stability of the system. In addition, the energy difference between electron-donating and electron-accepting substances is small (approximately 1.Oe
V), which slows down the reverse reaction rate. In particular, if this difference is made small (within 0.5 eV), the driving force of the reverse reaction itself becomes small, which greatly contributes to the stability of the system. Figure 2 (3) is an extreme example, and in this system thermodynamically there is no need to use light and the reaction can proceed spontaneously, but it is possible to control electron transfer using light. This shows that it is possible. In this way, the stability of such a photosensitized redox system can be greatly improved by simply providing a switching effect during writing without accumulating much optical energy.

記録材料として用いることが可能となる。なお動力学的
安定性は単にエネルギーレベルだけの問題ではなく、系
の環境によっても制御しうろことは可能であり、後にも
またふれる。
It becomes possible to use it as a recording material. Note that dynamic stability is not just a matter of energy level, but can also be controlled by the environment of the system, which we will return to later.

このような光増感酸化還元反応により、系に生じた物理
的、光学的変化を光学的に読み取る手段室 としては、屈折率変化、誘県率変化9反射率変化。
Means for optically reading the physical and optical changes that occur in the system due to such photosensitized redox reactions include changes in refractive index, changes in attractive index, and changes in reflectance.

透過率変化等種々あるが、検知手段が容易であるという
点で、光反射率変化又は光透過率変化を読みとることが
好ましい。
Although there are various changes such as changes in transmittance, it is preferable to read changes in light reflectance or light transmittance because the detection means is easy.

また、電子供与性物質及び/又は電子受容性物質に生じ
た物理的、光学的変化、特に光反射率変化及び光透過率
変化は書き込みの際の光増感剤の光吸収領域と重複しな
い範囲であるならば特にどの波長領域に生じても構わな
いが、特に近赤外領域に生ずることが好ましい。この領
域では読み出しに半導体レーザを用いることができるた
め、システムの簡素化が図れる。また、現行の光ディス
クがこの領域で半導体レーザによる書き込み/読み出し
を行っており、これらの既存技術が使え。
In addition, the physical and optical changes that occur in the electron-donating substance and/or the electron-accepting substance, especially changes in light reflectance and light transmittance, are within a range that does not overlap with the light absorption area of the photosensitizer during writing. If so, it may occur in any particular wavelength region, but it is particularly preferable that it occur in the near-infrared region. In this region, a semiconductor laser can be used for readout, so the system can be simplified. In addition, current optical discs use semiconductor lasers for writing and reading in this area, so these existing technologies can be used.

記録媒体からの情報読み出しに互換性が確保されること
は極めて重要である。なおここでいう近赤外領域は70
0 nm〜1600 nmであり、好ましくは750 
nm〜1100 nmである。この様に近赤外領域の吸
収に幅をもたしておくことは情報の多重配録化を考える
上で重要である。
It is extremely important to ensure compatibility in reading information from recording media. The near-infrared region here is 70
0 nm to 1600 nm, preferably 750 nm
nm to 1100 nm. It is important to maintain a range of absorption in the near-infrared region in this way when considering multiplexing of information.

以上のような特性を満たす電子供与性物質及び/又は電
子受容性物質としては、有機染料、有機顔料、無機顔料
、遷移金属錯体等が挙げられるが。
Examples of electron-donating substances and/or electron-accepting substances that satisfy the above characteristics include organic dyes, organic pigments, inorganic pigments, transition metal complexes, and the like.

混合原子価状態が得られる物質としては遷移金属錯体が
特に望ましい。それは遷移金属錯体は金属の原子価及び
配位子との相互作用により9種々の原子価状態をとるこ
とと相まって、近赤外領域に特性吸収が得られやすいか
らである。またこれらの物質には熱的に安定なものが多
く含まれることも重要である。
Transition metal complexes are particularly desirable as substances capable of obtaining mixed valence states. This is because transition metal complexes tend to exhibit characteristic absorption in the near-infrared region, in combination with the fact that transition metal complexes take nine different valence states depending on the valence of the metal and interaction with ligands. It is also important that many of these substances are thermally stable.

下記の一般式(11,(I[)又は朋)で示される化合
物が好ましい。
Compounds represented by the following general formula (11, (I[) or I) are preferred.

弐(I)および(Illにおいて、Zは0.S及びNR
,(R。
In 2(I) and (Ill, Z is 0.S and NR
,(R.

は水素又はアルキル基)から選ばれる原子又は原子団で
あり、各位置において相異してもよく、X。
is an atom or atomic group selected from hydrogen or an alkyl group, and may be different at each position;

及びX′は水素、アルキル基、置換アルキル基、ハロゲ
ン基、アルコキシ基、アルキルアミノ基、ニトロ基又は
/及びシアン基から選ばれ、X及びX′は同一でもよく
、nは1〜4の整数9mは+2〜−2の整数、Aはmに
よって規定される電荷全中和するに必要な電荷数を有す
るアニオン又はカチオン又はその群およびMは遷移金属
イオンを表わす(ただし9mが0の場合にはAは存在し
ない)。
and X' is selected from hydrogen, an alkyl group, a substituted alkyl group, a halogen group, an alkoxy group, an alkylamino group, a nitro group, and/or a cyan group, X and X' may be the same, and n is an integer of 1 to 4. 9m is an integer from +2 to -2, A is an anion or cation or a group thereof having the number of charges required to completely neutralize the charges defined by m, and M is a transition metal ion (however, when 9m is 0, A does not exist).

式(n)において、Z′はS及びNR,(Rは水素又は
アルキル基)から選ばれ各位置において相異してもよ<
、Yは水素、アルキル基、置換アルキル基。
In formula (n), Z' is selected from S and NR, (R is hydrogen or an alkyl group) and may be different at each position.
, Y is hydrogen, an alkyl group, or a substituted alkyl group.

フェニル基、を換フェニル基及びシアノ基から選ばれ各
位置において相異してもよ(、mは+2〜−2の整数、
Aはmによって規定される電荷を中和するに必要な電荷
数を有するアニオン又はカチオン、又はその群およびM
は遷移金属イオンを表わす(ただしmが0の場合にはA
は存在しない)。
The phenyl group may be selected from substituted phenyl groups and cyano groups and may be different at each position (m is an integer from +2 to -2,
A is an anion or cation having the number of charges necessary to neutralize the charge defined by m, or a group thereof, and M
represents a transition metal ion (however, if m is 0, A
does not exist).

A、 Mcl everty )ら、プロダレスインイ
ンオーガニンクケミストリー(Prog、 Inorg
、 Chem、)10巻、49頁(1968)、シュラ
ウツアー(G、N、5chrauzer)ら、アカウン
ツオブケミカルリサーチ(Acc、 Chem、 Re
s、) 2巻、72頁(1969)、インオーガニツク
シンセシス(Inorg、 Syn 、) 10巻、2
頁にその合成法、特性が詳しくまとめられており1通常
の状態では一2価のアニオンから0価中性物質の状態で
空気中で安定に単離でき、その荷電状態は中心金属イオ
ンの種類、配位子の種類によって異なる。これらの化合
物には2価のアニオンから2価のカチオンの範囲の全部
又はその一部につき種々の酸化状態が確認されており、
その一部については異なる酸化状態のまま空気中で安定
に単離できることが知られている。例えばニッケルビス
(ジチオマレオニh IJル)錯体である下記化合物1
1aについては次の両者の錯体1[a  le na 
 2が単離されており。
A, Mceverty) et al., Prodales Inorganic Chemistry (Prog, Inorg
, Chem, ) vol. 10, p. 49 (1968), Schrauzer et al., Accounts of Chemical Research (Acc, Chem, Re).
s,) vol. 2, p. 72 (1969), Inorganic Synthesis (Inorg, Syn,) vol. 10, 2
The synthesis method and properties are summarized in detail on page 1. Under normal conditions, it can be stably isolated in the air as a zero-valent neutral substance from a mono-divalent anion, and its charge state depends on the type of central metal ion. , depends on the type of ligand. Various oxidation states have been confirmed for all or part of the range from divalent anions to divalent cations in these compounds,
It is known that some of them can be stably isolated in air in different oxidation states. For example, the following compound 1 is a nickel bis(dithiomaleonyl) complex.
Regarding 1a, the following complex 1 [a le na
2 have been isolated.

異なる物性を示す。exhibit different physical properties.

a丁7.f臼 これらは空気中、溶液中で安定であり、かつ両者は酸化
還元電位+〇、23V(対飽和カロメル電極、以下vs
scEと略す)で電気的に又化学的に可逆的に酸化還元
反応を行って相互に変換され。
a7. These are stable in the air and in solution, and both have a redox potential of +〇, 23V (vs. saturated calomel electrode, hereinafter vs.
(abbreviated as scE), they are mutually converted by electrically and chemically reversible redox reactions.

その際に近赤外領域での吸収係数の大幅な変化をともな
う。同様の反応が糧々これらの化合物群より見い出すこ
とができる。例えば白金ビス(ジチオマレオニトリル)
ジアニオン錯体→モノアニオン錯体、ニッケルビス(ジ
チオスチリベン)錯体(nb−1)−ニッケルビス(ジ
チオスチリベン)モノアニオン錯体(nb−2) 〔ニッケルビス(0−)ユニレンジイミン)錯体〕0(
Ia−1)−Cニッケルビス(0−)ユニレンジイミン
)錯体)”(ia−2) (Ia−1) 等が挙げられる。適した化合物錯体を示すと、コバルト
ビス(ジチオマレオニトリル)錯体+Mビス(ジチオマ
レオニトリル)錯体、鉄ビス(ジチオマレオニトリル)
錯体およびその二量体、ニッケルビス(ドレニン3.4
ジチオレ−1m体、白金ビス(トルエン&4ジチオレー
ト)錯体、ニッケルビス(4−ジメチルアミ4ジチオレ
ート)錯へ 体、ニッケルビス(3,4,5,6テトラクロロベンゼ
ンジチオレート)錯体、ニッケルビス(1,2−ジチオ
ナフタリン)錯体、白金ビス(1,2−シ+オナフタリ
ン)錯体、パラジウムビス(ジチオマレオニトリル)錯
体、白金ビス(ジチオスチリベン)錯体、パラジウムビ
ス(ジチオスチリベン)錯体。
This is accompanied by a significant change in the absorption coefficient in the near-infrared region. Similar reactions can be found among these groups of compounds. For example, platinum bis(dithiomaleonitrile)
Dianion complex → monoanion complex, nickel bis(dithiostiben) complex (nb-1) - nickel bis(dithiostiben) monoanion complex (nb-2) [nickel bis(0-)unilene diimine) complex] 0(
Examples of suitable compound complexes include cobalt bis(dithiomaleonitrile) complex. +M bis(dithiomaleonitrile) complex, iron bis(dithiomaleonitrile)
complex and its dimer, nickel bis(drenin 3.4
dithiole-1m form, platinum bis(toluene & 4 dithiolate) complex, nickel bis(4-dimethylami 4 dithiolate) complex, nickel bis(3,4,5,6 tetrachlorobenzenedithiolate) complex, nickel bis(1,2 -dithionaphthalene) complex, platinum bis(1,2-si+onaphthalene) complex, palladium bis(dithiomaleonitrile) complex, platinum bis(dithiostriven) complex, palladium bis(dithiostriven) complex.

ニッケルビス(p、p’−ジクロロジチオスチリベン)
錯体、ニッケルビス(p、p’−ジメトキシジチオスチ
リベン)錯体、白金ビス(p、p’−ジクロロジチオス
チリベン)錯体、ニッケルビス(トリレンλ4ジイミン
)錯体、ニッケルビス(1,2−キシレン−3,4−ジ
イミン)錯体、ニッケルビス(4−クロロ−1,2−7
二二レンジイミン) 錯体* 白金ビス(1,2−フェ
ニレンジアミン)錯体、ニッケルビス(ジイミノマレオ
ニトリル)錯体、白金ビス(ジイミノマレオニトリル)
錯体、ニッケルビス(ビス(トリフルオロメチル)エチ
レンジチェート)、ニッケルビス(エチレンジチェート
)錯体。
Nickel bis(p,p'-dichlorodithiostriven)
complex, nickel bis(p, p'-dimethoxydithiostilibene) complex, platinum bis(p, p'-dichlorodithiostiben) complex, nickel bis(tolylene λ4 diimine) complex, nickel bis(1,2- xylene-3,4-diimine) complex, nickel bis(4-chloro-1,2-7
22 diimine) Complex* Platinum bis(1,2-phenylenediamine) complex, nickel bis(diimino maleonitrile) complex, platinum bis(diimino maleonitrile)
complex, nickel bis(bis(trifluoromethyl)ethylene dithate), nickel bis(ethylene dithate) complex.

白金ビス(ビス(トリフルオロメチル)エチレンジチェ
ート)錯体等が挙げられる。これらは系の種類、吸収極
大位置9組み合わせるべきレドックス対の酸化還元準位
等を考慮して最終的に選択されるべきであるが9種々の
酸化状態のうちの第1酸化還元電位での反応を考慮して
選択することが゛β化合物の安定性上望ましい。またそ
のときの酸化還元電位は、a合的に決定されるべきであ
るが。
Examples include platinum bis(bis(trifluoromethyl)ethylene dithate) complex. These should be ultimately selected taking into account the type of system, absorption maximum position9, redox level of the redox pair to be combined, etc., but the reaction at the first redox potential of the various oxidation states It is desirable to select with consideration to the stability of the β compound. Further, the redox potential at that time should be determined based on a combination of factors.

酸化還元電位が−0,5V〜+0.8 V (vsSC
E )好ましくは−0,2V〜+0.5vの範囲にある
ことが好ましい。これはこの範囲特に好ましくはOV〜
+0,4■で両酸化状態が大気下および溶媒存在下で安
定に存在しうる範囲であるからである。もちろん系の密
閉化等の手段をとる場合にはこの限りでない。
The redox potential is -0.5V to +0.8V (vsSC
E) It is preferably in the range of -0.2V to +0.5V. This range is particularly preferably OV~
This is because both oxidation states at +0.4■ can exist stably in the atmosphere and in the presence of a solvent. Of course, this does not apply when measures such as sealing the system are taken.

先にあげた遷移金属錯体は好適な結果を与えるが、池の
混合原子価をとりうる物質の1吏川も考えられる。他の
例としては、ブルーシアン背、鉄−イオウクラスター化
合物、ニッケルビス(デュロキノン)錯体等があげられ
る。またこれら混合原子価をとりうる物質と併用して、
他の通常の電子供与性物質、又は電子受容性物質を用い
てもよい。
Although the transition metal complexes listed above give suitable results, other substances that can have mixed valences are also considered. Other examples include blue cyan backs, iron-sulfur cluster compounds, nickel bis(duroquinone) complexes, and the like. In addition, when used in combination with these substances that can have mixed valences,
Other conventional electron-donating or electron-accepting substances may also be used.

電子供与性物質としてはトリエタノールアミン。Triethanolamine is an electron donating substance.

エチレンジアミン四酢酸等が挙げられ、を子受容性物質
としてはキノン類9例えば1.4−ベンゾキノン、1.
4−ナフトキノン、デュロキノン、クロラニル等があげ
られるが、これらの電子供与性物質、又は電子受容性物
質は一般に高活性であり。
Ethylenediaminetetraacetic acid and the like can be mentioned, and examples of quinones such as 1,4-benzoquinone, 1.
Examples include 4-naphthoquinone, duroquinone, chloranil, etc., and these electron-donating substances or electron-accepting substances are generally highly active.

組み合わすべき混合原子価状態をとりうる物質との酸化
還元電位の差が大きすぎるときは、さきに述べた理由に
よりその差に応じすみやかな逆反応あるいは正反応が起
こるために慎重に選択すべきである。またこれらを使用
した場合、一般に生成物が安定でなく、ひき続き他の反
応による不可逆的変化が起こるので、可逆性を考えると
きには好ましくない問題を生ずる。
When the difference in redox potential between the substances to be combined and the substances that can take a mixed valence state is too large, for the reasons mentioned earlier, the choice should be made carefully to ensure that a reverse or forward reaction occurs quickly depending on the difference. It is. Furthermore, when these are used, the products are generally not stable and irreversible changes occur subsequently due to other reactions, which poses an undesirable problem when considering reversibility.

本発明で用いる光増感剤は、その基底エネルギー準位で
の酸化還元電位が前記電子供与性物質の酸化還元電位よ
り低く、その励起エネルギー準位の酸化還元電位が前記
受容性物質の酸化還元電位より高ければよい。本発明に
おいては、先に述べた理由により、電子供与性物質と電
子受容性物質との酸化還元電位差はあまり大きくないた
め、この関係を満足する光増感剤は紫外光から近赤外光
にわたる広い範囲において吸収を有するものが可能であ
るが、前記電子供与性物質及び/又は電子受容性物質の
有する吸収或いは電子移動反応後生ずる新しい吸収と重
ならないように選択される。
The photosensitizer used in the present invention has a redox potential at its base energy level that is lower than the redox potential of the electron donating substance, and a redox potential at its excitation energy level that is lower than the redox potential of the acceptor substance. It only needs to be higher than the potential. In the present invention, for the reasons stated above, the redox potential difference between the electron donating substance and the electron accepting substance is not very large, so the photosensitizer that satisfies this relationship covers a range of light from ultraviolet light to near-infrared light. Although it is possible to have absorption in a wide range, it is selected so as not to overlap with the absorption possessed by the electron donating substance and/or electron accepting substance or with the new absorption generated after the electron transfer reaction.

その中で、可視域から近赤外域に吸収を有する染料又は
顔料からなる光増感剤は、光源として各種のレーザ、例
えばガスレーザ、色素レーザ、半導体レーザ等を用いる
ことができるので好ましい。
Among these, photosensitizers made of dyes or pigments having absorption in the visible to near-infrared region are preferred because various lasers such as gas lasers, dye lasers, semiconductor lasers, etc. can be used as light sources.

その中でもチアジン系染料、オキサジン系染料。Among them, thiazine dyes and oxazine dyes.

キサンチン系染料、ポルフィリン系染料、テトラスロリ
ン錯体及び7タロシアニン化合物は、特に光増感剤とし
ての能力にすぐれ、また、光安定性も高いために好まし
い。光増感剤の例としては。
Xanthine dyes, porphyrin dyes, tetrathroline complexes, and 7-talocyanine compounds are particularly preferable because they have excellent ability as photosensitizers and also have high photostability. Examples of photosensitizers are:

チオニン、メチレンブルー、メチレンバイオレット、ク
レジルバイオレット、レゾルフィン、ナイルブルー、エ
リスロシンB、エオシンY、エオシン−B、メチルエオ
シン、フロクシンB、  ローダミンB、ローダミン6
G、  ローズベンガル、  2,3゜7、al 2,
13,17,18.−オクタx+h−21)1゜23H
−ポルフィ7、 2,3,7.al 2,13,17.
1 a−オクタエチル−21H,23H−ポルフィンコ
バルト錯体、2,3,7,8,12.1λ17.18.
−オクタエチル−21H,23H−ポルフィンマグネシ
ウム錯体、  2,3,7,8,1,2.1式17,1
8.−オクタエチル−2LH,23H−ポルフィンニッ
ケル錯体。
Thionin, methylene blue, methylene violet, cresyl violet, resorufin, Nile blue, erythrosin B, eosin Y, eosin-B, methyleosin, flocsin B, rhodamine B, rhodamine 6
G, Rose Bengal, 2,3゜7, al 2,
13, 17, 18. - Octa x + h - 21) 1゜23H
-Porphy 7, 2, 3, 7. al 2, 13, 17.
1 a-octaethyl-21H,23H-porphine cobalt complex, 2,3,7,8,12.1λ17.18.
-Octaethyl-21H,23H-porphine magnesium complex, 2,3,7,8,1,2.1 Formula 17,1
8. -octaethyl-2LH,23H-porphine nickel complex.

λ3.7.8.1ス1ミ17.la−オクタエチル−2
1H,23H−ポルフィンマンガン錯体、5,10゜1
5.20−テトラフェニル−21H,23H−ポルフィ
ン、5,10.15.20−テトラフェニル−21H,
23H−ポルフィン亜鉛錯体、5,10゜15、20−
テトラフェニル−21H,23H−ポルフィンマグネシ
ウム錯体、5.10,15.20−テトラフェニル−2
1H,23H−ポルフィン塩化鉄錯体、 5,10,1
5.20−テトラフェニル−21H,23H−ポルフィ
ンコバルト錯体、5,10゜15、20−テトラフェニ
ル−21H,23H−ポルフィン−ニッケル錯体、5,
10.15.20−テトラキス(2−ピリジル)−21
H,23H−ポルフィン、5,10,15.20−テト
ラキス(4−ピリジル)−2LH,23H−ポルフィン
、5,10゜15.20−テトラキス(4−ジメチルア
ミノフェニル)−21H,23H−ポルフィン、ルテニ
ウムトリス(2,2’−ビピリジル)錯体、オスミウム
トリス(42′−ビピリジル)錯体、ロジウムトリス(
2,2’−ビピリジル)錯体、ロジウムトリス(1,1
0−フェナンスロリン)錯体、ルテニウムトリス(1,
10−フェナンスロリン)錯体、オスミウムトリス(1
,10−7エナンスロリン)錯体。
λ3.7.8.1 S1 Mi17. la-octaethyl-2
1H,23H-porphine manganese complex, 5,10゜1
5.20-tetraphenyl-21H,23H-porphine, 5,10.15.20-tetraphenyl-21H,
23H-porphine zinc complex, 5,10°15,20-
Tetraphenyl-21H,23H-porphine magnesium complex, 5.10,15.20-tetraphenyl-2
1H,23H-porphine iron chloride complex, 5,10,1
5.20-tetraphenyl-21H,23H-porphine cobalt complex, 5,10゜15,20-tetraphenyl-21H,23H-porphine-nickel complex, 5,
10.15.20-tetrakis(2-pyridyl)-21
H,23H-porphine, 5,10,15.20-tetrakis(4-pyridyl)-2LH,23H-porphine, 5,10゜15.20-tetrakis(4-dimethylaminophenyl)-21H,23H-porphine, Ruthenium tris(2,2'-bipyridyl) complex, osmium tris(42'-bipyridyl) complex, rhodium tris(
2,2'-bipyridyl) complex, rhodium tris(1,1
0-phenanthroline) complex, ruthenium tris(1,
10-phenanthroline) complex, osmium tris(1
, 10-7 enanthroline) complex.

29H,31H−フタロシアニン、亜鉛フタロシアニン
、マクネシウムフタロシアニン、マンガンフタロシアニ
ン、バナジルフタロシアニン、テトラアミノ−29H,
311−1−フタロシアニン、銅−フタロシアニン、鉄
フタロシアニン、シリコンフタロシアニン等が挙げられ
る。
29H,31H-phthalocyanine, zinc phthalocyanine, magnesium phthalocyanine, manganese phthalocyanine, vanadyl phthalocyanine, tetraamino-29H,
Examples include 311-1-phthalocyanine, copper-phthalocyanine, iron phthalocyanine, silicon phthalocyanine, and the like.

本発明を実施するにあたっては前記光増感剤。In carrying out the present invention, the above-mentioned photosensitizer.

電子供与性物質及び電子受容性物質をその他の必要な添
加剤とともに添加するが、その際これらの物質の各酸化
還元電位の関係に充分留意して各物質の選択をすべきで
ある。この際に先に述べた理由により、電子供与性物質
と電子受容性物質の各酸化還元電位の差ができるだけ小
さいように選択することにより、逆反応または正反応に
よる望ましくない電子移動を最小限におさえることがで
きる。例エバ、ニッケルビス(1,2−7二二レンジイ
ミン(酸化還元電位+〇、 12 V vsscE )
を電子供与性物質、ニッケルビス(ジチオマレオニトリ
ル)モノアニオン(酸化還元を位+0.23Vvssc
E)を電子受容性物質とした場合2両者の酸化還元電位
差は0.IVであり、このものは光照射を行わなくとも
正反応で電子移動反応を起こしうるが、酸化還元電位差
はわずか0. I Vであるため、溶液中での電子移動
反応はおそく、数日〜数週間の期間にわたっても9反応
は徐々に進むだけである。従って、高粘度媒体、固相中
での安定性は事実上充分である。また、これら電子供与
性物質と電子受容性物質との酸化還元電位差に基づく熱
力学的不安定さはこれら物質の分散媒体9分散化方法等
の他の要因によっても制御しうる。その中で特に効果的
な方法としては、混合する際に。
An electron-donating substance and an electron-accepting substance are added together with other necessary additives, but each substance should be selected with due consideration given to the relationship between the redox potentials of these substances. At this time, for the reasons mentioned above, undesirable electron transfer due to reverse or forward reactions is minimized by selecting the difference in redox potential between the electron donor and electron acceptor substances to be as small as possible. It can be suppressed. Example Eva, nickel bis(1,2-7 2-2-dienedimine (oxidation-reduction potential +〇, 12 V vsscE)
The electron-donating substance, nickel bis(dithiomaleonitrile) monoanion (oxidation-reduction position +0.23V vssc
When E) is used as an electron-accepting substance, the redox potential difference between the two is 0. IV, which can cause a forward electron transfer reaction without irradiation with light, but the redox potential difference is only 0. Since it is IV, the electron transfer reaction in solution is slow, and the reaction proceeds only gradually over a period of several days to several weeks. Therefore, the stability in high viscosity media and solid phase is practically sufficient. Furthermore, thermodynamic instability based on the redox potential difference between these electron-donating substances and electron-accepting substances can also be controlled by other factors such as the method of dispersing these substances in the dispersion medium 9 . Among them, a particularly effective method is when mixing.

ある程度の不均一性をもたらすことであり、電子供与性
物質と電子受容性物質とが実質的に分離されていること
である。ここでいう実質的に分離という意味は電子供与
性物質と電子受容性物質との自由な拡散が制限されてい
るという意味であり。
This results in some degree of heterogeneity, with substantial separation of the electron-donating and electron-accepting materials. "Substantially separated" here means that the free diffusion of the electron-donating substance and the electron-accepting substance is restricted.

これは例えば分散媒体に不均一性を設け、電子供与性物
質と電子受容性物質とが異なる相関に存在するような系
を含む。このような系としてはミセル系、リボゾームの
ような人工界面を有する系、極性−非極性ブロック高分
子のような相分離型モルフオルジーを有する媒体中への
分散等がある。そのほかに有効な手段は、電子供与性物
質、光増感剤、電子受容性物質をこの順に積層した積層
型構造とすることである。この場合、中間にある光増感
剤を含有する層は電子供与性物質と、電子受容性物質と
V)間での@依的l目田l篭す父侯?δまたげるしやへ
い層として存在し、同時に電子供与性物質及び電子受容
性物質への光増感剤の光励起過程を利用しての電子の受
けわたしを行う層として働く。
This includes, for example, a system in which non-uniformity is provided in the dispersion medium and electron-donating substances and electron-accepting substances exist in different correlations. Such systems include micelle systems, systems with artificial interfaces such as ribosomes, and dispersion in media having phase-separated morphology such as polar-nonpolar block polymers. Another effective means is to form a laminated structure in which an electron donating substance, a photosensitizer, and an electron accepting substance are laminated in this order. In this case, the intermediate photosensitizer-containing layer is a layer between the electron-donating substance, the electron-accepting substance, and V). It exists as a δ layer and a thin layer, and at the same time functions as a layer that transfers electrons using the photoexcitation process of a photosensitizer to an electron-donating substance and an electron-accepting substance.

この目的のためには中間層である光増感剤を含有する層
は適当な膜厚を有するのが望ましく、その膜厚は50X
〜1oooXが適当である。これは膜厚が50X未満の
場合にけしやへい層として有効に働かず、1000人を
越える場合には中間層での電子の移動がさまたげられ、
電子供与性物質を含む層から電子受容性物質を含む層へ
の電子の注入効率が著しく低下するからである。このよ
うな積層型構造を製造する手段としては、塗付法。
For this purpose, it is desirable that the intermediate layer containing the photosensitizer has an appropriate thickness, and the thickness is 50X.
~1oooX is appropriate. If the film thickness is less than 50X, it will not work effectively as a layer, and if it exceeds 1000, the movement of electrons in the intermediate layer will be hindered.
This is because the injection efficiency of electrons from the layer containing the electron donating substance to the layer containing the electron accepting substance is significantly reduced. A method for manufacturing such a laminated structure is the coating method.

浸漬法、真空蒸着法、スパッタリング法、LB模膜法既
存の種々の成膜法を用いることができる。
Various existing film forming methods such as a dipping method, a vacuum evaporation method, a sputtering method, and an LB patterning method can be used.

本発明において光増感剤、を子供与性物質、電子受容性
物質を含有する記録層は、自己支持性のものであっても
よいが、透明性基体上に形成されているのが望ましい。
In the present invention, the recording layer containing a photosensitizer, a child-donating substance, and an electron-accepting substance may be self-supporting, but is preferably formed on a transparent substrate.

透明性基体としては9石英ガラス、はうけい酸ガラス等
の無機ガラス類、ポリメチルメタクリレート樹脂、ポリ
カーボネート樹脂、エポキシ樹脂等のプラスチック基板
が用いられる。上記基体上には、更にトラッキング用の
溝、記録層をはさんで導電性電極等が形成されていても
よい。導電性電極を設けて、この電極間に適当な電位を
印加することにより、電子受容性物質に移動した電子に
対し逆反応を行わせて情報の消去を行うことも可能であ
る。
As the transparent substrate, inorganic glasses such as 9-quartz glass and silicate glass, and plastic substrates such as polymethyl methacrylate resin, polycarbonate resin, and epoxy resin are used. A tracking groove, a conductive electrode, etc. may be further formed on the substrate with the recording layer sandwiched therebetween. By providing a conductive electrode and applying an appropriate potential between the electrodes, it is also possible to perform a reverse reaction on the electrons transferred to the electron-accepting substance, thereby erasing information.

また、これら基体に更に反射層が形成されているものを
用いることが好ましい。反射層を設けることにより、信
号記録部と無記録部との反射光量が犬きく異なり、検出
がより容易になる。反射層は記録媒体の上面又は下面に
設けられる。反射層の材質としては書き込み光及び読み
出し光に対し。
Moreover, it is preferable to use a substrate in which a reflective layer is further formed on the substrate. By providing the reflective layer, the amount of reflected light between the signal recording area and the non-recording area is significantly different, making detection easier. The reflective layer is provided on the top or bottom surface of the recording medium. The material of the reflective layer is suitable for writing light and reading light.

適当な反射率を有するものならば何れでもよいが。Any material may be used as long as it has an appropriate reflectance.

通常アルミニウム、クロム、ニッケル、金等の金属薄膜
が用いられる。これらは真空蒸着等の既知の手段で形成
される。
Usually, a thin film of metal such as aluminum, chromium, nickel, or gold is used. These are formed by known means such as vacuum deposition.

上記記録層は光増感剤、1!子供与性物質及び電子受容
性物質のみからなっていてもよいし、他の分散媒体等に
分散、俗解させたものでもよい。分散媒体としては各種
高分子が適当であり、これらは用いる光増感剤、′l!
子供与性物質、1!子受容性物質の種類、その酸化還元
電位、溶解性等を考慮した適当なものが選択される。ま
た、記録層中には種々の目的をもって他の添加剤等を含
有してもよいが、これらは用いた電子供与性物質、電子
受容性物質の酸化還元準位およびそれらの関係に対し悪
影響を及ぼさない範囲で選択して用いるべきである。
The recording layer contains a photosensitizer, 1! It may be composed only of a child-donating substance and an electron-accepting substance, or it may be dispersed in another dispersion medium or the like. Various polymers are suitable as the dispersion medium, and these include the photosensitizer used, 'l!
Child-donating substances, 1! An appropriate one is selected in consideration of the type of child-accepting substance, its redox potential, solubility, etc. In addition, other additives may be contained in the recording layer for various purposes, but these may have an adverse effect on the redox levels of the electron-donating substances and electron-accepting substances used and the relationship between them. It should be selected and used to the extent that it does not affect the environment.

添加剤の例としては、界面活性剤などの分散安定剤、有
機又は無機フィラー、金属粉等が挙げられる。
Examples of additives include dispersion stabilizers such as surfactants, organic or inorganic fillers, metal powders, and the like.

なお、これら電子供与性物質、!子骨容性物質および光
増感剤の配合割合には特にm11限ないが。
Furthermore, these electron-donating substances! There is no particular limit to the blending ratio of the bone-tolerant substance and the photosensitizer.

電子供与性物質及び電子受容性物質は、はぼ等モル量で
存在するのが好ましい。又、光増感剤は。
Preferably, the electron donating substance and the electron accepting substance are present in approximately equimolar amounts. Also, photosensitizers.

反応系の反応速度吸光係数等を考慮して触媒量ないしは
等モル以上配合するのが好ましい。
It is preferable to mix the catalyst in an amount of equal to or more than the same mole, taking into account the reaction rate, extinction coefficient, etc. of the reaction system.

本発明は、光記録方式に基づく各種光記録媒体に応用可
能であるが、特に光ディスク、表示素子等の情報記録分
野に応用できる。
The present invention is applicable to various optical recording media based on optical recording methods, and is particularly applicable to information recording fields such as optical discs and display elements.

以下実施例により本発明を説明する。部とあるのは重量
部である。
The present invention will be explained below with reference to Examples. Parts are by weight.

実施例1 本発明になる光記録媒体について次のような実験を行っ
た。光増感剤として5.10.15.20−テトラフェ
ニルポルフィン亜鉛錯体(以下ZnTPPと略す)、電
子供与性物質として、ニッケルビス(1,2)ユニレン
ジイミン)の中性塩(以下〔N1(PDA)2]Oと略
す)、電子受容性物質としてニッケルビス(ジチオマレ
オニトリル)モノアニオンテトラブチルアンモニウム(
以下(Ni (MNT)z〕−・TBA+と略す)を用
いた。両者はそれぞれ次のような酸化還元反応を行う。
Example 1 The following experiment was conducted on an optical recording medium according to the present invention. 5.10.15.20-tetraphenylporphine zinc complex (hereinafter abbreviated as ZnTPP) was used as a photosensitizer, and a neutral salt of nickel bis(1,2) unilene diimine) (hereinafter [N1 (PDA)2]O), nickel bis(dithiomaleonitrile) monoanion tetrabutylammonium (abbreviated as
The following (abbreviated as Ni (MNT)z]-.TBA+) was used. Both perform the following redox reactions, respectively.

その時の酸化還元電位を併せて示す。The redox potential at that time is also shown.

+ 0.23 V vs 8CE 十〇、12V vsscE ニッケルビス(ジチオマレオニトリル)モノアニオンは
ジアニオンに還元されるとき、850nm付近の吸収が
許容遷移から禁制遷移に変化するため、吸光係数の大幅
(約102オーダ)な変化を伴う。なおこの量子化学的
説明はH,B、Grayら、ジャーナルオブアメリカン
ケミカルソサエティー(J、Amer、 Chem、 
Sac、 )第86巻、4594頁(1964年)に詳
細に示されている。同様にニッケルビス(1,2−)ユ
ニレンジイミン)は酸化されてカチオンとなることによ
り、780nmにある吸収極大(10gξ〜4.5)が
大きく減少する。
+ 0.23 V vs 8CE 10, 12V vsscE When nickel bis(dithiomaleonitrile) monoanion is reduced to dianion, the absorption near 850 nm changes from an allowed transition to a forbidden transition, resulting in a significant change in the extinction coefficient (approx. 102 order) changes. This quantum chemical explanation was published by H. B. Gray et al. in the Journal of the American Chemical Society (J. Amer. Chem.
Sac, Vol. 86, p. 4594 (1964). Similarly, when nickel bis(1,2-)unilene diimine) is oxidized to become a cation, its absorption maximum at 780 nm (10 gξ~4.5) is greatly reduced.

従って電子供与体であるC Ni (PDA )2 〕
0から電子受容体である(Ni(MNT)2]−TBA
±に電子が移動することにより近赤外域での吸収の減少
が起こる。
Therefore, C Ni (PDA)2 which is an electron donor]
0 to electron acceptor (Ni(MNT)2]-TBA
Absorption in the near-infrared region decreases due to the movement of electrons to ±.

(1)サンプルの調整 CNi (PDA )2 ]0 1 X 10−’ mole / lベンゼン溶液1ゴ
(Ni (MN’I’)2 ]−TBA”テトラブチル
アンモニウムバークロレートI XI o−”mtor
eB DMF溶液溶液1以/の成分を攪拌用回転子とと
もに1 cmの光路を有する石英製セルにいれ、窒素ガ
スを通じた後密栓した。同時に同一の溶媒組成からなる
対照用セルを準備した。
(1) Sample preparation CNi (PDA)2 ]0 1
eB DMF solution 1 or more components were placed in a quartz cell with a 1 cm optical path together with a stirring rotor, and after nitrogen gas was passed through the cell, the cell was tightly stoppered. At the same time, a control cell having the same solvent composition was prepared.

(2)光照射実験 シアン青フイルタ−、Y−48フイルターを通し9通過
波長約500 nm〜55 Q nmに制限した500
Wキセノン灯を光源として光照射を行った。
(2) Light irradiation experiment: 500 nm passing through a cyan blue filter and a Y-48 filter, limiting the passing wavelength to approximately 500 nm to 55 Q nm.
Light irradiation was performed using a W xenon lamp as a light source.

照射は室温でマグネチツクスターラによる攪拌下に行っ
た。このサンプルを照射前及び照射開始から5分毎に9
日立製紫外可視分光光度計U−150−20を用い吸光
度変化を測定した。結果を第3図に示した。
The irradiation was carried out at room temperature with stirring using a magnetic stirrer. 9 minutes before irradiation and every 5 minutes from the start of irradiation.
Changes in absorbance were measured using a UV-visible spectrophotometer U-150-20 manufactured by Hitachi. The results are shown in Figure 3.

第3図において、1け初期の吸光度曲線、2けそれぞれ
光照射5分後、3は光照射10分後、4は光照射15分
後、5は光照射20分後、6は光照射25分後の吸光度
曲線を示す。
In Figure 3, the absorbance curve at the initial stage of 1 digit, 2 digits after 5 minutes of light irradiation, 3 after 10 minutes of light irradiation, 4 after 15 minutes of light irradiation, 5 after 20 minutes of light irradiation, and 6 after 25 minutes of light irradiation. The absorbance curve after minutes is shown.

第3図より光照射により7801mにある吸収が減少し
、45Qnrn付近の吸収が増大していることが示され
る。後者の吸収帯はCN i (MNT )2 :]”
−に基づくものと考えられ、この結果より光照射により
、 (Ni (PDA)z)’から(: Ni (MN
T )2:)−への電子移動が起こり、それぞれCNi
 (PDA)z)“、[:Ni(MNT’h12−へと
変化したことが推定される。
FIG. 3 shows that the absorption at 7801m decreases and the absorption near 45Qnrn increases due to light irradiation. The latter absorption band is CN i (MNT )2 :]”
-, and from this result, by light irradiation, (Ni (PDA)z)' to (: Ni (MN
Electron transfer to T)2:)- occurs, respectively to CNi
(PDA)z)", [:Ni(MNT'h12-).

(3)補足実験 先に示した酸化還元電位エリ、Ni(〜fNT耳はれた
関係にある。そこで、前に示した反応が増感剤として用
いたZnTPPの光励起過程を経由していることを示す
ために、前記サンプルからZnTPPを除いたものにつ
き、暗所放置時の吸光度変化及び(2)と同一条件での
光照射実験を行った。
(3) Supplementary experiment There is a strong relationship between the redox potential shown above and Ni (~fNT).Therefore, the reaction shown previously is via the photoexcitation process of ZnTPP used as a sensitizer. In order to demonstrate this, the sample from which ZnTPP was removed was subjected to a change in absorbance when left in a dark place and an experiment of light irradiation under the same conditions as in (2).

その結果、熱力学的に予想される暗所での酸化還元反応
も起こることが見い出されたが、その吸光度減少速度は
(2)での結果と比較してきわめて遅く、室温で2週間
以上の半減期を有していた。又。
As a result, it was found that thermodynamically expected redox reactions also occur in the dark, but the rate of decrease in absorbance was extremely slow compared to the result in (2), and the rate of decrease in absorbance was extremely slow compared to the result in (2). It had a half-life. or.

光照射時間範囲(20分間)では吸光度変化は認められ
なかった。以上の結果を総合して、この反応がZnTP
Pの光励起状態を経由しての第2図(3)に相当する酸
化還元反応であると結論される。
No change in absorbance was observed within the light irradiation time range (20 minutes). Combining the above results, this reaction shows that ZnTP
It is concluded that this is a redox reaction corresponding to FIG. 2 (3) via the photoexcited state of P.

実施例2 次に示す組成で実施例1と同様にして光照射を行った。Example 2 Light irradiation was performed in the same manner as in Example 1 using the following composition.

ただし、フィルターとしてシアン青フイルタ−、Y−4
8フイルターのかわりにR−62(東芝硝子製)を用い
、波長約620 nmより長波長の光で反応を行った。
However, as a filter, a cyan blue filter, Y-4
R-62 (manufactured by Toshiba Glass) was used instead of the 8 filter, and the reaction was carried out using light with a wavelength longer than about 620 nm.

光照射後のサンプルの780 nmでの吸光度変化を第
4図に示した。
Figure 4 shows the change in absorbance at 780 nm of the sample after light irradiation.

(C4H9)4N”       0.6 ml!亜鉛
フタロシアニンのlXl0−’mole/Jジメチルホ
ルムアミド(DMF)溶液0.2 ml(C4H9)4
N Cl0aのIXI O−3mole/ if: D
EF溶液1 ml この反応で約57 Q nm付近に吸収極大を有する亜
鉛フタロシアニンによる吸収帯は光照射により影響をう
けなかった。この系での暗反応(増感剤を含まない系)
の半減期は7日以上であり、光照射による大幅な加速効
果が認められた。
(C4H9)4N" 0.6 ml! lXl0-'mole/J dimethylformamide (DMF) solution of zinc phthalocyanine 0.2 ml (C4H9)4
N Cl0a IXI O-3mole/if: D
1 ml of EF solution In this reaction, the absorption band due to zinc phthalocyanine, which has an absorption maximum near about 57 Q nm, was not affected by light irradiation. Dark reaction in this system (system without sensitizer)
The half-life of the drug was more than 7 days, and a significant acceleration effect was observed by light irradiation.

実施例3 ニッケルビス(3,4−)リレンジイミン)0.04部
、p−ベンゾキノン0.1部、ポリメチルメタクリレー
ト1部をベンゼン5部に溶解し、更にメチvンーjpv
−o、oi部*テトラブチルアンモニウムバークロレー
ト0.1部のアセトン溶液(約4m)を加えた。
Example 3 0.04 part of nickel bis(3,4-)lylene diimine), 0.1 part of p-benzoquinone, and 1 part of polymethyl methacrylate were dissolved in 5 parts of benzene, and further diluted with methane-jpv.
-o, oi parts*An acetone solution (approximately 4 m) of 0.1 part of tetrabutylammonium verchlorate was added.

このものをパイレンクス■ガラス板(厚さ1.0mm)
にスピン塗付し、60℃で10分乾燥を行った。以上の
操作は暗所で行った。膜厚は約1μmとした。このもの
に対し、Y−48フイルターを通して500WXeラン
プを5分間照射した。光照射により、780nmでの光
透過率は約2倍に上昇した。
This is a Pyrenx glass plate (thickness 1.0mm)
It was applied by spin coating and dried at 60°C for 10 minutes. The above operations were performed in the dark. The film thickness was approximately 1 μm. This product was irradiated with a 500WXe lamp for 5 minutes through a Y-48 filter. By light irradiation, the light transmittance at 780 nm increased approximately twice.

実施例4 ニッケルビス(ジチオスチリペン)0.05部。Example 4 0.05 part of nickel bis(dithiostiripen).

ペンゾキノイ0.1部、マグネシウムテトラフェニルポ
ルフィン0.02部、テトラブチルアンモニウムバーク
ロレート0.1部、 ポリビニルピロリドン1部をDM
FS部とともに混合し、溶解した。このものを実施例3
と同様にパイレックス基板上に塗付し、膜厚約1.5μ
mの乾燥塗膜を得た。Y−48フイルターを通しての光
照射実験を780nmでモニターした結果を第5図に示
した。
DM 0.1 part of penzoquinoi, 0.02 part of magnesium tetraphenylporphine, 0.1 part of tetrabutylammonium verchlorate, and 1 part of polyvinylpyrrolidone.
It was mixed with the FS part and dissolved. Example 3
Coat it on a Pyrex substrate in the same way as above, and the film thickness is about 1.5μ.
A dry coating film of m was obtained. The results of the light irradiation experiment monitored at 780 nm through a Y-48 filter are shown in FIG.

実施例5 洗浄したホワイトスライドグラス基板上にニッケルビス
(1,2−7二二レンジイミン)0.02部とテトラブ
チルアンモニウムバークロレート0.5部、ポリビニル
ピロリドン0.2部、DMFS部からなる溶液をスピン
塗付した。次にこの上に、亜鉛テトラフェニルポルフィ
リンを約5ooAの厚さで真空蒸着した。更にこの上に
、白金ビス(ジチオマレオニトリル)モノアニオンテト
ラブチルアンモニウム0.5部、ポリメチルメタクリレ
ート0.8部、メチルエチルケトン約5部からなる溶液
をスピン塗付し、乾燥した。このものを実施例1と同じ
条件で光照射を行った。結果を第6図に示した。
Example 5 A solution consisting of 0.02 part of nickel bis(1,2-7 2-dilene diimine), 0.5 part of tetrabutylammonium barchlorate, 0.2 part of polyvinylpyrrolidone, and part of DMFS was placed on a cleaned white slide glass substrate. was applied by spin. Zinc tetraphenylporphyrin was then vacuum deposited onto this to a thickness of about 5 ooA. Furthermore, a solution consisting of 0.5 parts of platinum bis(dithiomaleonitrile) monoanion tetrabutylammonium, 0.8 parts of polymethyl methacrylate, and about 5 parts of methyl ethyl ketone was spin-coated onto this and dried. This product was irradiated with light under the same conditions as in Example 1. The results are shown in Figure 6.

これを暗所に放置しても実施例1に見られたような暗反
応による吸光度変化はほとんど見られなかった。
Even when this was left in a dark place, almost no change in absorbance due to the dark reaction as seen in Example 1 was observed.

第4〜6図に示されるように光照射を行うことによって
780nmでの吸光度が減少することが観察され、混合
原子価状態が生じたものと推定される。
As shown in FIGS. 4 to 6, it was observed that the absorbance at 780 nm decreased by light irradiation, and it is presumed that a mixed valence state occurred.

(発明の効果) 本発明になる光記録媒体によれば、情報の書き込み、読
み出しがすべて光によって非破壊的に行われ、かつ幅広
い波長範囲の材料が使用可能であるため、システムの光
源、検出器に合せた幅広い設計が可能となる。また、使
用材料の吸収波長をずらすことにより、多重記録への応
用も予想される。
(Effects of the Invention) According to the optical recording medium of the present invention, writing and reading of information are all performed non-destructively using light, and materials with a wide wavelength range can be used. A wide range of designs can be made to suit the vessel. Furthermore, by shifting the absorption wavelength of the materials used, it is expected that the method will be applied to multiplex recording.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(1)、 (21は1本発明における光励起によ
って引き起こされる電子の移動を説明する模式図。 第2図fl+、 (2)、 (3)は1本発明における
電子の流れをエネルギー的に示した図、第3及び第4図
は。 本発明の実施例の系における吸光度の変化を示す図、な
らびに第5及び第6図は9本発明の実施例における記録
媒体の吸光度の変化を示す図である。 代理人 弁理士 若 林 邦 彦 第 1 図 波長(A笈つ 第 3 目 ′fI 4 口
Figure 1 (1), (21 is a schematic diagram explaining the movement of electrons caused by photoexcitation in the present invention. Figure 2 fl+, (2), (3) is a schematic diagram explaining the flow of electrons in the present invention Figures 3 and 4 are diagrams showing changes in absorbance in a system according to an embodiment of the present invention, and Figures 5 and 6 are diagrams showing changes in absorbance of a recording medium in an embodiment of the present invention. Agent Patent Attorney Kunihiko Wakabayashi 1st Wavelength (3rd Wavelength)

Claims (1)

【特許請求の範囲】 1、光増感剤、電子供与性物質および電子受容性物質を
含有し、かつ前記電子供与性物質および前記電子受容性
物質の少なくとも一方を混合原子価状態をとりうる物質
としてなる光記録媒体。 2、電子供与性物質及び電子受容性物質のうちの少なく
とも一方が混合原子価状態をとりうる遷移金属錯体であ
る特許請求の範囲第1項記載の光記録媒体。 3、電子供与性物質及び電子受容性物質のうちの少なく
とも一方が下記の一般式( I )、(II)又は(III)で
示される化合物の中から選ばれる遷移金属錯体である特
許請求の範囲第1項又は第2項記載の光記録媒体。 ( I )▲数式、化学式、表等があります▼ (II)▲数式、化学式、表等があります▼ 式( I )および(II)において、ZはO、S及びNR
(Rは水素又はアルキル基)から選ばれる原子又は原子
団であり各位置において相異してもよく、X及びX′は
水素、アルキル基、置換アルキル基、ハロゲン基、アル
コキシ基、アルキルアミノ基、ニトロ基又はシアノ基か
ら選ばれX及びX′は同一でもよく、nは1〜4の整数
、mは+2〜−2の整数、Aはmによつて規定される電
荷を中和するに必要な電荷数を有するアニオン、カチオ
ン又はその群およびMは遷移金属イオンを表わす(ただ
し、mが0の場合にはAは存在しない)。 (III)▲数式、化学式、表等があります▼ 式(III)において、Z′はS及びNR(Rは水素又は
アルキル基)から選ばれ各位置において相異していても
よく、Yは水素、アルキル基、置換アルキル基、フェニ
ル基、置換フェニル基及びシアノ基から選ばれ、各位置
において相異していてもよく、mは+2〜−2の整数、
Aはmによつて規定される電荷を中和するに必要な電荷
数を有するアニオン又はカチオン又はその群およびMは
遷移金属イオンを表わす(ただしmが0の場合にはAは
存在しない)。 4、電子供与性物質および電子受容性物質が実質的に分
離されている特許請求の範囲第1項、第2項又は第3項
記載の光記録媒体。 5、光記録媒体が電子供与性物質又はこれを含有する層
、光増感剤又はこれを含有する層及び電子受容性物質又
はこれを含有する層をこの順に積層したものである特許
請求の範囲第1項、第2項、第3項又は第4項記載の光
記録媒体。 6、光記録媒体が、反射層を有する特許請求の範囲第1
項、第2項、第3項、第4項又は第5項記載の光記録媒
体。
[Scope of Claims] 1. A substance containing a photosensitizer, an electron-donating substance, and an electron-accepting substance, and in which at least one of the electron-donating substance and the electron-accepting substance can be in a mixed valence state. An optical recording medium. 2. The optical recording medium according to claim 1, wherein at least one of the electron-donating substance and the electron-accepting substance is a transition metal complex capable of having a mixed valence state. 3. Claims in which at least one of the electron-donating substance and the electron-accepting substance is a transition metal complex selected from compounds represented by the following general formula (I), (II), or (III). The optical recording medium according to item 1 or 2. (I) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (II) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ In formulas (I) and (II), Z is O, S, and NR.
(R is hydrogen or an alkyl group) and may be different at each position, X and X' are hydrogen, an alkyl group, a substituted alkyl group, a halogen group, an alkoxy group, an alkylamino group , a nitro group, or a cyano group, and X and X' may be the same, n is an integer of 1 to 4, m is an integer of +2 to -2, and A is an integer that neutralizes the charge defined by m. An anion, a cation or a group thereof having the required number of charges and M represent a transition metal ion (provided that if m is 0, A is not present). (III) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ In formula (III), Z' is selected from S and NR (R is hydrogen or an alkyl group) and may be different at each position, and Y is hydrogen. , an alkyl group, a substituted alkyl group, a phenyl group, a substituted phenyl group, and a cyano group, and may be different at each position, m is an integer of +2 to -2,
A represents an anion or a cation or a group thereof having the number of charges required to neutralize the charge defined by m, and M represents a transition metal ion (however, when m is 0, A does not exist). 4. The optical recording medium according to claim 1, 2 or 3, wherein the electron donating substance and the electron accepting substance are substantially separated. 5. Claims in which the optical recording medium is one in which an electron-donating substance or a layer containing the same, a photosensitizer or a layer containing the same, and an electron-accepting substance or a layer containing the same are laminated in this order. The optical recording medium according to item 1, 2, 3, or 4. 6. Claim 1 in which the optical recording medium has a reflective layer
2. The optical recording medium according to item 2, item 3, item 4, or item 5.
JP61008336A 1986-01-18 1986-01-18 Optical recording medium Granted JPS62165647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61008336A JPS62165647A (en) 1986-01-18 1986-01-18 Optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61008336A JPS62165647A (en) 1986-01-18 1986-01-18 Optical recording medium

Publications (2)

Publication Number Publication Date
JPS62165647A true JPS62165647A (en) 1987-07-22
JPH0443572B2 JPH0443572B2 (en) 1992-07-17

Family

ID=11690350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61008336A Granted JPS62165647A (en) 1986-01-18 1986-01-18 Optical recording medium

Country Status (1)

Country Link
JP (1) JPS62165647A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02275944A (en) * 1988-09-22 1990-11-09 Agency Of Ind Science & Technol Optical recording material
JPH03171779A (en) * 1989-11-30 1991-07-25 Hitachi Chem Co Ltd How to convert changes in light intensity into electrical signals
JPH03171778A (en) * 1989-11-30 1991-07-25 Hitachi Chem Co Ltd Optoelectronic element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5872929A (en) * 1981-10-28 1983-05-02 Toshiba Corp Optical conversion element
JPS6083029A (en) * 1983-10-13 1985-05-11 Mitsui Toatsu Chem Inc Optical recording medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5872929A (en) * 1981-10-28 1983-05-02 Toshiba Corp Optical conversion element
JPS6083029A (en) * 1983-10-13 1985-05-11 Mitsui Toatsu Chem Inc Optical recording medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02275944A (en) * 1988-09-22 1990-11-09 Agency Of Ind Science & Technol Optical recording material
JPH03171779A (en) * 1989-11-30 1991-07-25 Hitachi Chem Co Ltd How to convert changes in light intensity into electrical signals
JPH03171778A (en) * 1989-11-30 1991-07-25 Hitachi Chem Co Ltd Optoelectronic element

Also Published As

Publication number Publication date
JPH0443572B2 (en) 1992-07-17

Similar Documents

Publication Publication Date Title
Mutoh et al. Turn-on mode fluorescence switch by using negative photochromic imidazole dimer
Ko et al. Coordination compounds with photochromic ligands: ready tunability and visible light-sensitized photochromism
Howlader et al. Self-assembled Pd (II) barrels as containers for transient merocyanine form and reverse thermochromism of spiropyran
Livoreil et al. Electrochemically and photochemically driven ring motions in a disymmetrical copper [2]-catenate
Kometani et al. Red or near-infrared light operating negative photochromism of a binaphthyl-bridged imidazole dimer
Hemmer et al. Tunable visible and near infrared photoswitches
Feringa et al. Molecular switches
Wang et al. Organoboron-based photochromic copolymers for erasable writing and patterning
Gross et al. Investigation of rational syntheses of heteroleptic porphyrinic lanthanide (europium, cerium) triple-decker sandwich complexes
Ceroni et al. Dinuclear and dendritic polynuclear ruthenium (II) and osmium (II) polypyridine complexes: Electrochemistry at very positive potentials in liquid SO2
Morimoto et al. Crystal engineering of photochromic diarylethene single crystals
Ito et al. Molecular design and application of luminescent materials composed of group 13 elements with an aggregation-induced emission property
Kobayashi et al. Fast photochromic molecules toward realization of photosynergetic effects
Nakagawa et al. Photoresponsive europium (III) complex based on photochromic reaction
Zhang et al. Phosphorescent decanuclear bimetallic pt6m4 (m= zn, fe) tetrahedral cages
Vila et al. Photochromic and redox properties of bisterpyridine ruthenium complexes based on dimethyldihydropyrene units as bridging ligands
Nifiatis et al. Comparison of the photophysical properties of a planar, PtOEP, and a nonplanar, PtOETPP, porphyrin in solution and doped films
Wu et al. Photochromic barbiturate pendant-containing benzo [b] phosphole oxides with co-assembly property and photoinduced morphological changes
Yamaguchi et al. Multistate photochromism of 1-phenylnaphthalene-bridged imidazole dimer that has three colorless isomers and two colored isomers
Kume et al. Metal-based photoswitches derived from photoisomerization
Moriyama et al. Negative photochromic 3-phenylperylenyl-bridged imidazole dimer offering quantitative and selective bidirectional photoisomerization with visible and near-infrared light
Xie et al. Deciphering erasing/writing/reading of near-infrared fluorophore for nonvolatile optical memory
DeRosa et al. Amplified heavy-atom free phosphorescence from meta-dimethoxy difluoroboron β-diketonate charge-transfer materials
Lvov et al. Revisiting Peri‐Aryloxyquinones: From a Forgotten Photochromic System to a Promising Tool for Emerging Applications
Wong et al. Synthesis, photophysical, photochromic, and photomodulated resistive memory studies of dithienylethene-containing copper (I) diimine complexes