[go: up one dir, main page]

JPS621598B2 - - Google Patents

Info

Publication number
JPS621598B2
JPS621598B2 JP57011951A JP1195182A JPS621598B2 JP S621598 B2 JPS621598 B2 JP S621598B2 JP 57011951 A JP57011951 A JP 57011951A JP 1195182 A JP1195182 A JP 1195182A JP S621598 B2 JPS621598 B2 JP S621598B2
Authority
JP
Japan
Prior art keywords
workpiece
silicon carbide
metal
iron
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57011951A
Other languages
Japanese (ja)
Other versions
JPS57149876A (en
Inventor
Reauazu Anasen Niirusu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Danfoss AS
Original Assignee
Danfoss AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Danfoss AS filed Critical Danfoss AS
Publication of JPS57149876A publication Critical patent/JPS57149876A/en
Publication of JPS621598B2 publication Critical patent/JPS621598B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q9/00Pilot flame igniters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/025Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of glass or ceramic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/08Non-oxidic interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/123Metallic interlayers based on iron group metals, e.g. steel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/365Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/405Iron metal group, e.g. Co or Ni
    • C04B2237/406Iron, e.g. steel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/84Joining of a first substrate with a second substrate at least partially inside the first substrate, where the bonding area is at the inside of the first substrate, e.g. one tube inside another tube

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Ceramic Products (AREA)
  • Control Of Combustion (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Resistance Heating (AREA)

Description

【発明の詳細な説明】 本発明は、反応焼結させた炭化珪素工作物と鉄
又は金属製の工作物とを結合する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for joining reaction-sintered silicon carbide workpieces to iron or metal workpieces.

炭化珪素型のセラミツク半導体素子の接合は常
に問題となつている。電気的及び機械的移行部を
製造する公知方法では火炎溶射した金属結合部又
は焼嵌めした金属結合部が挙げられる。高温、例
えば温度600〜700℃を適用する場合、火炎溶射し
た金属は燃焼消耗してしまうことがあり、かつ焼
嵌めした金属結合部のような他の結合部は高い熱
作用の結果機械的に不安定である。
Bonding of silicon carbide type ceramic semiconductor devices has always been a problem. Known methods for producing electrical and mechanical transitions include flame sprayed metal connections or shrink-fit metal connections. When high temperatures are applied, e.g. temperatures of 600-700°C, flame sprayed metals may burn out and other joints, such as shrink-fit metal joints, may become mechanically damaged as a result of high thermal effects. It is unstable.

本発明により、金属部材と炭化珪素工作物とを
確実かつ加熱安定に結合させる方法が開示され
る。
The present invention discloses a method for reliably and thermally stably bonding a metal member and a silicon carbide workpiece.

本発明により炭化珪素工作物を金属−又は鉄工
作物に対して珪素と金属とからの結合剤により結
合させ、次いでこの結合体を加熱することにより
固定する。
According to the invention, a silicon carbide workpiece is bonded to a metal or iron workpiece using a silicon-metal bond and the bond is then fixed by heating.

有利に結合剤は珪素と使用金属、例えば鉄とか
ら成る共融混合物である。これにより炭化珪素工
作物と鉄工作物との間に熱的に安定な、機械的及
び電気的結合が得られる。
The binder is preferably a eutectic mixture of silicon and the metal used, for example iron. This provides a thermally stable mechanical and electrical connection between the silicon carbide workpiece and the iron workpiece.

油バーナ及びガスバーナを駆動させる際に火炎
を監視するためイオン化電極を使用することが知
られている。そのような電極は、電極、例えば鉄
電極が火炎中に案内されて、火炎がバーナの燃料
入口と電極との間の区域を電流が流れるようにイ
オン化するという公知の原理に基いている。可視
光を放射しないブルーフレームバーナでは紫外線
検出器が使用されていた。しかし紫外線検出器
は、例えばバーナが再循環室で囲まれている場合
にはしばしば使用することができない。それ故、
そのようなバーナでオン化電極が使用されるが、
材料が崩壊し、それ故ブルーフレームバーナで典
型的には範囲1400〜1500℃である非常に高い火
炎温度のために前記の電極が比較的短い寿命を有
するに過ぎないという欠点を有する。
It is known to use ionizing electrodes to monitor the flame when operating oil and gas burners. Such electrodes are based on the known principle that an electrode, for example an iron electrode, is guided into a flame, which ionizes the area between the fuel inlet of the burner and the electrode in such a way that a current flows. Blue flame burners, which do not emit visible light, used ultraviolet detectors. However, UV detectors often cannot be used, for example if the burner is surrounded by a recirculation chamber. Therefore,
Turning electrodes are used in such burners, but
It has the disadvantage that the material disintegrates and therefore said electrodes only have a relatively short service life due to the very high flame temperatures, which are typically in the range 1400-1500 DEG C. in blue flame burners.

それ故本発明は更に安定な電極を開示するとい
う目的を有する。本発明によりそのような電極
は、電極が棒状に成形されておりかつ少なくとも
火炎中に差し込まれる棒部分が反応焼結させた炭
化珪素半導体材料より成る場合に得られる。
The invention therefore has the objective of disclosing a more stable electrode. According to the invention, such an electrode is obtained when the electrode is shaped like a rod and at least the portion of the rod that is inserted into the flame is made of a reactively sintered silicon carbide semiconductor material.

半導体材料が、金属部に対する結合部が主に火
炎領域外に位置するような延長部を有すると有利
である。電極ユニツトの脆さを考慮して電極をで
きる限り短い形状にする。ところで、高い温度に
より電極の金属部に接する結合部で問題が生じ
る。結合部は火炎の外側であつても約600〜700℃
の高い温度に曝されている。特に、このような温
度では本発明方法をイオン化電極の金属部と炭化
珪素棒との結合に適用することができる。本発明
により電極端部を珪素と鉄より成る結合剤、殊に
珪素と鉄とからの共融混合物を用いて金属部に固
定することにより耐久性の電極が得られる。共融
混合物は炭化珪素棒とかつまた鉄工作物とも結合
する。
It is advantageous if the semiconductor material has an extension such that the connection to the metal part is located primarily outside the flame area. Considering the fragility of the electrode unit, make the electrode as short as possible. However, high temperatures cause problems at the joints that contact the metal parts of the electrodes. The temperature at the joint is approximately 600-700℃ even if it is outside the flame.
exposed to high temperatures. In particular, at such temperatures the method of the invention can be applied to the bonding of the metal part of the ionization electrode and the silicon carbide rod. According to the invention, a durable electrode is obtained by fixing the electrode end to a metal part using a binder of silicon and iron, in particular a eutectic mixture of silicon and iron. The eutectic mixture combines with the silicon carbide rod and also with the iron workpiece.

結合は、炭化珪素棒を鉄棒の孔中に挿入し、炭
化珪素棒と鉄棒との間の空隙中に珪素粉末と鉄粉
末とからの混合物を装入し、次いで工作物を1200
℃を上回つて加熱することにより行なうことがで
きる。その際に例えば混合比1:1を適用するこ
とができる。これにより珪素粉末と鉄粉末は共融
混合物を形成し、これが炭化珪素棒及び鉄工作物
と結合する。
For bonding, a silicon carbide rod is inserted into the hole of the iron rod, a mixture of silicon powder and iron powder is charged into the gap between the silicon carbide rod and the iron rod, and then the workpiece is
This can be done by heating above .degree. In this case, for example, a mixing ratio of 1:1 can be applied. Thereby, the silicon powder and the iron powder form a eutectic mixture, which is bonded to the silicon carbide rod and the iron workpiece.

場合により、炭化珪素棒上に焼結させた金属工
作物はその棒全体を覆つていてよい。これによ
り、焼結した套が多少破壊され易いセラミツク炭
化珪素棒を保護するので取り扱いが簡便である機
械的に安定な工作物が得られる。火炎の作用を受
ける焼結金属工作物のその部分は明らかに崩壊す
るが、温度が700〜800℃である火炎から若干離れ
ている区域で安定な炭化珪素棒を覆つている部分
は残る。それ故、直接火炎の高温部分中に位置す
る部分だけが腐食される。
Optionally, the metal workpiece sintered onto the silicon carbide rod may cover the entire rod. This results in a mechanically stable workpiece that is easy to handle because the sintered mantle protects the ceramic silicon carbide rod, which is somewhat susceptible to destruction. That part of the sintered metal workpiece subjected to the action of the flame clearly disintegrates, but the part that covers the silicon carbide rod remains stable in an area somewhat distant from the flame, where the temperature is 700-800°C. Therefore, only the parts located directly in the hot part of the flame are corroded.

更に、金属電極は焼結部の外側に弱い部分を備
えていてよい。これにより、極めて破壊され易い
電極端部をこの部分を損うことなく所望の位置に
曲げることができる。
Furthermore, the metal electrode may have a weak point outside the sintered part. This allows the extremely fragile end of the electrode to be bent to a desired position without damaging this part.

他の実施形は、金属体を炭化珪素棒の少なくと
も端部上で移動させ、両方の部材を温度1100℃に
加熱することにより焼結させることである。その
際焼結により一種の焼嵌めが行なわれ、移行区域
では同時に緊密な機械的かつ電気的結合が達成さ
れ、これは高温でも安定である。この場合にも
1200℃を上回る温度に高める場合に一層安定な移
行部と良好な電気的固定部を生ぜしめる共融混合
物が得られる。
Another embodiment is to sinter the metal body by moving it over at least the end of the silicon carbide rod and heating both parts to a temperature of 1100°C. The sintering then produces a type of shrink fit, in which a tight mechanical and electrical connection is achieved at the same time in the transition zone, which is stable even at high temperatures. Also in this case
When increasing the temperature above 1200° C., a eutectic mixture is obtained which produces a more stable transition zone and a better electrical anchorage.

このように製造した工作物を火炎から遠く離れ
ている電極部材と硬質ロウ接するか、溶接するか
あるいは他の方法で固定する。
The workpiece thus produced is hard soldered, welded or otherwise secured to an electrode member remote from the flame.

金属工作物の焼結を同時に圧縮成形、場合によ
り等圧圧縮成形して行なうと有利である。それに
より焼結金属工作物の非常に緊密で固い移行面が
得られる。
It is advantageous if the metal workpiece is sintered at the same time by compression molding, optionally by isostatic compression molding. A very tight and hard transition surface of the sintered metal workpiece is thereby obtained.

本発明によるいくつかの優れている実施例を添
付図面により詳説する。
Some advantageous embodiments of the invention will be explained in more detail with reference to the accompanying drawings.

セラミツク炭化珪素棒を公知方法で、殊に炭化
珪素(SiC)とグラフアイトからの混合物を液体
珪素と高温で反応焼結させ、それにより遊離グラ
フアイトが珪素と反応して炭化珪素に変換するこ
とにより製造する。第1図にはそのような炭化珪
素工作物1が本発明により鉄製金属電極部材2と
結合して図示されている。炭化珪素棒が鉄棒材中
の孔7中に配置されている。棒1と鉄棒材2との
間の空隙には珪素粉末と鉄粉末(例えば1:1の
比で)からの混合物3を充填する。空隙中にはそ
の代りに珪素と鉄から既に製造した混合物、例え
ば共融混合物の粉末を充填することができる。セ
ラミツク棒を備えた全工作物を1200℃を上回る温
度に加熱する。これにより粉末混合物は共融混合
物を形成しかつ炭化珪素棒とかつまた鉄と結合す
る。結合剤として他の金属結合剤、例えば珪素と
ニツケルからの混合物を使用することもできる。
Ceramic silicon carbide rods are prepared in a known manner, in particular by reaction sintering of a mixture of silicon carbide (SiC) and graphite with liquid silicon at high temperatures, whereby the free graphite reacts with the silicon and is converted into silicon carbide. Manufactured by FIG. 1 shows such a silicon carbide workpiece 1 combined with a ferrous metal electrode member 2 according to the invention. A silicon carbide rod is placed in the hole 7 in the iron rod material. The void between the rod 1 and the iron bar stock 2 is filled with a mixture 3 of silicon powder and iron powder (for example in a 1:1 ratio). The cavity can instead be filled with powder of a mixture already prepared from silicon and iron, for example a eutectic mixture. The entire workpiece with ceramic rods is heated to a temperature above 1200°C. The powder mixture thereby forms a eutectic mixture and combines with the silicon carbide rod and also with the iron. It is also possible to use other metal binders as binders, for example mixtures of silicon and nickel.

第2図は第1図につき記載した方法により製造
した電極端部1,2を表わす。炭化珪素棒の鉄部
2は結合部であり、これは所望に応じて電極棒5
の残部4に固定させることができる。
FIG. 2 represents the electrode ends 1, 2 manufactured by the method described in connection with FIG. The iron part 2 of the silicon carbide rod is a connecting part, which can be attached to the electrode rod 5 as desired.
It can be fixed to the remaining part 4 of.

第3図には鉄粉を炭化珪素棒の周囲で圧縮成
形、例えば等圧圧縮成形、即ち全面から同一の大
きさの圧力を負荷して圧縮成形することにより得
られる工作物が図示されている。次いで、工作物
全体を約1200℃に、殊に1200〜1220℃以上に加熱
する。これにより鉄粉が焼結し、それと同時に炭
化珪素棒の珪素が鉄粉中に拡散し、融液(共融混
合物)が生じ、これは炭化珪素棒と鉄粉との間に
熱的に安定な機械的及び電気的結合を形成する。
このような電極は耐用性でありかつ第1図又は第
2図による棒材より良好に搬送及び取扱いに耐久
性である。
Figure 3 shows a workpiece obtained by compression molding iron powder around a silicon carbide rod, for example, by isostatic compression molding, that is, compression molding by applying the same amount of pressure from the entire surface. . The entire workpiece is then heated to approximately 1200°C, in particular above 1200-1220°C. This causes the iron powder to sinter, and at the same time the silicon in the silicon carbide rod diffuses into the iron powder, creating a melt (eutectic mixture) that is thermally stable between the silicon carbide rod and the iron powder. form a good mechanical and electrical bond.
Such electrodes are durable and are better resistant to transport and handling than bars according to FIGS. 1 or 2.

第4図及び第5図に示されているように、火炎
中に差し込んだ金属スリーブのその部分が徐々に
腐食消耗し、安定な炭化珪素棒だけが後に残る。
As shown in FIGS. 4 and 5, that portion of the metal sleeve inserted into the flame gradually corrodes and wears away, leaving behind only a stable silicon carbide rod.

更に、第4図には、セラミツク炭化珪素棒1の
結合部2の後方に弱い部分6が設けられていてよ
く、これは例えば棒の外周全体に又は所望に応じ
て周面の一部に設けられていてよい。これにより
電極に相応する炭化珪素棒の傾斜をこの弱い部分
で簡単に手で曲げることにより実際の事情に適応
させることがき、その際にセラミツクの外側の部
分は損われない。電極の他の実施形にもそのよう
な弱い部分を設けることができる。
Furthermore, FIG. 4 shows that the ceramic silicon carbide rod 1 can be provided with a weak point 6 behind the joint 2, which can be provided, for example, over the entire circumference of the rod or, if desired, on a part of the circumference. It's good to be able to do it. This allows the slope of the silicon carbide rod corresponding to the electrode to be adapted to the actual situation by simply bending it manually at this weak point, without damaging the outer part of the ceramic. Other embodiments of the electrode may also be provided with such a weakened portion.

第6図の2つの実施形a及びbでは環状工作物
である金属工作物8が炭化珪素棒上に焼嵌めされ
かつ焼結されている。工作物を圧縮成形しかつ焼
結するための他の多くの実施形及び方法が考えら
れるが、それらはすべて本発明思想に包含され
る。
In the two embodiments a and b of FIG. 6, a metal workpiece 8, which is an annular workpiece, is shrink-fitted onto a silicon carbide rod and sintered. Many other embodiments and methods for compression molding and sintering a workpiece are possible, all of which are encompassed by the inventive concept.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は鉄製ホルダー中に挿入した炭化珪素棒
を備えたイオン化電極の図、第2図は製造された
第1図による電極の図、第3図は炭化珪素棒がそ
の上に焼結させた金属材料で覆われているイオン
化センサの図、第4図及び第5図は数回使用後の
第3図によるセンサの図、第6図は炭化珪素棒と
その上に焼結させかつ焼嵌めした金属工作物とを
示す2つの実施形a及びbの図である。 1……炭化珪素工作物、2……金属−又は鉄工
作物、3……結合剤、5……電極、6……弱い部
分、7……孔、8……金属工作物。
FIG. 1 is a diagram of an ionizing electrode with a silicon carbide rod inserted into a steel holder, FIG. 2 is a diagram of the electrode according to FIG. 1 as manufactured, and FIG. 4 and 5 are illustrations of the sensor according to FIG. 3 after several uses, and FIG. 6 shows a silicon carbide rod with sintered and FIG. 2 is a view of two embodiments a and b showing a fitted metal workpiece; DESCRIPTION OF SYMBOLS 1...Silicon carbide workpiece, 2...Metal or iron workpiece, 3...Binder, 5...Electrode, 6...Weak part, 7...Hole, 8...Metal workpiece.

Claims (1)

【特許請求の範囲】 1 炭化珪素工作物1を金属−又は鉄工作物2に
対して珪素と金属とより成る結合剤3により結合
させ、次いでその結合部を加熱して固定させるこ
とを特徴とする反応焼結させた炭化珪素工作物と
鉄又は金属製の工作物とを結合する方法。 2 結合剤が珪素及び鉄より成る共融混合物であ
る特許請求の範囲第1項記載の方法。 3 金属工作物の焼結を同時に圧縮成形、場合に
より等圧圧縮成形して実施する特許請求の範囲第
1項又は第2項記載の方法。
[Claims] 1. A silicon carbide workpiece 1 is bonded to a metal or iron workpiece 2 using a bonding agent 3 made of silicon and metal, and then the bonded portion is heated and fixed. A method of bonding a reactively sintered silicon carbide workpiece and an iron or metal workpiece. 2. The method of claim 1, wherein the binder is a eutectic mixture of silicon and iron. 3. The method according to claim 1 or 2, wherein the metal workpiece is simultaneously sintered by compression molding, and optionally by isostatic compression molding.
JP57011951A 1981-01-29 1982-01-29 Method of bonding reactively sintered silicon carbide work piece with iron or metal work piece and ionization electrode manufactured thereby Granted JPS57149876A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DK38981A DK38981A (en) 1981-01-29 1981-01-29 METHOD FOR CONNECTING REACTIONAL SUBSTANCES OF SILICON CARBID WITH SUBSTANCES OF IRON OR METAL AND IONIZATION ELECTRODE PREPARED BY THE MOTOD

Publications (2)

Publication Number Publication Date
JPS57149876A JPS57149876A (en) 1982-09-16
JPS621598B2 true JPS621598B2 (en) 1987-01-14

Family

ID=8092950

Family Applications (2)

Application Number Title Priority Date Filing Date
JP57011951A Granted JPS57149876A (en) 1981-01-29 1982-01-29 Method of bonding reactively sintered silicon carbide work piece with iron or metal work piece and ionization electrode manufactured thereby
JP57067501A Pending JPS57182160A (en) 1981-01-29 1982-04-23 Ionizing electrode and its manufacture

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP57067501A Pending JPS57182160A (en) 1981-01-29 1982-04-23 Ionizing electrode and its manufacture

Country Status (6)

Country Link
JP (2) JPS57149876A (en)
DE (1) DE3200738C2 (en)
DK (1) DK38981A (en)
FR (1) FR2498503B1 (en)
GB (1) GB2092050B (en)
IT (1) IT1155458B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5995134U (en) * 1982-12-15 1984-06-28 日産自動車株式会社 Bonding structure between ceramic shaft and metal shaft
DE3419125A1 (en) * 1984-05-23 1985-11-28 Danfoss A/S, Nordborg METHOD FOR SOLELING A METAL ELECTRODE ON AN ELECTRICALLY CONDUCTING SILICON CARBIDE CERAMIC ELEMENT AND SILICON CARBIDE CERAMIC ELEMENT PRODUCED BY THE METHOD
JPS61197476A (en) * 1985-02-26 1986-09-01 株式会社東芝 Composite body and manufacture
FR2707196B1 (en) * 1993-07-07 1995-08-11 Commissariat Energie Atomique Method of assembling molybdenum or tungsten with themselves or ceramics containing silicon, by brazing.
DE202004006644U1 (en) * 2004-04-27 2004-08-26 Buderus Heiztechnik Gmbh electrode
DE102010004345B4 (en) * 2010-01-11 2018-02-22 Viessmann Werke Gmbh & Co Kg Electrode for flame monitoring on a heating burner
DE202017105077U1 (en) 2017-08-24 2018-11-27 AICHELIN Holding GmbH High temperature resistant ceramic-metal composite body
CN114769599B (en) * 2022-03-31 2023-07-18 西北有色金属研究院 A kind of preparation method of electrode for electron beam smelting of molybdenum alloy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5496512A (en) * 1978-01-17 1979-07-31 Tokai Konetsu Kogyo Kk Refractory bonding method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1615954A1 (en) * 1967-02-21 1970-12-03 Danfoss As Electrical resistance element to be introduced into a flame
US3813759A (en) * 1971-09-09 1974-06-04 English Electric Co Ltd Method of brazing
GB1588920A (en) * 1977-08-11 1981-04-29 British Ceramic Res Ass Joining of metals to ceramics
DE2742816C3 (en) * 1977-09-23 1980-10-16 Mtu Motoren- Und Turbinen-Union Muenchen Gmbh, 8000 Muenchen Process for the production of silicon-ceramic components
US4241135A (en) * 1979-02-09 1980-12-23 General Electric Company Polycrystalline diamond body/silicon carbide substrate composite
JPS621598A (en) * 1986-04-09 1987-01-07 グラフテック株式会社 X-y plotter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5496512A (en) * 1978-01-17 1979-07-31 Tokai Konetsu Kogyo Kk Refractory bonding method

Also Published As

Publication number Publication date
JPS57149876A (en) 1982-09-16
FR2498503B1 (en) 1986-07-11
DE3200738C2 (en) 1985-01-24
FR2498503A1 (en) 1982-07-30
DE3200738A1 (en) 1982-08-05
DK38981A (en) 1982-07-30
JPS57182160A (en) 1982-11-09
GB2092050B (en) 1985-06-05
GB2092050A (en) 1982-08-11
IT8267090A0 (en) 1982-01-28
IT1155458B (en) 1987-01-28

Similar Documents

Publication Publication Date Title
SE8505621L (en) PROCEDURE FOR THE CREATION OF UNUSUALLY STRONG JOINTS BETWEEN METALS AND CERAMIC MATERIALS THROUGH HARD WELDING IN TEMPERATURES THAT DO NOT EXCEED 750? 72C
US6955286B2 (en) Use of silver-copper-palladium brazing alloys
JPS621598B2 (en)
JP2010521645A (en) Glow plug seal
GB2159082A (en) Electrically conductive silicon carbide ceramic elements
BG107122A (en) Method for manufacturing a cooling element
JPS6129681A (en) Pin consisting of two constituent for holding and/or coolinglining made of ceramics for thermal reaction chamber
KR0126475B1 (en) Heat radiation tube
JP3028125B2 (en) Ceramic glow plug joining structure
JP7116237B2 (en) heater
JPS6217107A (en) Tuyere
JPS60172191A (en) How to attach electrodes to ceramic heating elements
JPS58158425A (en) Glow plug
JPS6222911A (en) Ceramic glow plug
JPH0691374A (en) Method for fitting ceramics piece for welding
JPH07233944A (en) Heating element
SU838411A1 (en) Method of making hot soldered joint of thermocouple
JPS6291727A (en) Method of fabricating ceramic glow plug
JP2728833B2 (en) Stud bolt for heating furnace
JPS63207524A (en) Wire guide for electric discharge machine
JPH0691376A (en) Welding ceramic piece
JPH0530011B2 (en)
Lyamin The Stressed State of Dissimilar Metal Joints Made by Diffusion Welding
JP2017091854A (en) Ceramic heater
JPH06321646A (en) Brazing method using active brazing filler metal