[go: up one dir, main page]

JPS62158958A - Separation type heat pump system air conditioner - Google Patents

Separation type heat pump system air conditioner

Info

Publication number
JPS62158958A
JPS62158958A JP91586A JP91586A JPS62158958A JP S62158958 A JPS62158958 A JP S62158958A JP 91586 A JP91586 A JP 91586A JP 91586 A JP91586 A JP 91586A JP S62158958 A JPS62158958 A JP S62158958A
Authority
JP
Japan
Prior art keywords
refrigerant
indoor
air conditioner
outdoor unit
outdoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP91586A
Other languages
Japanese (ja)
Inventor
寿彦 榎本
杉山 徹雄
隆雄 駒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP91586A priority Critical patent/JPS62158958A/en
Publication of JPS62158958A publication Critical patent/JPS62158958A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、空気調和機の冷媒充填量に対する運転の信
頼性を向上できるようにした分離形ヒートポンプ式空気
調和機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a separate heat pump type air conditioner that can improve the operational reliability of the air conditioner with respect to the amount of refrigerant charged therein.

〔従来の技術〕[Conventional technology]

第4図はたとえば実願昭56−168072号明細書に
示された従来の空気調和機の冷媒回路図であり、この第
4図の1は圧縮機、2は四方弁、3は室外熱交換器、4
は減圧用毛細管、5は室内熱交換器、6はアキュムレー
タであり、これらが順次冷媒配管により連結され、ヒー
トポンプ式冷媒回路を構成している。
FIG. 4 is a refrigerant circuit diagram of a conventional air conditioner shown in, for example, the specification of Utility Model Application No. 168072/1980. In this FIG. 4, 1 is a compressor, 2 is a four-way valve, and 3 is an outdoor heat exchanger. vessel, 4
5 is a capillary tube for decompression, 5 is an indoor heat exchanger, and 6 is an accumulator, which are successively connected by refrigerant piping to form a heat pump type refrigerant circuit.

次にその動作について説明する。冷房時は四方弁2は第
4図の実線の位置にあり、圧縮機1より吐出された高温
・高圧のガス冷媒は四方弁2を経て室外熱交換器3に入
り、ここで室外空気と熱交換することにより、高圧のま
ま冷却され、凝縮し、高圧の過冷却液冷媒となって減圧
用毛細管4により減圧され、低圧の2相状態の冷媒とな
る。
Next, its operation will be explained. During cooling, the four-way valve 2 is in the position shown by the solid line in Figure 4, and the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 passes through the four-way valve 2 and enters the outdoor heat exchanger 3, where it exchanges heat with outdoor air. By replacing the refrigerant, the refrigerant is cooled while maintaining high pressure, condenses, becomes a high-pressure supercooled liquid refrigerant, and is depressurized by the decompression capillary tube 4 to become a low-pressure two-phase refrigerant.

この低圧の2相状態の冷媒は室内熱交換器5で室内空気
と熱交換することにより加熱され、蒸発し、低圧のまま
乾き度の大きな2相状態の冷媒または過熱ガス冷媒とな
って四方弁2、アキュムレータ6を経て、圧縮機1に戻
るというサイクルを繰り返す。
This low-pressure two-phase refrigerant is heated by exchanging heat with indoor air in the indoor heat exchanger 5, evaporates, and becomes a highly dry two-phase refrigerant or superheated gas refrigerant at a low pressure. 2. The cycle of passing through the accumulator 6 and returning to the compressor 1 is repeated.

また、暖房時は四方弁2は第4図の破線の位置にあり、
圧縮機1より吐出された高温高圧のガス冷媒は四方弁2
、凝縮器として動作する室内熱交換器5、減圧用毛細管
4、蒸発器として動作する室外熱交換器3、四方弁2、
アキュムレータ6、圧縮機1の順に冷房時と同様の状態
変化を示しながら、暖房サイクルを構成する。
Also, during heating, the four-way valve 2 is at the position indicated by the broken line in Figure 4.
The high temperature and high pressure gas refrigerant discharged from the compressor 1 is passed through the four-way valve 2.
, an indoor heat exchanger 5 that operates as a condenser, a capillary tube 4 for pressure reduction, an outdoor heat exchanger 3 that operates as an evaporator, a four-way valve 2,
A heating cycle is constructed with the accumulator 6 and the compressor 1 exhibiting state changes similar to those during cooling in this order.

上記ヒートポンプサイクルにおいて、減圧用毛細管4は
室内ユニットまたは室外ユニットに設置されるが、たと
えば、室外ユニットに設置された場合のザイクル冷媒充
填量につきさらに説明を加える。
In the heat pump cycle described above, the decompression capillary tube 4 is installed in the indoor unit or the outdoor unit. For example, a further explanation will be given regarding the cycle refrigerant filling amount when installed in the outdoor unit.

上記サイクルの動作説明かられかるように減圧用毛細管
4と室内熱交換器5の間の冷媒配管内の冷媒の状態は冷
房時には低圧の2相状態であり、その平均比重量は0.
6 g / cJ程度となっており、また、暖房時には
、高圧の過冷却液冷媒であり、平均比重量にして1.2
 g / c+aである。
As can be seen from the operation description of the cycle above, the state of the refrigerant in the refrigerant pipe between the decompression capillary tube 4 and the indoor heat exchanger 5 is in a low-pressure two-phase state during cooling, and its average specific weight is 0.
6 g/cJ, and during heating, it is a high-pressure supercooled liquid refrigerant, with an average specific weight of 1.2
g/c+a.

また、室内熱交換器5と四方弁2を結ぶ冷媒配管内の冷
媒の比重量は冷房時と暖房時では差がない。したがって
、室内ユニットと室外ユニットを接続する配管長さが変
化したとき、冷暖房時とも同じ運転状態を実現するため
には、暖房時を基準として冷媒量を再充填、あるいは追
加充填しなければならない。
In addition, the specific weight of the refrigerant in the refrigerant pipe connecting the indoor heat exchanger 5 and the four-way valve 2 does not differ between cooling and heating. Therefore, when the length of the piping connecting the indoor unit and the outdoor unit changes, in order to achieve the same operating conditions during heating and cooling, the amount of refrigerant must be refilled or additionally charged based on the amount during heating.

第5図は、横軸に室内外ユニット間の接続配管長、縦軸
に必要冷媒充填量を表わしたものである。
In FIG. 5, the horizontal axis represents the connecting piping length between the indoor and outdoor units, and the vertical axis represents the required refrigerant filling amount.

配管長が長くなる程、冷房時と暖房時の必要冷媒量の差
が大きくなることがわかる。
It can be seen that the longer the pipe length, the greater the difference in the amount of refrigerant required during cooling and heating.

上記の現象は室内ユニット内に減圧用毛細管4を設置し
た場合にも生じる。ただし、室内外ユニット間接続配管
内の状態は、冷房時に高圧の過冷却液冷媒、暖房時に低
圧の2相状態冷媒となり、配管長が変化した場合の必要
冷媒光@量は前記とは逆に冷房時に大きな値となる。
The above phenomenon also occurs when the decompression capillary tube 4 is installed in the indoor unit. However, the state inside the connecting pipe between indoor and outdoor units is a high-pressure supercooled liquid refrigerant during cooling, and a low-pressure two-phase refrigerant during heating, and the required refrigerant light @ amount when the pipe length changes is opposite to the above. The value becomes large during cooling.

いずれにしても、減圧用毛細管が1木である限り、冷房
時と暖房時で必要冷媒量に差が生じ、その差は室内外ユ
ニット接続配管長が長(なる程大きくなる。
In any case, as long as there is only one decompression capillary, there will be a difference in the amount of refrigerant required during cooling and heating, and this difference becomes larger as the length of the pipe connecting the indoor and outdoor units becomes longer.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の空気調和機は以上のように構成されているので、
冷房時と暖房時で必要冷媒充填量に差があり、その差が
室内外ユニット間接続配管長が長くなる程大きくなるた
め、その差分を余剰冷媒として貯溜するためのアキュム
レータの容量による制限から室内外ユニット間配管長を
制限されるか、あるいは室内外ユニット間接続配管長が
長い場合に現地で多量の追加冷媒量を充填しなければな
らず、そのときの追加冷媒充填の精度が著しく悪く、正
しい必要冷媒充填量で運転されないなどの問題点があっ
た。
Conventional air conditioners are configured as described above.
There is a difference in the amount of refrigerant required for cooling and heating, and this difference becomes larger as the length of the connecting piping between the indoor and outdoor units becomes longer. This difference is limited by the capacity of the accumulator that stores the difference as surplus refrigerant. If the piping length between the outside unit is limited or the length of the connecting piping between the indoor and outdoor units is long, a large amount of additional refrigerant must be filled on-site, and the accuracy of the additional refrigerant filling at that time is extremely poor. There were problems such as not operating with the correct required amount of refrigerant.

この発明は、かかる問題点を解決するためになされたも
ので、冷房時および暖房時に必要な冷媒充填量に大きな
差が生じることがなく、室内外ユニット接続配管長が長
い場合も追加冷媒充填量の少ないか、あるいは追加冷媒
充填量が必要ないなど、冷媒充填量に対する運転の信輔
性を向上できるとともに、室内外ユニット間の接続配管
を延長できる分離形ヒートポンプ式空気調和機を得るこ
とを目的とする。
This invention was made to solve this problem, and there is no large difference in the amount of refrigerant required for cooling and heating, and even if the pipe length connecting the indoor and outdoor units is long, the amount of additional refrigerant charged can be increased. The purpose of the present invention is to provide a separate heat pump type air conditioner that can improve operational reliability with respect to the refrigerant charge amount, such as a small amount of refrigerant charge or no additional refrigerant charge amount, and that can extend the connection piping between indoor and outdoor units. do.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る空気調和機は、室外ユニットには冷房時
減圧用装置を設け、暖房時減圧用減圧装置を室内ユニッ
トに設けたものである。
In the air conditioner according to the present invention, the outdoor unit is provided with a pressure reducing device during cooling, and the indoor unit is provided with a pressure reducing device for heating.

〔作 用〕[For production]

この発明においては、凝縮器として動作する熱交換器の
直後にある減圧用装置により室内外ユニットを接続し、
減圧用装置から蒸発器を結ぶ配管内の冷媒の状態を冷房
時および暖房時ともに比重量の等しい低圧の2相状態と
する。
In this invention, the indoor and outdoor units are connected by a decompression device immediately after the heat exchanger that operates as a condenser,
The state of the refrigerant in the pipe connecting the decompression device to the evaporator is set to a low-pressure, two-phase state with the same specific weight during both cooling and heating.

〔実施例〕〔Example〕

以下、この発明の分離形ヒートポンプ式空気調和装置の
実施例を図面に基づき説明する。第1図はその一実施例
の冷媒回路図であり、この第1図において、第4図と同
一部分に番31同一符号を付して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of a separate heat pump type air conditioner according to the present invention will be described based on the drawings. FIG. 1 is a refrigerant circuit diagram of one embodiment. In FIG. 1, the same parts as in FIG. 4 are designated by the same reference numerals 31 and will be explained.

この第1図において圧縮機I、四方弁2、室外熱交換器
3、室内熱交換器5、アキュムレータ6は第4図と同様
であり、以下に述べる点が第4図とは異なり、この実施
例の特徴をなす部分である。
In Fig. 1, the compressor I, four-way valve 2, outdoor heat exchanger 3, indoor heat exchanger 5, and accumulator 6 are the same as in Fig. 4, and the following points differ from Fig. 4; This is the characteristic part of the example.

すなわち、第4図におけ減圧用毛細管4は冷房時減圧用
毛細管4a(液管)と暖房時減圧用毛細管4b(ガス管
)とに分けられている。これらの冷房時減圧用毛細管4
a、暖房時減圧用毛細管4bはそれぞれ逆止弁7a、7
bと並列に接続されている。
That is, the capillary tube 4 for pressure reduction in FIG. 4 is divided into a capillary tube 4a (liquid tube) for pressure reduction during cooling and a capillary tube 4b (gas tube) for pressure reduction during heating. These capillary tubes 4 for reducing pressure during cooling
a, capillary tubes 4b for pressure reduction during heating are check valves 7a, 7, respectively;
connected in parallel with b.

冷房時減圧用毛細管4aと逆止弁7aとの並列回路は室
外ユニット8内に配設され、暖房時減圧用毛細管4bと
逆止弁7bとの並列回路は室内ユニット9内に配設され
ている。
A parallel circuit of the capillary tube 4a for pressure reduction during cooling and the check valve 7a is arranged in the outdoor unit 8, and a parallel circuit of the capillary tube 4b for pressure reduction during heating and the check valve 7b is arranged in the indoor unit 9. There is.

室内ユニット9と室外ユニット8間はそれぞれ室内外ユ
ニット接続配管]Oa、IObで接続されている。
The indoor unit 9 and the outdoor unit 8 are connected by indoor/outdoor unit connecting pipes Oa and IOb, respectively.

次に、第1図の実施例の動作について説明する。Next, the operation of the embodiment shown in FIG. 1 will be explained.

冷房時は四方弁は第1図の実線の位置にあり、圧縮機1
により吐出された高温、高圧のガス冷媒は四方弁2を経
て室外熱交換器3で室外空気と熱交換することにより、
冷却され、凝縮し、高圧のまま過冷却な液冷媒状態とな
って、室外ユニット8内の冷房時減圧用毛細管4aによ
り低圧の2相状態冷媒となる。
During cooling, the four-way valve is in the position shown by the solid line in Figure 1, and the compressor 1
The high-temperature, high-pressure gas refrigerant discharged by passes through the four-way valve 2 and exchanges heat with outdoor air in the outdoor heat exchanger 3.
It is cooled, condensed, becomes a supercooled liquid refrigerant while maintaining high pressure, and becomes a low-pressure two-phase state refrigerant by the capillary tube 4a for pressure reduction during cooling in the outdoor unit 8.

この低圧の2相状態の冷媒は室内外ユニット接続配管1
0aから室内ユニット9に至り、逆止弁7bを経て室内
熱交換器5に至り、室内空気と熱交換することにより、
低圧のまま加熱され、蒸発し、乾き度の大きな2相冷媒
または湯熱ガス冷媒となって、室内外ユニット接続配管
10b、四方弁2、アキュムレータ6を経て圧縮機1に
戻るというサイクルを繰り返す。
This low-pressure two-phase refrigerant is connected to the indoor/outdoor unit connecting pipe 1.
0a to the indoor unit 9, passes through the check valve 7b, reaches the indoor heat exchanger 5, and exchanges heat with indoor air.
The refrigerant is heated at a low pressure, evaporates, becomes a highly dry two-phase refrigerant or hot water gas refrigerant, and returns to the compressor 1 via the indoor/outdoor unit connecting pipe 10b, the four-way valve 2, and the accumulator 6, and repeats the cycle.

暖房時は四方弁2は第1図の破線の位置にあり、圧縮機
1により吐出された高温、高圧のガス冷媒は四方弁2、
室内外ユニット接続配管10b、凝縮器として動作する
室内熱交換器5で熱交換し、高圧の過冷却液冷媒となり
、室内ユニット9内の暖房時減圧用毛細管4bにより減
圧され、低圧の2相状態冷媒となり、室内外ユニット接
続配管10aから室外ユニット8に至り、逆止弁7aか
ら蒸発器として動作する室外熱交換器3で熱交換し、乾
き度の大きな2相状態の冷媒または過熱ガスとなり、四
方弁2、アキュムレータ6を経て圧縮1a1に戻るとい
うサイクルを繰り返す。
During heating, the four-way valve 2 is located at the position indicated by the broken line in Figure 1, and the high-temperature, high-pressure gas refrigerant discharged by the compressor 1 is transferred to the four-way valve 2,
It exchanges heat with the indoor/outdoor unit connecting pipe 10b and the indoor heat exchanger 5 that operates as a condenser, becoming a high-pressure supercooled liquid refrigerant, and is depressurized by the capillary tube 4b for pressure reduction during heating in the indoor unit 9, resulting in a low-pressure two-phase state. It becomes a refrigerant, reaches the outdoor unit 8 from the indoor/outdoor unit connecting pipe 10a, exchanges heat with the outdoor heat exchanger 3 that operates as an evaporator from the check valve 7a, and becomes a highly dry two-phase refrigerant or superheated gas, The cycle of returning to compression 1a1 via four-way valve 2 and accumulator 6 is repeated.

したがって、冷房時および暖房時とも室内外ユニット接
続配管10aには低圧の2相状態の冷媒が流れ、その平
均比重量はほぼ同一の値(0,6〜0.7g/cJ)を
示す。
Therefore, a low-pressure two-phase refrigerant flows through the indoor/outdoor unit connecting pipe 10a during both cooling and heating, and its average specific weight exhibits approximately the same value (0.6 to 0.7 g/cJ).

また、室内外ユニット接続配管10bには、ガス状態ま
たは乾き度の大きな2相状態の冷媒が流れる。したがっ
て、冷房時および暖房時とも、必要冷媒充填量はほぼ同
一の値を示し、室内外ユニット接続配管長さが長くなっ
ても、必要冷媒充填量に差異を生じない。
Further, a refrigerant in a gas state or in a two-phase state with a high degree of dryness flows through the indoor/outdoor unit connecting pipe 10b. Therefore, the required refrigerant filling amount shows almost the same value during both cooling and heating, and even if the length of the indoor/outdoor unit connecting pipe becomes longer, there is no difference in the required refrigerant filling amount.

第2図は横軸に室内外ユニット接続配管長さ、縦軸に必
要冷媒充填量を示したものである。室内外ユニット接続
配管長さが変化したときに適正な運転を行なうためには
、第2図のように追加充填すればよく、追加量も冷暖房
時とも同じで、従来例の2で済み冷媒量調整中を減少さ
せ、冷媒充填量の精度を向上することができる。また、
余剰冷媒の発生が少なくなる。
In FIG. 2, the horizontal axis shows the length of the pipe connecting the indoor and outdoor units, and the vertical axis shows the required refrigerant filling amount. In order to perform proper operation when the length of the indoor/outdoor unit connection piping changes, all you need to do is to refill the refrigerant as shown in Figure 2.The additional amount is the same for both cooling and heating, and the amount of refrigerant required in the conventional example is 2. It is possible to reduce the time during adjustment and improve the accuracy of the refrigerant charging amount. Also,
The generation of surplus refrigerant is reduced.

なお、上記実施例では、室外ユニット8内に冷房時減圧
用毛細管4aと逆止弁7aとを並列に接続した絞り機構
を、室内ユニット8内に暖房時減圧用毛細管4bと逆止
弁7bとを並列に接続した絞り機構をそれぞれ設けたが
、暖房時減圧用毛細管4bおよび冷房時減圧用毛細管4
aの絞りの強さを調節することによりlIl房時の絞り
の作用を毛細管4bと4aの和で行なわせれば、逆止弁
7aを除いて第3図のように室外ユニット8内の絞り機
構を冷房時減圧用毛細管4aだけで構成しても同様の効
果を奏する。
In the above embodiment, a throttling mechanism in which the capillary tube 4a for depressurization during cooling and the check valve 7a are connected in parallel is installed in the outdoor unit 8, and a capillary tube 4b for depressurization during heating and the check valve 7b are connected in parallel in the indoor unit 8. The capillary tube 4b for pressure reduction during heating and the capillary tube 4b for pressure reduction during cooling were provided.
By adjusting the strength of the throttle a, the throttle action in the chamber can be performed by the sum of the capillary tubes 4b and 4a, and the throttle mechanism in the outdoor unit 8, excluding the check valve 7a, can be used as shown in FIG. The same effect can be obtained even if the capillary tube 4a is used only for reducing the pressure during cooling.

また、上記実施例では室内外ユニット接続配管長さが変
化したとき冷媒充填量を調節しているが、必要最大冷媒
量をユニットに充填し、室内外ユニット接続配管の長さ
が変化しても冷媒量の調整が不用となるようにしても同
様の効果を奏する。
In addition, in the above embodiment, the amount of refrigerant charged is adjusted when the length of the indoor/outdoor unit connecting pipe changes, but even if the unit is filled with the required maximum amount of refrigerant, the length of the indoor/outdoor unit connecting pipe changes. The same effect can be obtained even if the adjustment of the amount of refrigerant is not required.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、室内外ユニット接続配
管長が変化しても、冷房時および暖房時の必要冷媒充填
量が等しくなるよう絞り機構を構成したので、余剰冷媒
が生じにくくまた、追加冷媒量も従来の2になることで
、適切な冷媒量での運転が確保でき、信顛性の高い空気
調和機が得られる効果がある。
As explained above, in this invention, the throttling mechanism is configured so that even if the length of the pipe connecting the indoor and outdoor units changes, the amount of refrigerant charged during cooling and heating is the same. By reducing the amount of refrigerant to 2, it is possible to ensure operation with an appropriate amount of refrigerant, resulting in a highly reliable air conditioner.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の分離形ヒートポンプ式空気調和機の
冷媒回路図、第2図は同上分離形ヒートポンプ式空気調
和機の室内外ユニット配管長と必要冷媒充填量の関係を
示す図、第3図はこの発明の分離形ヒートポンプ式空気
調和機の他の実施例の冷媒回路図、第4図は従来の空気
調和機の冷媒回路図、第5図は従来の空気調和機の室内
外ユニット配管長と必要冷媒充填量の関係を示す図であ
る。 1・・・圧縮機、2・・・四方弁、3・・・室外熱交換
器、4a・・・冷房時減圧用毛細管、4b・・・暖房時
減圧用毛細管、5・・・室内熱交換器、6・・・アキュ
ムレータ、7a、7b・・・逆止弁、8・・・室外ユニ
ット、9・・・室内ユニット、10a、10b・・・室
内外ユニット接続配管、 なお図中同一符号は同一または相当部分を示す。 代 理 人   大   岩   増   雄(ほか2
名) コN 楡陳史練猷杯−− 巴 才 3 図 !4図 矛5図 ↑ 必            2,7・暖房時・1 冷            −パ′ 媒        −2−
Fig. 1 is a refrigerant circuit diagram of a separate heat pump type air conditioner according to the present invention, Fig. 2 is a diagram showing the relationship between indoor and outdoor unit piping lengths and required refrigerant charging amount of the above-mentioned separate type heat pump type air conditioner, and Fig. 3 The figure is a refrigerant circuit diagram of another embodiment of the separate heat pump type air conditioner of the present invention, Figure 4 is a refrigerant circuit diagram of a conventional air conditioner, and Figure 5 is a conventional indoor/outdoor unit piping of an air conditioner. FIG. 3 is a diagram showing the relationship between the length and the required refrigerant filling amount. 1...Compressor, 2...Four-way valve, 3...Outdoor heat exchanger, 4a...Capillary tube for pressure reduction during cooling, 4b...Capillary tube for pressure reduction during heating, 5...Indoor heat exchanger 6...Accumulator, 7a, 7b...Check valve, 8...Outdoor unit, 9...Indoor unit, 10a, 10b...Indoor/outdoor unit connection piping, Note that the same symbols in the drawings Indicates the same or equivalent part. Agent Masuo Oiwa (and 2 others)
Name) KoN Yuchenshi Renyu Cup -- Bazai 3 Figure! Figure 4 Figure 5 ↑ Required 2,7・When heating・1 Cooling medium −2−

Claims (3)

【特許請求の範囲】[Claims] (1)圧縮機、四方弁、室外熱交換器、減圧用毛細管、
室内熱交換器、アキュムレータを順次冷媒配管で接続し
た冷媒回路により構成した空気調和機において、冷房用
減圧装置を前記圧縮機、四方弁、室外熱交換器より構成
された室外ユニットに設けかつ暖房用減圧装置を室内熱
交換器により構成された室内ユニットに設けたことを特
徴とする分離形ヒートポンプ式空気調和機。
(1) Compressor, four-way valve, outdoor heat exchanger, capillary tube for pressure reduction,
In an air conditioner constituted by a refrigerant circuit in which an indoor heat exchanger and an accumulator are sequentially connected by refrigerant piping, a pressure reducing device for cooling is provided in an outdoor unit consisting of the compressor, a four-way valve, and an outdoor heat exchanger, and for heating. A separate heat pump type air conditioner characterized in that a pressure reducing device is provided in an indoor unit composed of an indoor heat exchanger.
(2)室内外ユニット内の減圧装置として毛細管と逆止
弁とを並列に接続した絞り機構を設けたことを特徴とす
る特許請求の範囲第1項記載の分離形ヒートポンプ式空
気調和機。
(2) The separate heat pump type air conditioner according to claim 1, further comprising a throttle mechanism in which a capillary tube and a check valve are connected in parallel as a pressure reducing device in the indoor/outdoor unit.
(3)室外ユニット内に必要最大冷媒充填量を封入し、
室内ユニットと室外ユニットを連結する室内外ユニット
接続配管長が変化しても必要冷媒充填量が不変であるこ
とを特徴とする特許請求の範囲第1項記載の分離形ヒー
トポンプ式空気調和機。
(3) Fill the outdoor unit with the required maximum amount of refrigerant,
2. The separate heat pump type air conditioner according to claim 1, wherein the required refrigerant charging amount remains unchanged even if the length of the indoor/outdoor unit connecting pipe connecting the indoor unit and the outdoor unit changes.
JP91586A 1986-01-07 1986-01-07 Separation type heat pump system air conditioner Pending JPS62158958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP91586A JPS62158958A (en) 1986-01-07 1986-01-07 Separation type heat pump system air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP91586A JPS62158958A (en) 1986-01-07 1986-01-07 Separation type heat pump system air conditioner

Publications (1)

Publication Number Publication Date
JPS62158958A true JPS62158958A (en) 1987-07-14

Family

ID=11486976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP91586A Pending JPS62158958A (en) 1986-01-07 1986-01-07 Separation type heat pump system air conditioner

Country Status (1)

Country Link
JP (1) JPS62158958A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01291077A (en) * 1988-05-18 1989-11-22 Mitsubishi Electric Corp Air conditioning device
JPH02110266A (en) * 1988-10-19 1990-04-23 Mitsubishi Electric Corp Air-conditioning device
JPH02118365A (en) * 1988-10-27 1990-05-02 Mitsubishi Electric Corp Air conditioner
JPH02247466A (en) * 1989-03-17 1990-10-03 Mitsubishi Electric Corp Air conditioner
JPH02247467A (en) * 1989-03-17 1990-10-03 Mitsubishi Electric Corp Air conditioner
JPH03170753A (en) * 1989-11-30 1991-07-24 Mitsubishi Electric Corp Air conditioner
JPH0423969U (en) * 1990-04-02 1992-02-26

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572370B2 (en) * 1975-07-17 1982-01-16
JPS5741556A (en) * 1980-08-26 1982-03-08 Hitachi Ltd Refrigeration cycle for heat pump type room air conditioner
JPS5830176B2 (en) * 1978-12-01 1983-06-27 三菱自動車工業株式会社 Car mirror device
JPS6155675B2 (en) * 1981-12-09 1986-11-28 Enami Seiki Kk

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572370B2 (en) * 1975-07-17 1982-01-16
JPS5830176B2 (en) * 1978-12-01 1983-06-27 三菱自動車工業株式会社 Car mirror device
JPS5741556A (en) * 1980-08-26 1982-03-08 Hitachi Ltd Refrigeration cycle for heat pump type room air conditioner
JPS6155675B2 (en) * 1981-12-09 1986-11-28 Enami Seiki Kk

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01291077A (en) * 1988-05-18 1989-11-22 Mitsubishi Electric Corp Air conditioning device
JPH02110266A (en) * 1988-10-19 1990-04-23 Mitsubishi Electric Corp Air-conditioning device
JPH02118365A (en) * 1988-10-27 1990-05-02 Mitsubishi Electric Corp Air conditioner
JPH02247466A (en) * 1989-03-17 1990-10-03 Mitsubishi Electric Corp Air conditioner
JPH02247467A (en) * 1989-03-17 1990-10-03 Mitsubishi Electric Corp Air conditioner
JPH03170753A (en) * 1989-11-30 1991-07-24 Mitsubishi Electric Corp Air conditioner
JPH0423969U (en) * 1990-04-02 1992-02-26

Similar Documents

Publication Publication Date Title
JP4982713B2 (en) Energy efficiency improvement device for refrigeration cycle
CN108800384A (en) Air Conditioning Systems and Air Conditioners
Ma et al. Experimental investigation on an air source heat pump system with coupled liquid-storage gas-liquid separator regarding heating and defrosting performance
JPS62158958A (en) Separation type heat pump system air conditioner
JPH0425463B2 (en)
JP5369953B2 (en) Multi-room air conditioner performance calculator
CN209960795U (en) Heat storage type heat pump system
JPH09257334A (en) Heat pump air conditioner
KR100441008B1 (en) Cooling and heating air conditioning system
CN219036903U (en) Heat exchange and outdoor unit with wide capacity control
JP2005337577A5 (en)
JPS5849863A (en) Refrigeration cycle of heat pump water heater
JP2921213B2 (en) refrigerator
CN119164136A (en) A new low-temperature refrigeration system based on solenoid valve liquid level control
JP3480205B2 (en) Air conditioner
CN208846774U (en) Air conditioner heat pump system and air conditioner
JPS5840464A (en) Air conditioner
JPH03170753A (en) Air conditioner
JPS6213574B2 (en)
Rasson et al. The double-effect regenerative absorption heat pump: cycle description and experimental test results
JPS6222391B2 (en)
JP2823068B2 (en) Heat pump type air conditioner
JPS5872854A (en) Absorption type air conditioner
CN118705782A (en) Multi-connection system and oil return control method thereof
CN118564983A (en) Air conditioning system with evaporation supercooling based on combustible non-azeotropic refrigerant