[go: up one dir, main page]

JPS62163949A - Optical type liquid detection sensor - Google Patents

Optical type liquid detection sensor

Info

Publication number
JPS62163949A
JPS62163949A JP530086A JP530086A JPS62163949A JP S62163949 A JPS62163949 A JP S62163949A JP 530086 A JP530086 A JP 530086A JP 530086 A JP530086 A JP 530086A JP S62163949 A JPS62163949 A JP S62163949A
Authority
JP
Japan
Prior art keywords
light
transparent medium
liquid
detected
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP530086A
Other languages
Japanese (ja)
Inventor
Takashi Sugihara
孝志 杉原
Masaya Masukawa
枡川 正也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP530086A priority Critical patent/JPS62163949A/en
Publication of JPS62163949A publication Critical patent/JPS62163949A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/43Refractivity; Phase-affecting properties, e.g. optical path length by measuring critical angle

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To enable the detection of a liquid especially water drops with excellent selectivity by optical method, by projecting two luminous fluxes into a transparent medium at a different incident angles from the side opposite to a detecting surface to compare changes in intensity of reflected light detected with a light receiving element. CONSTITUTION:Light emitting elements 21 and 22 are arranged on an inner surface 1b opposite to a detecting surface 1a of a transparent medium 1 while light receiving elements 31 and 32 are arranged at a fixed angle. Moreover, light emitted from the light emitting elements 21 and 22 as a light source are introduced into the transparent medium 1 at a different angle with a prism 4 optically bonded on the inner surface 1b of the transparent medium. A incident light propagating through the transparent medium 1 by total reflection is led out of the transparent medium 1 through a prism 5 optically bonded on the inner surface 1b to irradiate light receiving elements 31 and 32. The intensity of the detection light with the light receiving elements 31 and 32 is outputted as electrical signal and compared with a comparator circuit to detect presence of water (rain drops or the like).

Description

【発明の詳細な説明】 く技術分野〉 本発明は水(雨)滴等の液体を選択性良く高精度に検知
する光学式センサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to an optical sensor that detects liquids such as water (rain) drops with good selectivity and high accuracy.

〈従来技術とその問題点〉 液体検知あるいは液体識別セ/すは、特に自動車におい
て降雨を検知しワイパーあるいはパワーウィンドウやサ
ンルーフ等を自動的に動作させるといった様な場合や一
般家庭での屋内からの降雨認識等に有用であり、従来よ
り結露センサあろいは圧電素子を用いたセンサ等が知ら
れている。前者は結露センサ表面への水の付着による素
子電極間の急激な電気抵抗の変化により、まだ後者は自
動車の走行中に圧電素子に水滴が衝突した時の圧電効果
によって生ずる起電力により、夫々雨滴を検出するもの
である。しかしながらいずれの場合もセンサは雨滴を検
出するだめに自動車外あるいは屋外に設置されることに
なり、センサの置かれる環境条件ばかなり厳しいものと
なる。例えばセンサ素子に対して導電性のホコリ等の付
着あるいは泥はね、小石の衝突等センサにとって誤動作
を生じる要因が非常に多くまた自然条件の変動によリセ
ンサ寿命も著しく影響を受ける。そのため、第4図に示
した様に自動車のフロントガラス(41)の内側に2本
の平行な電極(42)を形成し、フロントガラス(41
)外側面に雨滴(43)が付着した際の2本の電極(4
2)間の静電容量変化をもって検出するものが提唱され
ている。これはセンサの構成部品を自動車内部に配置し
であるため、外部環境の影響を受けにくい構成であるが
、充分な検出出力を得るだめには電極(47J間隔を小
さくする必要があり、従って雨滴の検出面積はかなり小
さなものとなるかあるいは大量の雨滴の付着が必要とな
り検出感度の点で問題がある。さらに、雨滴以外の液体
が付着した際も出力に変化を生じ液体識別能にも劣る。
<Prior art and its problems> Liquid detection or liquid identification systems are used especially in cases such as detecting rainfall and automatically operating wipers, power windows, sunroofs, etc. in automobiles, and in applications such as indoor operation in ordinary homes. It is useful for rain recognition, etc., and dew condensation sensors and sensors using piezoelectric elements are conventionally known. The former is caused by a sudden change in electrical resistance between the element electrodes due to water adhering to the surface of the dew condensation sensor, and the latter is caused by the electromotive force generated by the piezoelectric effect when water droplets collide with the piezoelectric element while the car is running. This is to detect. However, in either case, the sensor must be installed outside the vehicle or outdoors in order to detect raindrops, and the environmental conditions in which the sensor is placed are quite severe. For example, there are many factors that can cause sensor malfunctions, such as adhesion of conductive dust or the like to the sensor element, splashing of mud, and collisions with small stones, and changes in natural conditions can significantly affect the sensor's lifespan. Therefore, as shown in Fig. 4, two parallel electrodes (42) are formed inside the windshield (41) of the automobile.
) Two electrodes (4) when raindrops (43) adhere to the outer surface.
2) A method has been proposed that detects the change in capacitance between the two. This is a configuration in which the sensor components are placed inside the car, making it less susceptible to the effects of the external environment. However, in order to obtain sufficient detection output, it is necessary to reduce the spacing between the electrodes (47J), so raindrops The detection area is quite small or a large amount of raindrops must be attached, which poses a problem in terms of detection sensitivity.Furthermore, when liquid other than raindrops adheres, the output changes and the liquid discrimination ability is also poor. .

そこで、自動車のフロントガラス等を検出面として、光
学的手法を、駆使することによって水(雨)滴を検出す
るセンサを考えることができる。すなわち、第5図に示
す様にフロントガラス(51)に対しその内側から光源
光を入射し、その入射光を常にはフロントガラス(51
)内で全反射伝搬し最終端で受光素子ωに入射する様に
設定しておき、フロントガラス(51)の外側面に雨滴
が付着した時に空気と雨滴との屈折率の差により前記全
反射条件が崩れ入射光が受光素子団に受光されないとい
った光学的構成のセンサが考えられている。これは検出
面がフロントガラス(51)でありセンサを構成する光
学部品を全てフロントガラス(51)の内側すなわち車
内に配置することができ、ホコリ、泥はね等にょるセン
サ寿命への影響が低減されるとともに耐環境性に優れた
センサとすることができる。しかし、全反射条件によっ
て検知しようとする検出部に雨滴以外の液体例えば自動
車ワックス等のオイルの付着にても全反射条件が乱され
、雨滴の場合と同様な出力変化を示し検出液体の識別に
大きな問題を有している。
Therefore, it is possible to consider a sensor that detects water (rain) droplets by making full use of optical techniques using an automobile windshield or the like as a detection surface. That is, as shown in FIG.
), and is set so that it propagates through total reflection and enters the light receiving element ω at the final end, and when raindrops adhere to the outer surface of the windshield (51), the total reflection occurs due to the difference in refractive index between the air and the raindrops. Sensors with optical configurations have been considered in which the conditions are broken and the incident light is not received by a group of light-receiving elements. The detection surface is the windshield (51), and all the optical parts that make up the sensor can be placed inside the windshield (51), that is, inside the car, so that dust, mud, etc. can affect the sensor life. It is possible to provide a sensor that is reduced and has excellent environmental resistance. However, if a liquid other than raindrops, such as oil such as automobile wax, adheres to the detection unit that is trying to detect the total reflection condition, the total reflection condition will be disturbed, and the output will change in the same way as in the case of raindrops, making it difficult to identify the detected liquid. It has a big problem.

〈発明の目的〉 本発明は以上に述べた様な従来の液体検知あるいは液体
識別センサの有していた欠点を解消するだめになされた
ものであり、光学的手法により液体特に水(雨)滴の選
択性に優れた検出を行うものである。
<Object of the Invention> The present invention has been made to overcome the drawbacks of conventional liquid detection or liquid identification sensors as described above. It performs detection with excellent selectivity.

センサの構成は、検出面を有するガラス、高分子樹脂あ
るいはプリズム等の透明媒体において検出面の反対側か
ら異なる入射角度にて2本の光束を透明媒体に入射し、
2光束のうち1光束を透明媒体の検出面に付着する水滴
等の被検出物と透明媒体の界面における臨界角以上に設
定し、他方をその臨界角よりも小さい角度に設定するこ
とにより検出面に水滴が付着した際の2光束夫々の透明
媒体と水滴との界面における反射特性すなわち受光素子
にて検出したディジタル的な反射光強度変化を比較する
ことにより水滴を検知し、水(屈折率n=1.33)と
水より屈折率の大きい液体との高精度な識別を可能とし
良好なる出力を得ている。
The configuration of the sensor is such that a transparent medium such as glass, polymer resin, or prism has a detection surface, and two beams of light are incident on the transparent medium at different incident angles from opposite sides of the detection surface.
By setting one of the two light beams at an angle greater than or equal to the critical angle at the interface between the transparent medium and the object to be detected, such as a water droplet adhering to the detection surface of the transparent medium, and setting the other beam at an angle smaller than that critical angle, the detection surface The water droplet is detected by comparing the reflection characteristics of the two light beams at the interface between the transparent medium and the water droplet, that is, the change in digital reflected light intensity detected by the light receiving element, when the water droplet is attached to the water (refractive index n). = 1.33), which enables highly accurate discrimination between liquids with a higher refractive index than water, resulting in good output.

又、センサを構成する光源、受光素子、プリズム等を検
出面の反対側に配置できることから車のフロントガラス
の外側を検出面とした場合、車内にセンサを設置するこ
とができ、耐環境性に優れた構成とすることができる。
In addition, since the light source, light receiving element, prism, etc. that make up the sensor can be placed on the opposite side of the detection surface, if the detection surface is on the outside of the car windshield, the sensor can be installed inside the car, improving environmental resistance. An excellent configuration can be achieved.

さらには、透明媒体内を検出光束が全反射を繰り返しな
がら多重反射にて伝搬を行なう様に光源と受光素子を設
けであるため透明媒体の検出面における検出面積の拡大
を図ることができる。微小の水滴にても高感度に検知が
行なわれ、またセンサの構成が単純であり安価なセンサ
とすることが可能で実用上極めて有益な構成となる。こ
の様に本発明は上記幾多の利点を有する光学式液体検出
センサを提供することを目的とするものである。
Furthermore, since the light source and the light receiving element are provided so that the detection light beam propagates through multiple reflections while repeating total reflection within the transparent medium, the detection area on the detection surface of the transparent medium can be expanded. Even minute water droplets can be detected with high sensitivity, and the structure of the sensor is simple and inexpensive, making it an extremely useful structure in practice. Thus, it is an object of the present invention to provide an optical liquid detection sensor having many of the advantages mentioned above.

〈実施例1.〉 第1図は本発明の1実施例を示す光学式液体検出センサ
の構成図である。透明媒体(1)の検出面(1a)に対
して反対の内面(1b)に発光素子(21) 、 (2
2) 、受光素子+31+ 、 (32)、を一定角度
にて配設し、さらに光源である発光素子(21+ 、 
(22)からの出射光は透明媒体の内面(1b)に光学
的に接着(結合)されたプリズム(4)にてそれぞれ異
なる角度で透明媒体(1)中に導入される。透明媒体(
1)中を図示する如く全反射にて伝搬した入射光は同様
に内面(1b)に光学的に接着されたプリズム(5)を
介して透明媒体(1)より導出され受光素子(31) 
、 (32)に照射される。夫々の受光素子(31) 
、 (32)における検出光強度は電気信号として出力
され、周知の比較回路(コンパレータ)において比較す
ることにより水(雨)滴等の有無が検知される構成とな
っている。
<Example 1. > FIG. 1 is a configuration diagram of an optical liquid detection sensor showing one embodiment of the present invention. Light emitting elements (21), (2
2) The light receiving element +31+, (32) is arranged at a certain angle, and the light emitting element (21+,
The emitted light from (22) is introduced into the transparent medium (1) at different angles by prisms (4) optically bonded (coupled) to the inner surface (1b) of the transparent medium. Transparent medium (
1) As shown in the figure, the incident light propagated by total internal reflection is similarly guided out of the transparent medium (1) via the prism (5) optically bonded to the inner surface (1b) and then to the light receiving element (31).
, (32). Each light receiving element (31)
The detected light intensity in (32) is output as an electric signal, and the presence or absence of water (rain) drops etc. is detected by comparing it in a well-known comparison circuit (comparator).

次に、上述のセンサ構成における水滴検知原理並びにセ
ンサ構成の詳細について説明する。透明媒体(1)には
屈折率n=1.47のパイレックスガラス(以下、単に
ガラスと称す)を用い光源の発光素子(21,) 、 
(22)の夫々からの出射ビームがプリズム(4)を透
過した後ガラス(1)に対して入射角θ1=50°。
Next, the principle of detecting water droplets in the above-described sensor configuration and the details of the sensor configuration will be explained. The transparent medium (1) is made of Pyrex glass (hereinafter simply referred to as glass) with a refractive index of n=1.47, and the light emitting element (21,) of the light source is
After the emitted beams from each of (22) pass through the prism (4), the incident angle θ1=50° with respect to the glass (1).

θ2=700となる様に発光素子+21+ 、 (22
)の角度設定を行う○この2つの入射角を決定するに当
ってはガラス(1)に空気あるいは水が付着していると
きの全反射条件を考慮して導くことができる。すなわち
、ガラス1の屈折率nに=1.47に対し、空気nA 
= 1.00 。
Light emitting elements +21+, (22
) The angle of incidence can be determined by taking into account the conditions for total reflection when air or water is attached to the glass (1). That is, for the refractive index n of glass 1 = 1.47, air nA
= 1.00.

水nw=1.33でありよって空気、水が夫々ガラスに
付着している場合の臨界角のA、ΩWはスネルの法則に
より以下の値として求まる。
Since water nw=1.33, the critical angles A and ΩW when air and water are respectively attached to the glass are determined as the following values according to Snell's law.

、°、0A=42.9°、115w=64.8゜従って
、ガラス(1)の検出面に何も付着していない状態では
ガラス(1)に対して光源から42.9°以上の入射角
で入射した光は全てガラス(1)内で全反射を繰り返し
ながら伝搬して行き、一方、ガラス(1)の検出面に水
滴が付着すると、その水滴の付着した面では全反射角は
ガラス(1)と水の夫々の屈折率で決定されるため、前
述した様に入射角が64.8°以上のものは全反射にて
ガラス(1)内を伝搬して行くが、入射角が42.9°
≦8i(入射角)<64.8°のものは全てガラス(1
)への水滴付着部にて大きな光損失を生じ、ガラス(1
)内をほとんど伝搬できなくなる。そこで、このセンサ
構成では2光源の夫々からの出射光のガラス(1)に対
する入射角を、一方は水の付着にてガラス(1)内の全
反射条件に影響を受ける角度(42,9°≦θ、(64
,8°)、他方は水の付着にてもガラス(1)内の全反
射条件に影響を受けない角度(θ2≧64.8°)に設
定するとともに、水の付着時に異なる入射角度で入射し
た2光束の光強度を比較することにより水の有無を識別
可能とするものである。それ故にθ1=50°、θ2=
70°としている。
, °, 0A = 42.9°, 115w = 64.8° Therefore, when nothing is attached to the detection surface of the glass (1), the incident angle from the light source to the glass (1) is 42.9° or more. All the light incident at the corner propagates while repeating total reflection within the glass (1).On the other hand, when a water droplet adheres to the detection surface of the glass (1), the angle of total reflection on the surface to which the water droplet adheres is the same as that of the glass (1). Since it is determined by the refractive index of (1) and water, as mentioned above, anything with an incident angle of 64.8° or more will propagate within the glass (1) by total internal reflection. 42.9°
≦8i (incidence angle) <64.8° is all glass (1
), a large optical loss occurs at the point where the water droplets adhere to the glass (1
) becomes almost impossible to propagate within. Therefore, in this sensor configuration, the incident angle of the emitted light from each of the two light sources on the glass (1) is set to one angle (42,9 ≦θ, (64
, 8°), and the other is set at an angle (θ2 ≧ 64.8°) that is not affected by the total reflection condition within the glass (1) even when water adheres, and the angle of incidence is different when water adheres. By comparing the light intensities of the two luminous fluxes, it is possible to identify the presence or absence of water. Therefore θ1=50°, θ2=
It is set at 70°.

センサの詳細な動作機構は以下の如くである。The detailed operating mechanism of the sensor is as follows.

ガラス検出面に水滴等の付着していない通常の場合には
2光源からの夫々の入射光はともにガラス(1)内を伝
搬し受光素子(31) 、 (32)に到達する。とこ
ろが、ガラス検出面に水滴が付着すると入射角θ1のも
のは水滴付着部で大きな光損失を生じ受光素子(31)
へはほとんど入射光が到達せず、他方の入射角θ2の光
束は水滴付着と無関係に全反射を操り返し受光素子(Ω
へ入射光が到達する。さらには、ガラス検出面に水滴以
外の液体例えば、車の排気に含まれる油分、カーワック
ス、エンジンオイル。
In a normal case where there are no water droplets or the like attached to the glass detection surface, the respective incident lights from the two light sources propagate within the glass (1) and reach the light receiving elements (31) and (32). However, when a water droplet adheres to the glass detection surface, a large optical loss occurs at the part where the water droplet adheres, and the light receiving element (31)
Almost no incident light reaches the light-receiving element (Ω
The incident light reaches the Furthermore, liquids other than water droplets can be detected on the glass detection surface, such as oil contained in car exhaust, car wax, and engine oil.

一般家庭に使用するサラダ油等のオイルが付着した場合
を考えても、これらオイルの屈折率は水の屈折率に比較
してかなり大きくかつガラスの屈折率に比較的近いため
全反射を形成する臨界角も大きな値(Ω≧〜80°)と
なり、オイルの付着時には入射角θ1.θ2ともに付着
部にて光損失を生じ受光素子へはほとんど入射光が到達
しない。従って、入射角θ4.θ2の2光束のうち、θ
、で入射した光のみが減衰するときに水滴の付着を認識
できるわけである。
Even if we consider the case where oil such as salad oil used in general households is attached, the refractive index of these oils is considerably larger than that of water and relatively close to the refractive index of glass, so it is critical to form total internal reflection. The angle also takes a large value (Ω≧~80°), and when oil is attached, the incident angle θ1. For both θ2, optical loss occurs at the attachment portion, and almost no incident light reaches the light receiving element. Therefore, the incident angle θ4. Of the two luminous fluxes of θ2, θ
The adhesion of water droplets can be recognized when only the incident light is attenuated.

次に、以上の内容を実際の測定結果である第2図と表1
を用いて説明する。
Next, the above contents are shown in Figure 2 and Table 1, which are the actual measurement results.
Explain using.

〔表 1〕 表1は反射率の規格化値を示す。また第2図は第1図の
センサ構成にて横軸に光源光のガラス(1)に対する入
射角θiをとり、縦軸には夫々の入射角度において水あ
るいはオイル(本実施例ではエンジンオイル)付着時の
受光素子(311、((財)にて検出された光強度を同
一の入射角度で空気に対して受光素子に入射した光強度
にノーマライズし反射率(%)としてとっである。この
結果からも明らかな様に、前に述べた内容すなわち入射
角(θi)が42.9°≦θi〈64、「〒は水(図中
の実線に相当)の付着により大きく光損失を生じ、θi
≧64.8°では水の付着に無関係であることが確認さ
れた。さらに、オイル(図中の破線に相当)も入射角θ
i≧〜80°付近まで影響のないことが明らかとなった
。また、反射率(検知光強度)の変動は急峻であり、従
って、表1.に反射率を規格化して示した様に2つの受
光素子+31) 、 ((財)のうち片方のみの光強度
が減衰する時すなわち(θ1.θ2)=(0,1)の場
合のみ水(雨)滴と判断してセンサを動作させることが
可能となる。この様に本実施例のセンサでは2光束を異
なる入射角で用い夫々の反射特性を比較することにより
水以外の液体の付着に対してその影響を受けることなく
、高精度、高感度に水滴のみの検知ができる。尚、透明
媒体(1)としてはパイレックスガラス以外にも各種光
学ガラス。
[Table 1] Table 1 shows the normalized values of reflectance. Furthermore, in FIG. 2, the horizontal axis represents the incident angle θi of the light source light on the glass (1) using the sensor configuration shown in FIG. 1, and the vertical axis represents water or oil (in this example, engine oil) at each incident angle. The light intensity detected by the light receiving element (311, (Incorporated) at the time of attachment is normalized to the light intensity incident on the light receiving element with respect to air at the same incident angle and taken as the reflectance (%). As is clear from the results, the incident angle (θi) is 42.9°≦θi〈64, which causes a large optical loss due to adhesion of water (corresponding to the solid line in the figure). θi
It was confirmed that ≧64.8° has nothing to do with water adhesion. Furthermore, the oil (corresponding to the broken line in the figure) also has an incident angle of θ
It became clear that there was no effect up to i≧~80°. In addition, the variation in reflectance (detected light intensity) is steep, so Table 1. As shown by normalizing the reflectance, two light-receiving elements + 31), (water ( This makes it possible to operate the sensor by determining that it is a raindrop.In this way, the sensor of this embodiment uses two light beams at different angles of incidence and compares the reflection characteristics of each, thereby preventing the adhesion of liquids other than water. However, it is possible to detect only water droplets with high precision and sensitivity without being affected by this.In addition to Pyrex glass, various optical glasses can be used as the transparent medium (1).

高分子樹脂さらには自動車のフロントガラス、リアガラ
ス等をそのまま用いることもできる。まだ光源入射角θ
1.θ2の設定も適用される透明媒体(1)の屈折率を
考慮し、透明媒体(1)に水が付着した際の全反射臨界
角にて決定され、θ、は臨界角より小さい角度、θ2は
臨界角以上で80°以下程度に設定すれば良い。
Furthermore, polymer resins such as automobile windshields, rear glass, etc. can also be used as they are. Still light source incident angle θ
1. The setting of θ2 is also determined by the critical angle of total reflection when water adheres to the transparent medium (1), considering the refractive index of the applied transparent medium (1), and θ is an angle smaller than the critical angle, θ2 may be set to be greater than or equal to the critical angle and less than or equal to 80°.

本実施例のセンサは、自動車のワイパー、パワーウィン
ドウ、サンルーフ等の自動制御あるいは家庭内での降雨
認識等広範な用途への適用が可能となる。
The sensor of this embodiment can be applied to a wide range of applications, such as automatic control of automobile wipers, power windows, sunroofs, etc., and rain recognition in the home.

〈実施例2.〉 第3図は透明媒体プリズム(BK−7)(6)を用いプ
リズム(6)の検出面における光反射を1回とした構成
のものである。夫々の発光素子(7)から出射された光
はプリズム(6)で反射された後、各受光素子(8)へ
到達する。水滴の検出原理あるいは検出方法については
実施例1にて説明した内容と同様であるが、検出面を有
する透明媒体としてプリズム自体を用いているだめ、セ
ンサの部品点数の低減が図れ、入射光の透明媒体への光
学的結合も容易になる等、一層安価なセンサとすること
ができる。
<Example 2. 3 shows a configuration in which a transparent medium prism (BK-7) (6) is used and light is reflected once on the detection surface of the prism (6). The light emitted from each light emitting element (7) is reflected by a prism (6) and then reaches each light receiving element (8). The principle or method of detecting water droplets is the same as that explained in Example 1, but since the prism itself is used as the transparent medium with the detection surface, the number of parts of the sensor can be reduced, and the amount of incident light can be reduced. Optical coupling to a transparent medium is also facilitated, resulting in a more inexpensive sensor.

〈発明の効果〉 以上詳述した如く、本発明に係る光学式液体検出センサ
は以下に示す様な実用上極めて有益な特性を有する。
<Effects of the Invention> As detailed above, the optical liquid detection sensor according to the present invention has the following practically extremely useful characteristics.

(1)光学的手法にて水滴を検知するため、特に自動車
において各種自動制御のだめの水滴検出あるいは家庭内
での降雨認識を行なう場合、センサの構成部品を自動車
内等検出面の内側に設定することができるため、外部の
環境変化に対して良好なる耐性を有する。
(1) Since water droplets are detected using an optical method, the sensor components are set inside the detection surface, such as inside the car, especially when detecting water droplets in various automatic controls in cars or recognizing rain in the home. Therefore, it has good resistance to external environmental changes.

(2)異なる入射角度の2光束を用い水滴付着時の2光
束夫々の反射特性(反射光強度)の比較を行って水滴の
検出を行うためセンサの検出面に水以外の液体が付着し
た際もその影響を受けることなく検出対象の選択性に優
れている。
(2) Water droplets are detected by comparing the reflection characteristics (reflected light intensity) of each of the two light beams when a water droplet adheres using two light beams with different incident angles, so when a liquid other than water adheres to the detection surface of the sensor. It also has excellent selectivity for the detection target without being affected by this.

(3)センサの構成が簡単であり安価なセンサとするこ
とができる。
(3) The sensor has a simple configuration and can be inexpensive.

以上述べた様に本発明の光学式液体検出センサは安価に
作製できるとともに良好なる耐環境性を有し、まだ2光
束を用いて光の全反射を利用することにより水滴を検知
するため、高感度でかつ水滴検知の選択性に優れた高精
度な検出を可能とするものである。
As described above, the optical liquid detection sensor of the present invention can be manufactured at low cost and has good environmental resistance. This enables highly accurate detection with high sensitivity and excellent selectivity for detecting water droplets.

【図面の簡単な説明】[Brief explanation of drawings]

□′1・ 第に図は本発明の1実施例を示す2光束を用いた多重反
射型の光学式液体検出センサの構成図である。第2図は
第1図に示すセンサの水とオイル付着時の特性を示す特
性図である。第3図は本発明の他の実施例を示す2光束
を用いた1回反射型の光学式液体検出センサの構成図で
ある。 第4図は静電容量式雨滴センサの原理図である。 第5図は1光束で全反射特性の変化より雨滴を検出する
光学式センサの構成図である。 1、・・・ガラス、la、・・・検出面、lb、・・・
内面、7、.21..22、・・・発光素子、8..3
1− 、32.・・・受光素子、4、・・・光入射用プ
リズム、5.・・・光出射用プリズム、6、・・・プリ
ズム 代理人 弁理士 福 士 愛 彦(他2名)第2図
□'1. The first figure is a configuration diagram of a multiple reflection type optical liquid detection sensor using two light beams, showing one embodiment of the present invention. FIG. 2 is a characteristic diagram showing the characteristics of the sensor shown in FIG. 1 when water and oil are attached. FIG. 3 is a configuration diagram of a single reflection type optical liquid detection sensor using two light beams, showing another embodiment of the present invention. FIG. 4 is a diagram showing the principle of a capacitive raindrop sensor. FIG. 5 is a configuration diagram of an optical sensor that detects raindrops based on changes in total reflection characteristics with one light beam. 1.Glass, la, detection surface, lb,...
Inside, 7. 21. .. 22, . . . light emitting element, 8. .. 3
1-, 32. . . . Light receiving element, 4. . . . Prism for light incidence, 5. ...Light-emitting prism, 6, ... Prism agent Patent attorney Aihiko Fukushi (and 2 others) Figure 2

Claims (1)

【特許請求の範囲】 1、検出面を有する透明媒体に対し異なる入射角度で2
本の光束を前記検出面の反対側より入射し一方の光束の
入射角を前記検出面に接する被検出液体と前記透明媒体
の界面における全反射の臨界角以上に設定し他方の光束
の入射角を該臨界角よりも小さい角度に設定して成る光
学系と、前記検出面に被検出液体が接した際の前記光束
夫々の前記検出面における反射特性の変化を検出する受
光素子と、該受光素子の検出信号を比較することにより
被検出液体の有無を検知する比較手段と、を具備して成
ることを特徴とする光学式液体検出センサ。 2、検出面に被検出液体または被検出液体以外の物質が
接した際に2光束の夫々の反射光強度を比較することに
より被検出液体を識別する特許請求の範囲第1項記載の
光学式液体検出センサ。 3、前記被検出液体が雨滴雪片または他の水滴である特
許請求の範囲第1項または第2項記載の光学式液体検出
センサ。 4、透明媒体が自動車又は電車の窓ガラスである特許請
求の範囲第1項,第2項又は第3項記載の光学式液体検
出センサ。 5、透明媒体に入射する2光束の検出面における全反射
回数が1回または多数回の多重反射である特許請求の範
囲第1項記載の光学式液体検出センサ。
[Claims] 1. At different angles of incidence on a transparent medium having a detection surface; 2.
A light beam from a book is incident from the opposite side of the detection surface, and the angle of incidence of one light beam is set to be equal to or greater than the critical angle of total reflection at the interface between the transparent medium and the liquid to be detected that is in contact with the detection surface, and the angle of incidence of the other light beam is is set to an angle smaller than the critical angle; a light receiving element that detects a change in the reflection characteristics of each of the light beams on the detection surface when the detection surface is in contact with the liquid to be detected; 1. An optical liquid detection sensor comprising: comparison means for detecting the presence or absence of a liquid to be detected by comparing detection signals of the elements. 2. The optical system according to claim 1, which identifies the liquid to be detected by comparing the respective reflected light intensities of the two light beams when the liquid to be detected or a substance other than the liquid to be detected comes into contact with the detection surface. Liquid detection sensor. 3. The optical liquid detection sensor according to claim 1 or 2, wherein the liquid to be detected is raindrops, snowflakes, or other water droplets. 4. The optical liquid detection sensor according to claim 1, 2, or 3, wherein the transparent medium is a window glass of an automobile or a train. 5. The optical liquid detection sensor according to claim 1, wherein the number of total reflections on the detection surface of the two light beams incident on the transparent medium is one or multiple reflections.
JP530086A 1986-01-14 1986-01-14 Optical type liquid detection sensor Pending JPS62163949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP530086A JPS62163949A (en) 1986-01-14 1986-01-14 Optical type liquid detection sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP530086A JPS62163949A (en) 1986-01-14 1986-01-14 Optical type liquid detection sensor

Publications (1)

Publication Number Publication Date
JPS62163949A true JPS62163949A (en) 1987-07-20

Family

ID=11607398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP530086A Pending JPS62163949A (en) 1986-01-14 1986-01-14 Optical type liquid detection sensor

Country Status (1)

Country Link
JP (1) JPS62163949A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0919443A2 (en) 1997-11-26 1999-06-02 Nippon Sheet Glass Co. Ltd. Transparent substrate equipped with water detection sensor
EP0947403A2 (en) 1998-04-03 1999-10-06 Nippon Sheet Glass Co., Ltd. Water detection sensor having signal transmission function
US5991049A (en) * 1997-07-22 1999-11-23 Nippon Sheet Glass Co., Ltd. Transparent substrate having rain sensor
FR2781576A1 (en) * 1998-07-27 2000-01-28 Valeo Systemes Dessuyage Optical attachment to vehicle windscreen for detecting dirt or stains on surface: comprises transmitter and receiver, parabolic lenses and reflector to produce parallel light paths with internal reflections
US6147753A (en) * 1998-05-12 2000-11-14 Nippon Sheet Glass Co., Ltd. Multilayer, cushioned liquid drop detector
US6153995A (en) * 1998-04-03 2000-11-28 Nippon Sheet Glass Co., Ltd. Water drop detection sensor
WO2005098404A1 (en) * 2004-03-30 2005-10-20 Yamatake Corporation Detector for detecting state on detection surface
EP1705086A1 (en) * 2005-03-22 2006-09-27 Leopold Kostal GmbH & Co. KG Optoelectronic sensor device for a motor vehicle
DE102007052704B4 (en) * 2007-11-06 2021-04-01 Kostal Automobil Elektrik Gmbh & Co. Kg Optoelectronic sensor device for a motor vehicle

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5991049A (en) * 1997-07-22 1999-11-23 Nippon Sheet Glass Co., Ltd. Transparent substrate having rain sensor
EP0919443A2 (en) 1997-11-26 1999-06-02 Nippon Sheet Glass Co. Ltd. Transparent substrate equipped with water detection sensor
EP0947403A2 (en) 1998-04-03 1999-10-06 Nippon Sheet Glass Co., Ltd. Water detection sensor having signal transmission function
US6153995A (en) * 1998-04-03 2000-11-28 Nippon Sheet Glass Co., Ltd. Water drop detection sensor
US6147753A (en) * 1998-05-12 2000-11-14 Nippon Sheet Glass Co., Ltd. Multilayer, cushioned liquid drop detector
FR2781576A1 (en) * 1998-07-27 2000-01-28 Valeo Systemes Dessuyage Optical attachment to vehicle windscreen for detecting dirt or stains on surface: comprises transmitter and receiver, parabolic lenses and reflector to produce parallel light paths with internal reflections
WO2005098404A1 (en) * 2004-03-30 2005-10-20 Yamatake Corporation Detector for detecting state on detection surface
US7380980B2 (en) 2004-03-30 2008-06-03 Yamatake Corporation Detector for detecting state on detection surface
EP1705086A1 (en) * 2005-03-22 2006-09-27 Leopold Kostal GmbH & Co. KG Optoelectronic sensor device for a motor vehicle
DE102007052704B4 (en) * 2007-11-06 2021-04-01 Kostal Automobil Elektrik Gmbh & Co. Kg Optoelectronic sensor device for a motor vehicle

Similar Documents

Publication Publication Date Title
US6668104B1 (en) Optical sensor
EP0869043B1 (en) Sensing device for determining the degree of wetting and soiling of a windscreen
US7348586B2 (en) Exterior element sensor
US6153995A (en) Water drop detection sensor
JP2002500769A (en) Light sensor
JPS62163949A (en) Optical type liquid detection sensor
US4589771A (en) Electro-optical liquid detector assembly
JPH11157417A (en) Transparent board with detection sensor for deposit
JPH09257952A (en) Condensation and raindrop detection sensor and its detection method
GB2309300A (en) Determination of the presence of moisture on a windscreen
CN210734092U (en) Rainfall sensing device of automatic windshield wiper system
JPH04507227A (en) Method and device for controlling windscreen wipers
JPS6333645A (en) Optical liquid detector
JP2002524756A (en) Optical sensor
JPS5889430A (en) Wiper and illuminator control
CN110132904B (en) Optical structure for detecting dynamic and static rain and snow in vehicle-mounted sensor
CN113933914B (en) Anti-interference rainfall detection method and equipment
JPS63144239A (en) Optical liquid detecting method
CN203587495U (en) Raindrop Sensing Device
JPS5984141A (en) Water droplet detector
JPS59106348A (en) Automatic wiper control device
JPH11295214A (en) Sensor for detecting waterdrop and quantity of light
CN210294579U (en) Rain sensor for wiper system of rail transit locomotive
JPH1062336A (en) Raindrop detector
JPS6349712Y2 (en)