JPS6216073A - Power converter - Google Patents
Power converterInfo
- Publication number
- JPS6216073A JPS6216073A JP15151785A JP15151785A JPS6216073A JP S6216073 A JPS6216073 A JP S6216073A JP 15151785 A JP15151785 A JP 15151785A JP 15151785 A JP15151785 A JP 15151785A JP S6216073 A JPS6216073 A JP S6216073A
- Authority
- JP
- Japan
- Prior art keywords
- current
- circuit
- inverter section
- detecting
- slope
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Dc-Dc Converters (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は時間の経過と共にt流値が上昇する傾斜部を有
する波形の′a流を断続的に生ずるインバータ部を備え
た電力変換装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a power conversion device equipped with an inverter section that intermittently generates a waveform 'a current having a slope portion in which the t current value increases with the passage of time. .
し従来の技術〕
先ず第4図により従来の電力変換装置の一例について説
明する0
直流入力端子1,2間に印加される直流電圧は、′電力
変換用トランス3A及びスイッチング半導体素子3Bな
どからなるインバータ部乙により交流電圧に変換され、
その交流7に圧は整流平滑回路4により平滑された直流
電圧に変換される。この直流電圧は出力端子5.6金介
して負荷(図示せず)に印加され、また出力電圧検出回
路7により検出され、その出力電圧検出信号は制御回v
!68に与えられる0イ/バ一タ部6のスイッチング半
導体素子6Bを流れる電流は変流器9A、整流器9B及
び抵抗9Cからなる電流検出回路9により検出される。[Prior art] First, an example of a conventional power conversion device will be explained with reference to FIG. It is converted into AC voltage by inverter part B,
The AC voltage 7 is converted into a smoothed DC voltage by a rectifying and smoothing circuit 4. This DC voltage is applied to a load (not shown) through the output terminal 5 and 6, and is also detected by the output voltage detection circuit 7, and the output voltage detection signal is
! The current flowing through the switching semiconductor element 6B of the 0 i/verter section 6, which is applied to the 0 input/verter section 6, is detected by the current detection circuit 9 consisting of a current transformer 9A, a rectifier 9B, and a resistor 9C.
その抵抗9Cの両端の電圧が電流検出信号として比較器
11に入力され、基準電源120基準電圧と比較される
1、比較器11は電流検出信号が基準電圧t超えるとき
、制御回路8に信号を出力し、制御回路8は駆動回路に
信号を与えスイッチング半導体素子3]1nオフさせる
。The voltage across the resistor 9C is input to the comparator 11 as a current detection signal and compared with the reference voltage of the reference power supply 120. When the current detection signal exceeds the reference voltage t, the comparator 11 sends a signal to the control circuit 8. The control circuit 8 gives a signal to the drive circuit to turn off the switching semiconductor element 3]1n.
ここで電流検出について更に詳しく述べると、インバー
タ部6のスイッチング半導体素子6Bのスイッチング動
作に伴い、オ6図(A)に示すような出力電流に比例し
た直流成分Idcと時間の経過と共に電流値が上昇する
(以下右上9と言う)傾斜部Saと全合成した波形の電
流が電力変換用トランスの1次巻線に生じる。この右上
りの傾斜部Saはイ/パータ部6Aの電力変換用トラン
スの励磁電流と整流平滑回路4の平滑用チョークの電流
が時間と共に増加するために生じる。ここで変流器9A
のコアとして断面積の大きいものを用いれば、変流器9
Aの2次側に得られる電流は同図(B)の実線で示すよ
うな右上9の傾斜部Sbを有する波形の検出電流が得ら
れる。この傾斜部sb’6gする検出m流は抵抗9Cの
両端に、同図(C)に示すような右上シの傾斜部Scf
有する電流検出信号を生ずる。比較回路11はこの電流
検出信号と基準′遡源12の基準電圧とを比較し、電流
検出信号が基準電圧を超えるときスイッチング半導体素
子3Bへオフ信号を送出する、
このとき’ia検出信号が右上りであれば、直流成分i
dcが小さい内は基準電圧に達することがないが、直流
成分が大きくなると、電流検出信号の傾斜部Scの右端
が最初に基準電圧に達することになり、更に直流成分工
dcが大きくなると、スイッチング半導体素子を流れる
電流のパルス幅は石基よす徐々に絞られる。すなわち、
直流成分工dcの大きさに従い連続的にパルス幅制御を
行うことができ、出力電圧−電流特性はオ6図(g)に
示すような定電流垂下特性を示すことになる。定電流垂
下特性は蓄電池を充電する場合などには重要な特性であ
り、蓄電池電圧が低下していても一定電流で充電するこ
とを可能とするものである。To explain the current detection in more detail here, with the switching operation of the switching semiconductor element 6B of the inverter section 6, the DC component Idc proportional to the output current and the current value change over time as shown in Figure 6(A). A current having a waveform totally synthesized with the rising slope portion Sa (hereinafter referred to as upper right 9) is generated in the primary winding of the power conversion transformer. This upward slope Sa occurs because the excitation current of the power conversion transformer of the converter section 6A and the current of the smoothing choke of the rectifier and smoothing circuit 4 increase with time. Here, current transformer 9A
If a core with a large cross-sectional area is used, the current transformer 9
The current obtained on the secondary side of A is a detection current having a waveform having a slope Sb at the upper right corner 9 as shown by the solid line in FIG. The detected flow m at the slope part sb'6g is applied to both ends of the resistor 9C at the slope part Scf in the upper right corner as shown in the same figure (C).
generates a current detection signal with a The comparison circuit 11 compares this current detection signal with the reference voltage of the reference source 12, and when the current detection signal exceeds the reference voltage, sends an off signal to the switching semiconductor element 3B. If it is up, the DC component i
As long as dc is small, it will not reach the reference voltage, but as the DC component increases, the right end of the slope part Sc of the current detection signal will reach the reference voltage first, and as the DC component increases further, the switching The pulse width of the current flowing through the semiconductor device is gradually narrowed down. That is,
Pulse width control can be performed continuously according to the magnitude of the DC component dc, and the output voltage-current characteristic exhibits a constant current drooping characteristic as shown in Fig. 6 (g). The constant current drooping characteristic is an important characteristic when charging a storage battery, and allows charging with a constant current even when the voltage of the storage battery is lowered.
しかし電源のハイブリッドIC化など、電力変換装置に
も小型軽量化が強く要求されており、この要求に応える
ためには変流器の小型化も必要になる。変流器全小型化
、つまりそのコアを十分に小さくすると、当然のことな
がら変流器に流れる励磁xiが増大する。この励磁電流
の増大の傾斜がオ6図(A)に示す変流器9Aの1次側
の電流の傾斜Sa以上になると、変流器の2次側に検出
される′WL流は同図CB)で鎖線で示すように、頂部
がフラットか或いは時間の経過と共に電流値が低下する
(以下右下シと言う)傾斜部を有する波形になる。この
様に伝達比の低下が大きい場合、スイッチング半導体素
子′t−流れる電流全検出し、その電流検出信号全制御
要素として利用することは実際上不可能である。However, there is a strong demand for power converters to be smaller and lighter due to the use of hybrid ICs for power supplies, and to meet this demand, it is also necessary to downsize current transformers. When a current transformer is completely downsized, that is, when its core is made sufficiently small, the excitation xi flowing through the current transformer naturally increases. When the slope of increase in this exciting current exceeds the slope Sa of the current on the primary side of current transformer 9A shown in Figure 6 (A), the 'WL current detected on the secondary side of the current transformer is As shown by the chain line in CB), the waveform has a flat top or a sloped portion where the current value decreases over time (hereinafter referred to as lower right C). When the transmission ratio is greatly reduced in this way, it is practically impossible to detect all the current flowing through the switching semiconductor element 't' and use the current detection signal as a control element.
つまり電流検出信号が右下シの傾斜部金有する波形にな
ると、その電流検出信号が基準電圧を越える場合には、
必ずその立上り部が最初に基準電圧に達することになる
のでパルス巾を急激に絞るため、連続的なパルス巾制御
はできなくなる。この時の出力電圧電流特性は図6(F
)に示すように7の学籍性となると共に、垂下開始点と
7の字特性を描く任意の一点とを急激に往復する不安定
、不連続なものとなる。この特性では:lI電池の充電
には不具合であり、また並列運転時には、任意の一台の
垂下開始点での不安定制御(乱調〕、不連続制御を生じ
、これも不具合となる。In other words, when the current detection signal has a waveform with the slope shown in the lower right corner, if the current detection signal exceeds the reference voltage,
Since the rising portion always reaches the reference voltage first, the pulse width is rapidly narrowed down, making continuous pulse width control impossible. The output voltage-current characteristics at this time are shown in Figure 6 (F
), it becomes unstable and discontinuous, rapidly going back and forth between the drooping starting point and an arbitrary point that depicts the figure-7 characteristic. This characteristic is a problem when charging the lI battery, and during parallel operation, unstable control (turbulence) and discontinuous control occur at the starting point of drooping of any one device, which also becomes a problem.
f流器を流れる励磁電流に起因する伝達比の低下を補償
するための検出電流積分回路とインバータ部の動作周波
数に同期して前記検出電流積分回路の積分値をクリアす
るスイッチとラミ流検出回路に加える。A detection current integrator circuit for compensating for a reduction in transmission ratio caused by the excitation current flowing through the f-current device, a switch for clearing the integrated value of the detection current integrator circuit in synchronization with the operating frequency of the inverter section, and a Lami current detection circuit. Add to.
変流器を十分に小型化したことによりその2次側に得ら
れる検出電流が頂部の平坦な波形、又は右下υの傾斜部
を有する断続的な波形であっても、その検出電流全積分
する検出電流積分回路の両端の電圧を電流検出信号とし
、またその積分値をインバータの動作周波数に同期させ
てクリアしているので、右上υの傾斜部を有する波形の
1iI流検出信号′に得ることが出来る。Even if the detected current obtained on the secondary side by sufficiently miniaturizing the current transformer is a flat waveform at the top or an intermittent waveform with a slope of υ in the lower right, the total integral of the detected current The voltage across the detection current integration circuit is used as the current detection signal, and the integrated value is cleared in synchronization with the operating frequency of the inverter, so a 1iI current detection signal' with a waveform having a slope of υ in the upper right corner is obtained. I can do it.
第1図によp本発明に係る電力変換装置の一実施例を説
明する。前述した第4図における記号と同一の記号は等
しい部材金示す。An embodiment of a power conversion device according to the present invention will be described with reference to FIG. The same symbols as those in FIG. 4 described above indicate equivalent parts and metals.
電流検出回路9において、抵抗9Cとコンデ/す9Dと
が検出を流槙分回路全構成し、トランジスタのようなス
イッチ9Eがコンデ/す9Dの積分値を周期的にクリア
する。In the current detection circuit 9, a resistor 9C and a capacitor 9D constitute the entire detection circuit, and a switch 9E such as a transistor periodically clears the integrated value of the capacitor 9D.
変流器9Aは、その2次側の検出電流の傾斜部が右上り
であっても傾斜が非常に緩やか、或いはフラット、又は
右下りになる程度に小型化されている。The current transformer 9A is miniaturized to the extent that even if the slope of the detected current on the secondary side is upward to the right, the slope is very gentle, flat, or downward to the right.
変流器9Aの2次側に得られる検出電流が、第6図CB
)でilA線で示される右下pの#j斜の波形でおる場
合、その検出電流は整流器9Bにより整流され、抵抗9
Ct−介してコンデンサ9Dに流れ、これ全充電する。The detected current obtained on the secondary side of current transformer 9A is shown in Figure 6 CB.
), the detected current is rectified by the rectifier 9B, and the detected current is rectified by the resistor 9.
It flows through Ct- to the capacitor 9D and fully charges it.
この期間は勿論、スイッチ9Eは開いた状態にある。従
って、検出1iL流禎分回路の両端の電圧は抵抗9Cの
電圧降下とコンデ/す9Dの充電々圧との和となる。During this period, of course, the switch 9E remains open. Therefore, the voltage across the detection circuit 1iL is the sum of the voltage drop across the resistor 9C and the charging voltage across the capacitor 9D.
抵抗9Cの両痛の電圧は、それ電流れる電流が第6図(
B)の鎖線で示すような右下りの傾斜部をもつ波形なの
で、同図C,C)の鎖線で示すような右下9の頌@部七
射する波形となり、コンデ/す91)の光電々圧は同図
(L))に示すような右上りの輸斜の波形となる。従っ
て、これらの電圧の和が所定の右上りの#A斜部を有す
るよう検出電流積分回路の充電時定敷金選定すれば、右
上ジの#4斜を有する電流検出信号が得られる。The voltage on both sides of the resistor 9C is the current flowing through it as shown in Figure 6 (
Since the waveform has a downward slope to the right as shown by the dashed line in B), it becomes a waveform that radiates seven times from the lower right corner 9 as shown by the dashed line in C and C) of the same figure, and the photoelectric wave of Conde/Su91). The pressure has a waveform with an upward slope to the right as shown in (L) in the same figure. Therefore, if the charging time fixed deposit of the detection current integration circuit is selected so that the sum of these voltages has a predetermined #A slope rising to the right, a current detection signal having a #4 slope rising to the upper right can be obtained.
そして好ましくは変流器9Aの1次側の電流の傾f+部
と電流検出信号との傾斜部とがはは等しくなるよう、前
記時定数を選ぶのがよい。Preferably, the time constant is selected so that the slope f+ of the current on the primary side of the current transformer 9A is equal to the slope of the current detection signal.
この様にして得られた′電流検出信号の右上りの傾斜部
が基準電源120基卓′酎圧を超えると\比較器11#
i信号全制御回路8に出力する。制御回路8はこの信号
に基づいて駆動信号tスイッチ9Eに与え、これ全閉じ
、コンデ/す9Dの充電々街を放tiせる。この積分値
のクリアは次のサイクルの1訛が通過する前にクリアさ
れていれば良く、次のサイクルの電流が通過する時点で
はスイッチ9Eが開いていなければいけない。If the upward slope to the right of the current detection signal obtained in this way exceeds the reference voltage of the reference power supply 120, the comparator 11#
The i signal is output to the total control circuit 8. Based on this signal, the control circuit 8 applies a drive signal to the switch 9E, which completely closes the switch 9E and releases the charge from the converter 9D. It is sufficient that this integral value is cleared before one accent of the next cycle passes, and the switch 9E must be open at the time when the current of the next cycle passes.
次に第2図により本発明の別の一実施例を説明する。こ
の図において、第1図の記号と同一の記号のものは等し
い部材を示す。Next, another embodiment of the present invention will be explained with reference to FIG. In this figure, the same symbols as those in FIG. 1 indicate equivalent members.
#JL流検流口出回路9いて、第1の変流器9 A’は
インバータ部乙の2次側を流れる上回@電流に応じた′
−流を得て、その出力端子13.14にインバータ部6
のスイッチング牛導体素子の逆バイアス用エネルギ、或
いは駆動用エネルギなど必要とされる制御電力を与える
ためのものである。第2の変流器9Aは第1の変流器9
A’の2次11111 k流れる電流を検出し、検出
された電流はダイオード9 B %電圧分割用の抵抗9
F。#JL current galvanometer output circuit 9, first current transformer 9 A' corresponds to the upper current flowing on the secondary side of the inverter section B
- current is obtained, and the inverter section 6 is connected to its output terminal 13.14.
This is to provide necessary control power such as reverse bias energy or drive energy for the switching conductor element. The second current transformer 9A is the first current transformer 9
The secondary 11111 k current of A' is detected, and the detected current is passed through the diode 9 B % Resistor 9 for voltage division
F.
及び抵抗90t−介してコンデンサ9Dに流れる。and flows to capacitor 9D via resistor 90t.
この実施例では変流器9 A’及び9A双方の伝達比の
低下が重畳されるので、コンデンサ9Dの充電時定数t
−=択することにより、本発明は特に有効に働く。この
回路の動作は第1図のものと同様であるので省略する。In this embodiment, since the reduction in the transmission ratio of both current transformers 9A' and 9A is superimposed, the charging time constant t of capacitor 9D
The present invention works particularly effectively by selecting -=. The operation of this circuit is the same as that in FIG. 1, so a description thereof will be omitted.
以上の実施例では変流器の2次側の検出電流が右下夛に
なる場合について述べ友が、検出電流が右上りの傾斜部
を有する波形であっても、その傾斜がかなり緩やかな場
合には非常に精度の高い比較器が必要となり、またノイ
ズなどによって動作が不安定かつ不正確になるので、こ
の様な場合にも本発明は非常に有効である5、〔発明の
効果〕
以上述べたように本発明によれば、変流器を小型化し次
ことによるその1次、2次間の伝達比の低下が大きくな
っても、小さな電子部品全数点加えるだけでその伝達比
の低下による電流検出信号の波形のひずみを十分に補償
できるので、全体的に装置を小型化できると共に、電力
変換装置の検出電流による制御を正確に行うことが出来
る。In the above embodiments, we will discuss the case where the detected current on the secondary side of the current transformer slopes downward to the right.Even if the detected current has a waveform with an upward slope to the right, the slope is quite gentle. In this case, a comparator with very high precision is required, and the operation becomes unstable and inaccurate due to noise, etc., so the present invention is also very effective in such cases5. [Effects of the Invention] As described above, according to the present invention, even if the current transformer is downsized and the transmission ratio between its primary and secondary components is significantly reduced, the reduction in the transmission ratio can be reduced simply by adding all the small electronic components. Since distortion in the waveform of the current detection signal caused by this can be sufficiently compensated for, the overall device can be downsized, and the power conversion device can be accurately controlled using the detected current.
第1図及び第2図は本発明に係る電力変換装置の異なる
実施例を示す図、第6図は電力変換装w/Lt説明する
ための波形金示す図、第4図は従来の電力変換装置金示
す図である。
1.2・・・直流入力端子 6・・・インバータ部4
・・・整流平滑回路 5.6・・・出力端子7・
・・電圧検出回路 8・・・制御回路9・・・を
流口出回路 10・・・駆動回路11・・・比較
器
日本電信電話株式会社
(D)
−→七力電チ糺1 and 2 are diagrams showing different embodiments of the power conversion device according to the present invention, FIG. 6 is a diagram showing waveforms for explaining the power conversion device w/Lt, and FIG. 4 is a diagram showing a conventional power conversion device. FIG. 3 is a diagram showing the equipment. 1.2...DC input terminal 6...Inverter section 4
... Rectifier smoothing circuit 5.6 ... Output terminal 7.
... Voltage detection circuit 8... Control circuit 9... Outlet output circuit 10... Drive circuit 11... Comparator Nippon Telegraph and Telephone Corporation (D) -→Shichiryoku Denshi
Claims (1)
断続的に生ずるインバータ部、前記電流を検出する変流
器を少くとも備えた電流検出回路、及び前記電流の電流
検出信号が設定レベルを超えるとき前記インバータ部の
出力を制限するよう制御する機能を少くとも有する制御
回路を備えた電力変換装置において、前記電流検出回路
がその変流器を流れる励磁電流に起因する伝達比の低下
を補償するための検出電流積分回路、及び前記インバー
タ部の動作周波数と同期して前記検出電流積分回路の積
分値をクリアするスイッチを備え、前記検出電流積分回
路の両端の電圧を前記電流検出信号とすることを特徴と
する電力変換装置。an inverter section that intermittently generates a waveform current having a slope that increases over time; a current detection circuit that includes at least a current transformer that detects the current; and a current detection signal of the current that exceeds a set level. In a power conversion device equipped with a control circuit having at least a function of controlling the output of the inverter section, the current detection circuit compensates for a reduction in the transmission ratio caused by the exciting current flowing through the current transformer. and a switch for clearing the integrated value of the detection current integration circuit in synchronization with the operating frequency of the inverter section, and using the voltage across the detection current integration circuit as the current detection signal. A power conversion device characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15151785A JPS6216073A (en) | 1985-07-10 | 1985-07-10 | Power converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15151785A JPS6216073A (en) | 1985-07-10 | 1985-07-10 | Power converter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6216073A true JPS6216073A (en) | 1987-01-24 |
JPH0345984B2 JPH0345984B2 (en) | 1991-07-12 |
Family
ID=15520237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15151785A Granted JPS6216073A (en) | 1985-07-10 | 1985-07-10 | Power converter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6216073A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01222659A (en) * | 1988-02-27 | 1989-09-05 | Fujitsu Denso Ltd | Current-balance switching regulator |
US9609289B2 (en) | 2004-04-15 | 2017-03-28 | Magna Electronics Inc. | Vision system for vehicle |
US9643605B2 (en) | 2002-05-03 | 2017-05-09 | Magna Electronics Inc. | Vision system for vehicle |
US9656608B2 (en) | 2001-07-31 | 2017-05-23 | Magna Electronics Inc. | Driver assist system for vehicle |
US9688200B2 (en) | 2013-03-04 | 2017-06-27 | Magna Electronics Inc. | Calibration system and method for multi-camera vision system |
US9743002B2 (en) | 2012-11-19 | 2017-08-22 | Magna Electronics Inc. | Vehicle vision system with enhanced display functions |
US9940528B2 (en) | 2004-12-23 | 2018-04-10 | Magna Electronics Inc. | Driver assistance system for vehicle |
US9972100B2 (en) | 2007-08-17 | 2018-05-15 | Magna Electronics Inc. | Vehicular imaging system comprising an imaging device with a single image sensor and image processor for determining a totally blocked state or partially blocked state of the single image sensor as well as an automatic correction for misalignment of the imaging device |
US10071676B2 (en) | 2006-08-11 | 2018-09-11 | Magna Electronics Inc. | Vision system for vehicle |
US10457209B2 (en) | 2012-02-22 | 2019-10-29 | Magna Electronics Inc. | Vehicle vision system with multi-paned view |
US10542244B2 (en) | 2011-12-09 | 2020-01-21 | Magna Electronics Inc. | Vehicle vision system with customized display |
US10567748B2 (en) | 2013-05-21 | 2020-02-18 | Magna Electronics Inc. | Targetless vehicular camera calibration method |
US10574885B2 (en) | 2013-05-06 | 2020-02-25 | Magna Electronics Inc. | Method for displaying video images for a vehicular vision system |
US11192500B2 (en) | 2013-02-27 | 2021-12-07 | Magna Electronics Inc. | Method for stitching image data captured by multiple vehicular cameras |
US11265514B2 (en) | 2012-10-05 | 2022-03-01 | Magna Electronics Inc. | Multi-camera calibration method for a vehicle moving along a vehicle assembly line |
US11447070B2 (en) | 2013-05-21 | 2022-09-20 | Magna Electronics Inc. | Method for determining misalignment of a vehicular camera |
US11554717B2 (en) | 2011-04-25 | 2023-01-17 | Magna Electronics Inc. | Vehicular vision system that dynamically calibrates a vehicular camera |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5858905A (en) * | 1981-10-05 | 1983-04-07 | Kawasaki Steel Corp | Controlling method for optimum rolling in hot rolling |
-
1985
- 1985-07-10 JP JP15151785A patent/JPS6216073A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5858905A (en) * | 1981-10-05 | 1983-04-07 | Kawasaki Steel Corp | Controlling method for optimum rolling in hot rolling |
Cited By (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01222659A (en) * | 1988-02-27 | 1989-09-05 | Fujitsu Denso Ltd | Current-balance switching regulator |
US9656608B2 (en) | 2001-07-31 | 2017-05-23 | Magna Electronics Inc. | Driver assist system for vehicle |
US9834142B2 (en) | 2001-07-31 | 2017-12-05 | Magna Electronics Inc. | Driving assist system for vehicle |
US10046702B2 (en) | 2001-07-31 | 2018-08-14 | Magna Electronics Inc. | Control system for vehicle |
US10611306B2 (en) | 2001-07-31 | 2020-04-07 | Magna Electronics Inc. | Video processor module for vehicle |
US10683008B2 (en) | 2002-05-03 | 2020-06-16 | Magna Electronics Inc. | Vehicular driving assist system using forward-viewing camera |
US9643605B2 (en) | 2002-05-03 | 2017-05-09 | Magna Electronics Inc. | Vision system for vehicle |
US10351135B2 (en) | 2002-05-03 | 2019-07-16 | Magna Electronics Inc. | Vehicular control system using cameras and radar sensor |
US10118618B2 (en) | 2002-05-03 | 2018-11-06 | Magna Electronics Inc. | Vehicular control system using cameras and radar sensor |
US11203340B2 (en) | 2002-05-03 | 2021-12-21 | Magna Electronics Inc. | Vehicular vision system using side-viewing camera |
US9834216B2 (en) | 2002-05-03 | 2017-12-05 | Magna Electronics Inc. | Vehicular control system using cameras and radar sensor |
US10015452B1 (en) | 2004-04-15 | 2018-07-03 | Magna Electronics Inc. | Vehicular control system |
US10187615B1 (en) | 2004-04-15 | 2019-01-22 | Magna Electronics Inc. | Vehicular control system |
US10462426B2 (en) | 2004-04-15 | 2019-10-29 | Magna Electronics Inc. | Vehicular control system |
US9609289B2 (en) | 2004-04-15 | 2017-03-28 | Magna Electronics Inc. | Vision system for vehicle |
US11503253B2 (en) | 2004-04-15 | 2022-11-15 | Magna Electronics Inc. | Vehicular control system with traffic lane detection |
US10110860B1 (en) | 2004-04-15 | 2018-10-23 | Magna Electronics Inc. | Vehicular control system |
US9736435B2 (en) | 2004-04-15 | 2017-08-15 | Magna Electronics Inc. | Vision system for vehicle |
US9948904B2 (en) | 2004-04-15 | 2018-04-17 | Magna Electronics Inc. | Vision system for vehicle |
US10306190B1 (en) | 2004-04-15 | 2019-05-28 | Magna Electronics Inc. | Vehicular control system |
US10735695B2 (en) | 2004-04-15 | 2020-08-04 | Magna Electronics Inc. | Vehicular control system with traffic lane detection |
US12118806B2 (en) | 2004-12-23 | 2024-10-15 | Magna Electronics Inc. | Vehicular imaging system |
US11308720B2 (en) | 2004-12-23 | 2022-04-19 | Magna Electronics Inc. | Vehicular imaging system |
US9940528B2 (en) | 2004-12-23 | 2018-04-10 | Magna Electronics Inc. | Driver assistance system for vehicle |
US10509972B2 (en) | 2004-12-23 | 2019-12-17 | Magna Electronics Inc. | Vehicular vision system |
US11396257B2 (en) | 2006-08-11 | 2022-07-26 | Magna Electronics Inc. | Vehicular forward viewing image capture system |
US10071676B2 (en) | 2006-08-11 | 2018-09-11 | Magna Electronics Inc. | Vision system for vehicle |
US11951900B2 (en) | 2006-08-11 | 2024-04-09 | Magna Electronics Inc. | Vehicular forward viewing image capture system |
US10787116B2 (en) | 2006-08-11 | 2020-09-29 | Magna Electronics Inc. | Adaptive forward lighting system for vehicle comprising a control that adjusts the headlamp beam in response to processing of image data captured by a camera |
US11623559B2 (en) | 2006-08-11 | 2023-04-11 | Magna Electronics Inc. | Vehicular forward viewing image capture system |
US11148583B2 (en) | 2006-08-11 | 2021-10-19 | Magna Electronics Inc. | Vehicular forward viewing image capture system |
US11908166B2 (en) | 2007-08-17 | 2024-02-20 | Magna Electronics Inc. | Vehicular imaging system with misalignment correction of camera |
US10726578B2 (en) | 2007-08-17 | 2020-07-28 | Magna Electronics Inc. | Vehicular imaging system with blockage determination and misalignment correction |
US9972100B2 (en) | 2007-08-17 | 2018-05-15 | Magna Electronics Inc. | Vehicular imaging system comprising an imaging device with a single image sensor and image processor for determining a totally blocked state or partially blocked state of the single image sensor as well as an automatic correction for misalignment of the imaging device |
US11328447B2 (en) | 2007-08-17 | 2022-05-10 | Magna Electronics Inc. | Method of blockage determination and misalignment correction for vehicular vision system |
US11554717B2 (en) | 2011-04-25 | 2023-01-17 | Magna Electronics Inc. | Vehicular vision system that dynamically calibrates a vehicular camera |
US10542244B2 (en) | 2011-12-09 | 2020-01-21 | Magna Electronics Inc. | Vehicle vision system with customized display |
US11689703B2 (en) | 2011-12-09 | 2023-06-27 | Magna Electronics Inc. | Vehicular vision system with customized display |
US11007937B2 (en) | 2012-02-22 | 2021-05-18 | Magna Electronics Inc. | Vehicular display system with multi-paned image display |
US11607995B2 (en) | 2012-02-22 | 2023-03-21 | Magna Electronics Inc. | Vehicular display system with multi-paned image display |
US10457209B2 (en) | 2012-02-22 | 2019-10-29 | Magna Electronics Inc. | Vehicle vision system with multi-paned view |
US11265514B2 (en) | 2012-10-05 | 2022-03-01 | Magna Electronics Inc. | Multi-camera calibration method for a vehicle moving along a vehicle assembly line |
US10104298B2 (en) | 2012-11-19 | 2018-10-16 | Magna Electronics Inc. | Vehicle vision system with enhanced display functions |
US9743002B2 (en) | 2012-11-19 | 2017-08-22 | Magna Electronics Inc. | Vehicle vision system with enhanced display functions |
US10321064B2 (en) | 2012-11-19 | 2019-06-11 | Magna Electronics Inc. | Vehicular vision system with enhanced display functions |
US11192500B2 (en) | 2013-02-27 | 2021-12-07 | Magna Electronics Inc. | Method for stitching image data captured by multiple vehicular cameras |
US11572015B2 (en) | 2013-02-27 | 2023-02-07 | Magna Electronics Inc. | Multi-camera vehicular vision system with graphic overlay |
US9688200B2 (en) | 2013-03-04 | 2017-06-27 | Magna Electronics Inc. | Calibration system and method for multi-camera vision system |
US11616910B2 (en) | 2013-05-06 | 2023-03-28 | Magna Electronics Inc. | Vehicular vision system with video display |
US10574885B2 (en) | 2013-05-06 | 2020-02-25 | Magna Electronics Inc. | Method for displaying video images for a vehicular vision system |
US11597319B2 (en) | 2013-05-21 | 2023-03-07 | Magna Electronics Inc. | Targetless vehicular camera calibration system |
US10567748B2 (en) | 2013-05-21 | 2020-02-18 | Magna Electronics Inc. | Targetless vehicular camera calibration method |
US11794647B2 (en) | 2013-05-21 | 2023-10-24 | Magna Electronics Inc. | Vehicular vision system having a plurality of cameras |
US11447070B2 (en) | 2013-05-21 | 2022-09-20 | Magna Electronics Inc. | Method for determining misalignment of a vehicular camera |
US11919449B2 (en) | 2013-05-21 | 2024-03-05 | Magna Electronics Inc. | Targetless vehicular camera calibration system |
Also Published As
Publication number | Publication date |
---|---|
JPH0345984B2 (en) | 1991-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9621057B2 (en) | Single-stage power supply with power factor correction and constant current output | |
JPS6216073A (en) | Power converter | |
US7480159B2 (en) | Switching-mode power converter and pulse-width-modulation control circuit with primary-side feedback control | |
JP5693877B2 (en) | Controller for power supply, power supply, and method of controlling power supply | |
US7990127B2 (en) | Method and apparatus for AC to DC power conversion with reduced harmonic current | |
US9954455B2 (en) | Constant on time COT control in isolated converter | |
US10312799B1 (en) | Offline converter with power factor correction at light loads and method therefor | |
JPH0523040B2 (en) | ||
JP2001037226A (en) | DC bidirectional converter | |
US9548667B2 (en) | Constant on-time (COT) control in isolated converter | |
JP2020048333A (en) | Power supply controller | |
JP2007511995A (en) | Switch mode power supply | |
JP2014220876A (en) | Electronic transformer | |
US7116084B2 (en) | Step-up converter having power factor correction | |
US12155312B2 (en) | Power converter controller, power converter and method for operating control of a power stage based on an intermediate voltage with respect to a threshold value determined from a turns ratio of a transformer | |
JPH0242075Y2 (en) | ||
JPH0974748A (en) | Switching power supply device | |
JPS5839268A (en) | Converter control method | |
JP3283591B2 (en) | Overcurrent protection circuit | |
JP3175756B2 (en) | High power factor converter | |
JPS60223472A (en) | Dc/dc converter circuit | |
JPH03230753A (en) | Controlling method for converter | |
JPS63245264A (en) | Power circuit device | |
JPH11178332A (en) | Switching regulator | |
JPH0678541A (en) | Power supply equipment improved in power factor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |