JPS62158597A - Manufacture of multicomponent system congruent melting solder material - Google Patents
Manufacture of multicomponent system congruent melting solder materialInfo
- Publication number
- JPS62158597A JPS62158597A JP61305149A JP30514986A JPS62158597A JP S62158597 A JPS62158597 A JP S62158597A JP 61305149 A JP61305149 A JP 61305149A JP 30514986 A JP30514986 A JP 30514986A JP S62158597 A JPS62158597 A JP S62158597A
- Authority
- JP
- Japan
- Prior art keywords
- component
- brazing
- eutectic
- producing
- brazing material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims description 69
- 229910000679 solder Inorganic materials 0.000 title claims description 60
- 238000002844 melting Methods 0.000 title claims description 23
- 230000008018 melting Effects 0.000 title claims description 22
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 230000005496 eutectics Effects 0.000 claims description 58
- 238000005219 brazing Methods 0.000 claims description 51
- 238000000034 method Methods 0.000 claims description 37
- 238000000576 coating method Methods 0.000 claims description 31
- 239000000203 mixture Substances 0.000 claims description 28
- 239000011248 coating agent Substances 0.000 claims description 24
- 229910052750 molybdenum Inorganic materials 0.000 claims description 17
- 239000011733 molybdenum Substances 0.000 claims description 16
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical group [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 15
- 229910052726 zirconium Inorganic materials 0.000 claims description 11
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 10
- 238000011282 treatment Methods 0.000 claims description 9
- 229910052759 nickel Inorganic materials 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 7
- 238000009792 diffusion process Methods 0.000 claims description 6
- 229910052703 rhodium Inorganic materials 0.000 claims description 6
- 229910052723 transition metal Inorganic materials 0.000 claims description 5
- 150000003624 transition metals Chemical class 0.000 claims description 5
- 238000005229 chemical vapour deposition Methods 0.000 claims description 4
- 238000010849 ion bombardment Methods 0.000 claims description 3
- 229910000510 noble metal Inorganic materials 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 229910052735 hafnium Inorganic materials 0.000 claims description 2
- 229910052741 iridium Inorganic materials 0.000 claims description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 2
- -1 iron group metals Chemical class 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 229910052762 osmium Inorganic materials 0.000 claims description 2
- 229910052763 palladium Inorganic materials 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 238000004544 sputter deposition Methods 0.000 claims description 2
- 229910052715 tantalum Inorganic materials 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims 1
- 238000007733 ion plating Methods 0.000 claims 1
- 229910052742 iron Inorganic materials 0.000 claims 1
- 150000002739 metals Chemical group 0.000 claims 1
- 229910052707 ruthenium Inorganic materials 0.000 claims 1
- 239000001993 wax Substances 0.000 description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 13
- 239000000155 melt Substances 0.000 description 12
- 239000012071 phase Substances 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 5
- 238000005304 joining Methods 0.000 description 5
- 239000010948 rhodium Substances 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229910001093 Zr alloy Inorganic materials 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000000374 eutectic mixture Substances 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000005240 physical vapour deposition Methods 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910001182 Mo alloy Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000005422 blasting Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000010309 melting process Methods 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000004390 Auger electron microscopy Methods 0.000 description 1
- 241001289717 Hypolimnas Species 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005202 decontamination Methods 0.000 description 1
- 230000003588 decontaminative effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000006023 eutectic alloy Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 229910000743 fusible alloy Inorganic materials 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000004021 metal welding Methods 0.000 description 1
- 239000005300 metallic glass Substances 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 229910002059 quaternary alloy Inorganic materials 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/001—Interlayers, transition pieces for metallurgical bonding of workpieces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/02—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
- B23K35/0222—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/02—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
- B23K35/0222—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
- B23K35/0227—Rods, wires
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/02—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
- B23K35/0222—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
- B23K35/0233—Sheets, foils
- B23K35/0238—Sheets, foils layered
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/02—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
- B23K35/0222—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
- B23K35/0244—Powders, particles or spheres; Preforms made therefrom
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/3033—Ni as the principal constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/32—Selection of soldering or welding materials proper with the principal constituent melting at more than 1550 degrees C
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/38—Selection of media, e.g. special atmospheres for surrounding the working area
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/38—Selection of media, e.g. special atmospheres for surrounding the working area
- B23K35/383—Selection of media, e.g. special atmospheres for surrounding the working area mainly containing noble gases or nitrogen
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Ceramic Products (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、ろう材料の第1成分からなる成形部品を一種
又は数種の他の成分で被覆し、ろう材料がろう付け過程
で特に脆性の金属間相成分と共に共融組成の均一相に移
行するようにすることによって、多成分系の一致溶融性
ろう材料を製造する方法に関する。成形部品はろうシー
ト又はろうワイヤであるか、又はろう付けすべき両部品
の一方であってよい。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention provides a method for coating a molded part consisting of a first component of a solder material with one or more other components, so that the solder material is particularly brittle during the brazing process. The present invention relates to a method for producing a multi-component conformally fusible braze material by transitioning into a homogeneous phase of eutectic composition with the intermetallic phase components of the present invention. The molded part may be a braze sheet or a braze wire, or one of the two parts to be brazed.
多くの科学技術分野において複合加工材はその重要性を
次第に増して来ている。ろう付け工業はその一つの重要
な地位を占めている。特に一致溶融性合金、特に共融合
金の多数のものがろう材料として使用されている。例え
ば錫をベースとする軟ろう又は銀をベースとする硬ろう
は溶融冶金的に製造できまた成形により所望の形状にす
ることができるが、この処置は脆性の金属間相な含む共
融組成の他のろう材料の場合には一般(=不可能である
。この種のろう材料の例はチタン、ジルコニウム、モリ
ブデン及びタングステンのような高融点の遷移金属をベ
ースとしたものである。従って現今の技術水準によれば
高温ろう付けの分野においては、はとんどの場合単一成
分よりなるろう(チタン、ジルコニウム、白金及びロジ
ウムのような貴金属)を用いてろう付けされる。Composite materials are gradually gaining importance in many scientific and technological fields. The brazing industry occupies one important position. In particular, a large number of conformally fusible alloys, especially eutectic alloys, are used as brazing materials. For example, tin-based soft solders or silver-based hard solders can be produced melt-metallurgically and shaped into the desired shape by forming, but this procedure does not require a eutectic composition containing brittle intermetallic phases. In the case of other brazing materials it is generally (= impossible. Examples of such brazing materials are those based on high melting point transition metals such as titanium, zirconium, molybdenum and tungsten. According to the state of the art, in the field of high-temperature brazing, solders are mostly soldered using single-component solders (noble metals such as titanium, zirconium, platinum and rhodium).
通常の割合で製造された脆性の共融ろう材料を成形可能
のワイヤ及びシートとして製造する試みはなされている
。例えばその製造に際して、ろう材料が共融組成の状態
で存在するこの踵の融液を急速に冷却することにより金
属ガラスの状態にし、この状態で成形加工する。しかし
この方法は価格が高くつく上に、現在ではほんの数cm
の幅の寸法のろうシートが得られるにすぎない。例えば
この種のろうシートは西ドイツ国特許第2755435
号明細書及び米国特許第3856513号明細書に記載
されている。Attempts have been made to produce brittle eutectic solder materials made in conventional proportions as formable wires and sheets. For example, during its production, the heel melt, in which the brazing material is present in a eutectic composition state, is rapidly cooled to form a metallic glass state, and molded in this state. However, this method is expensive, and currently only a few cm
A wax sheet with width dimensions of only . For example, this type of wax sheet is covered by West German Patent No. 2755435.
and US Pat. No. 3,856,513.
ろう付け表面に多成分系のろう材料を施す公知の方法は
、各成分が空間的に並列して存在する形でろう材料をろ
う付け丁べき表面に施すことよりなる。例えば西ドイツ
国特許出願公開夷3321438号公報には不均一相、
丁なわち種々の互いに重りあって被1された粉末の型で
ろう付け丁べき表面に施されるろうが記載されている。A known method for applying a multicomponent solder material to a surface to be soldered consists in applying the solder material to the surface to be soldered in such a way that each component is spatially juxtaposed. For example, in West German Patent Application No. 3321438, a heterogeneous phase,
A solder is described which is applied to the surface to be brazed with various overlapping powder molds.
これによれば多成分系のろう材料は、それぞれ−成分か
らなる積層薄板の型でろう付け丁べき表面に施丁ことも
できる。この様に数種の、場所的に分離されている成分
からなるろう材料が全体的には共融組成を有する場合に
も、ろうを顯解させるためには、まず温度を少くとも融
点の最も低い成分の融解温度近く(:する必要があり、
この温度は定義::よれば共融温度の上方、多くの場合
にはそれをはるかに上廻り、すなわち共融混合物の凝固
温度の上方C:ある。更に融解は実際にはろう表面の種
々の場所で、種々の時点で生ずる。しかし部品をろう付
けするには、ろう寸は温度をできるだけ低く保ちまたろ
う付け時間をできるだけ知かく保つことによって、部品
の材料及び寸法が変化する欠点を避けるか又は許容限度
内に維持すること、並び(:ろう付け表面の全域で同時
的に融解することを確保することが一般に重要である。According to this, a multi-component brazing material can also be applied to the surface to be brazed in the form of laminated thin plates each consisting of one component. Even when a solder material consisting of several locally separated components has an overall eutectic composition, in order to melt the solder, the temperature must first be adjusted to at least the melting point. Low (near the melting temperature of the ingredients):
This temperature is by definition C: above the eutectic temperature, in many cases well above it, ie above the solidification temperature of the eutectic mixture. Furthermore, melting actually occurs at different locations on the wax surface and at different times. However, in order to braze parts, the solder dimensions must be kept within acceptable limits by keeping the temperature as low as possible and the brazing time as short as possible to avoid the drawbacks of changing the material and dimensions of the parts; It is generally important to ensure simultaneous melting across the entire brazing surface.
融解を起こすために共融温度をはるかに越えた温度が必
要な場合には、?@却に際してろう材料中に一次混晶が
顕著に生じ、従って脆化C:よりその機械的特性は著し
く劣化すること(二なる。この理由から実際においては
、全体的に共融組成を有する重なり合って被覆されたろ
う材料を2種の成形部品の結合に使用することはしばし
ば断念されている。What if temperatures well above the eutectic temperature are required to cause melting? During abrasion, primary mixed crystals are significantly generated in the solder material, and its mechanical properties are significantly deteriorated due to embrittlement. The use of coated solder materials for joining two molded parts is often abandoned.
西ドイツ国特許出願公開第2540755号公報には、
ジルコニウム合金からなる二つの部品の一方に金属製型
を施すことによって両部品をろう付けする方法が記載さ
れている。この場合被膜はジルコニウム合金と共に、適
当に加熱されることにより共融組成の融液を生じる。最
後に種々の処理工程によって双方の結合すべきジルコニ
ウム部品間にろう結合を生ぜしめる。この方法の課題は
、双方の結合すべき部品の一方のジルコニウム合金がα
相から許容し得ないβ相に移行するのを阻止することで
ある。更に上記の公報にはろうの製造に関する記載は全
く含まれていない。従って上記の方法に関する明細潜か
らは、そこで特許請求されている各部品を結合するため
の処理工程によって実際のろう付け温度から出発して伺
らかの利益が得られる可能性又は実際に得られることは
子側することができない(β相の発生を回避すること以
外)。In West German Patent Application No. 2540755,
A method is described for brazing two parts made of a zirconium alloy by applying a metal mold to one of the parts. In this case, the coating, together with the zirconium alloy, is heated appropriately to form a melt having a eutectic composition. Finally, various processing steps produce a solder joint between the two zirconium parts to be joined. The problem with this method is that the zirconium alloy of one of the parts to be joined is α
phase to the unacceptable β phase. Furthermore, the above-mentioned publication does not contain any description regarding the production of wax. Therefore, the specification of the above-mentioned method suggests that the claimed process steps for joining the parts may or do result in certain benefits starting from the actual brazing temperature. Nothing can be done on the child side (other than avoiding the occurrence of the β phase).
本発明の目的は、共融組成の相応する均一なろう材料が
脆い金属間相成分のためろうにとって通常の寸法には加
工できないにもかかわらず、共融温度で一致溶融性の二
成分又は多成分からなるろうを市販の形状及び寸法で製
造することにある。It is an object of the present invention to provide a method for achieving consistent meltability at the eutectic temperature, even though correspondingly homogeneous solder materials of eutectic composition cannot be processed into dimensions customary for solders due to brittle intermetallic phase components. The object of the present invention is to produce waxes consisting of the components in commercially available shapes and dimensions.
この方法は溶融冶金法における上記の制限を有していて
はならない。更にこの方法は、ろう成分が互いに不安定
に接合されている場合に生ずる上記の欠点を有している
べきではない。更にこの目的は個々の使用分野において
、複雑な形状のろう付け表面を有する部品な共融ろう材
料でろう付けすることを可能にすることにある。This method should not have the above limitations in fusion metallurgy methods. Furthermore, this method should not have the above-mentioned disadvantages that occur when the solder components are unstably bonded to one another. Furthermore, the aim is to make it possible to solder parts with eutectic solder materials with complexly shaped soldering surfaces in the respective fields of application.
この目的は本発明(=よれば、成形部品な波型装置に装
入し、’il処理工程でその都度の被覆処理に特有の公
知の手段により5表面::付着している可能性のある酸
化膜及び/又は汚れを除去し、第2処理工程で成形部品
を一種又は数種の池の成分で被覆し、最後の処理工程で
被覆された成形部品の境界域で全成分に共融温度より低
い温度で機械的に及び/又は拡散により混合して、境界
域内の混合物を共融組成又はほぼ共融組成に維持し、こ
れによりろう材料な共融温度のすぐL方の温度で遅れる
ことなく融解させることによって達成される。According to the invention, the object is to charge the molded part into a corrugating device and, in the 'il treatment process, use known means specific to the respective coating treatment to remove the 5 surfaces that may have adhered to it. After removing the oxide film and/or dirt, in a second treatment step the molded part is coated with one or more components of the pond, and in the last treatment step all the components are brought to a eutectic temperature in the boundary zone of the coated molded part. Mixing mechanically and/or by diffusion at a lower temperature to maintain the mixture in the boundary zone at or near a eutectic composition, thereby delaying the mixture at a temperature just below the waxy material's eutectic temperature. This is achieved by melting without melting.
本発明方法によって驚くべきことには、ろう成分を層状
に施した場合にも実際のろう付け工程に入る前にすで(
二相状態をろう内に得ることができ、この状態は共融温
度でろうの融解を可能にし、これまで一般的であったよ
うにろう材料の最低融点成分の融解温度で又はその近く
の温度ではじめて融解するのではない。この融解温度は
一般に共融温度をはるかに上廻る。Surprisingly, the method of the present invention shows that even when the brazing component is applied in layers, the brazing component (
A two-phase state can be obtained within the wax, which allows the melting of the wax at the eutectic temperature and, as has been common in the past, at or near the melting temperature of the lowest melting component of the wax material. It doesn't melt for the first time. This melting temperature is generally well above the eutectic temperature.
この場合共融組成の境界層を得るには、2種の分離して
存在する成分AとBとの間に存在する基本的には任意の
狭い領域で充分であり、この領域内で元素Aの原子の連
続濃度勾配はOから100チである(これは元素Bの原
子についてもいえる)。共@温度に達した際に境界内で
生じる融液は、そこに与えられた原子の交換性が高いこ
とにより溶融領域を急速に拡大し、従って総合的に共融
組成を与えられたろう材料は、共融温度を僅かに上鍔る
温度で実際のろう付け条件下に一致融解する。In this case, to obtain a boundary layer of eutectic composition, essentially any narrow region between the two separately present components A and B is sufficient, and within this region the element A The continuous concentration gradient for atoms of is from O to 100 Ti (this is also true for atoms of element B). The melt that forms within the boundary when the eutectic temperature is reached rapidly expands the melting region due to the high exchangeability of the atoms provided therein, so that the solder material given the overall eutectic composition , it melts congruently under actual brazing conditions at a temperature slightly above the eutectic temperature.
従って本発明の実際上の実施は、適当な処理過程で付加
的に被覆するために成分A及びBを上記の漸変遷移で緊
密に結合することのできる被覆及び結合技術のすべての
公知方法及び装置によって行われる。同時にこの方法に
よって、表面の汚れや酸化膜及び腐食生成物を、被覆す
べき成分の表面から除去するか、又は表面へのこれらの
層状堆積物を成分A及びBの完全な混合が少なくとも各
成分間の境界面の主要部分で起り得る程度に排除する必
要がある。The practical implementation of the invention therefore includes all known methods and methods of coating and bonding techniques that allow components A and B to be tightly bonded in the above-mentioned gradual transition for additional coating in a suitable process step. done by the device. At the same time, this method removes surface contaminants, oxide films and corrosion products from the surface of the components to be coated, or removes these layered deposits on the surface until a thorough mixing of components A and B is achieved, at least for each component. It is necessary to eliminate it to the extent that it can occur at the main part of the interface between them.
このように構成されたろう材料でろう付けを行った場合
、最小の一次混晶形成下に、従って良好な硬度特性を有
する極めて微細な粒状の共融組織を得ることができる。When brazing with a solder material constructed in this way, a very fine-grained eutectic structure with minimal primary mixed crystal formation and thus good hardness properties can be obtained.
この組織の形成にとって決定的なことはろうの過加熱を
避けること、従って共―温度が十分な速度で伝達される
ことを保証することである。熱源を遮断した後温度はほ
ぼ指数的に降下する。冷却工程な共融温度の上方近くで
行うほど、はぼ同じ処理条件下に臨界温度範囲はより急
速に共融温度に移行しまた微細な粒状混晶を生じる融液
の過冷却効果は顕著に現われる。Crucial to the formation of this structure is to avoid overheating the wax and thus ensure that the co-temperature is transferred at a sufficient rate. After switching off the heat source, the temperature drops almost exponentially. The closer the cooling process is performed to the upper eutectic temperature, the more rapidly the critical temperature range shifts to the eutectic temperature under roughly the same processing conditions, and the supercooling effect of the melt that produces fine granular mixed crystals becomes more pronounced. appear.
この条件を特に高度に満たす方法としてはプラズマ気水
分離法CPVD法)が挙げられる。このグループに属す
るイオンブレーアイフグ法及び基板バイアスでの高性能
スパッタリング法は、任意の層材料からなる層の本発明
による被覆を、比較的低い温度(数100℃まで)で可
能とする。As a method that particularly satisfies this condition to a high degree, there is a plasma steam/water separation method (CPVD method). The ion Breaifug method and the high-performance sputtering method with substrate bias belonging to this group allow the coating according to the invention of layers of arbitrary layer materials at relatively low temperatures (up to several 100° C.).
被覆開始時にイオン衝撃によって表面から付着不純物を
除去しく払い落し)、支持材料と層材料との間の境界範
囲に共融ろう材料の成分A及びBの混合域を形成する。At the start of coating, adhering impurities are removed from the surface by means of ion bombardment), forming a mixing zone of components A and B of the eutectic solder material in the boundary area between the support material and the layer material.
次いでろう付け過程で加熱中に共融温度に達すると、実
際に遅延することなく、共融組成を有する遷移域の同じ
範囲が融解する。固/液双方の相境界で、実地において
は約10℃から共融温度を上鍔る温度で選択することの
できる一定のろう付け温度で、固体材料成分の他の部分
が融解する。その際融液内での高い材料交換により共融
組成が得られる。融解工程は、融液中の0度平衡が状態
ダイアダラムに応じて生じた際に終了する。共―組成に
相当する厚さで存在するろうシートは完全に融解する。Then, when the eutectic temperature is reached during heating during the brazing process, the same area of the transition zone with eutectic composition melts without any actual delay. At both the solid/liquid phase boundary, at a certain brazing temperature, which can be selected in practice from about 10° C. to just above the eutectic temperature, the other portion of the solid material component melts. A high exchange of material within the melt results in a eutectic composition. The melting process ends when a zero degree equilibrium in the melt occurs depending on the state diadem. The wax sheet present in a thickness corresponding to the co-composition melts completely.
上記のPVD法は例えば真空蒸着又は電気メッキ彼環の
ような他の被覆法に比べて優れた利点をばする。すなわ
ち被覆開始直前に被覆装置内で固形状態で存在する成分
の表面からイオンを作用させることにより汚れを除去す
ることができ、その結果汚れ及び酸化物を有さない表面
が生じ、次の工程で境界域において各成分を完全に混合
することができる。The PVD method described above offers significant advantages over other coating methods such as vacuum evaporation or electroplating. In other words, dirt can be removed by applying ions to the surface of the components present in a solid state in the coating equipment immediately before the start of coating, resulting in a surface free of dirt and oxides that can be used in the next step. The components can be completely mixed in the boundary zone.
CVD法を使用する場合、固体成分Aと被覆材料Bとの
間の境界域の形成はその高い処理温度により・bつばら
熱拡散によって行う。この場合表面の不純物及び酸化物
はこれが特定の材料からなる場合(:は予めH1流中で
灼熱することにより除去することができる。代表的な処
理温度は公知の技術水準によれば600℃−1100℃
であるが、これはあらゆる場合に共融温度に達しないよ
うに選択する必要がある。When using the CVD method, the formation of the boundary zone between the solid component A and the coating material B takes place due to the high processing temperature and by thermal diffusion. In this case, impurities and oxides on the surface, if it consists of a particular material (:), can be removed by prior annealing in a stream of H1. Typical processing temperatures are according to the state of the art - 600 °C - 1100℃
However, this must be chosen in such a way that the eutectic temperature is not reached in all cases.
ローラープレー1インクによっても本発明は実施するこ
とができる。もちろんこの場合にはろう成分の機械的特
性を互いに同調させる必要があることから付加的な周辺
条件が生じる。ローラーブレーティング(二よって結合
すべき表面はブレー戸イングのできるだけ直前に、適当
な機械的及び化学的前処理により堆積物、酸化膜及び同
様のものを除去する必要がある。空気中で処理する場合
一般(:急速に再生する薄い酸化膜は、金属の加圧又は
摩擦溶接で公知の重要な条件下にa−ラーブレーテイン
グに際して材料を成形することによって除去され、材料
A及びBの冷間溶接により再び顕微鏡尺度で混合された
遷移域を形成することができる。The present invention can also be practiced with Rollerplay 1 ink. Of course, additional environmental conditions arise in this case due to the need to match the mechanical properties of the solder components to one another. Roller brating (2) The surfaces to be bonded should be freed from deposits, oxide films and the like by means of suitable mechanical and chemical pre-treatments as soon as possible before roller blasting. Treated in air. In general (: the rapidly regenerating thin oxide film is removed by forming the material during a-lar brating under critical conditions known in pressure or friction welding of metals, and cold welding of materials A and B) Once again a mixed transition zone can be formed on a microscopic scale.
ローラ掛けは使用した材料に応じて室温でもまた高めた
温度でも行うことができる。冷間圧延可能の薄板の場合
共融温度TEより低い温度(例えば05〜0.7T、)
での次の灼熱処理により熱拡散することによって、必要
な濃度勾配を全境界面にわたって得ることができ、これ
により融液状態は鍛適となる。Rolling can be carried out at room temperature or at elevated temperature, depending on the materials used. In the case of cold-rollable thin plates, the temperature is lower than the eutectic temperature TE (for example, 05 to 0.7 T).
By thermal diffusion by a subsequent sintering treatment at , the required concentration gradient can be obtained over the entire interface, which makes the melt state suitable for forging.
境界層でろう成分全混合させない被覆法も1本発明での
共融性ろうの製造に使用することができるが、これは被
覆後に行う熱処理によって各成分が熱的に拡散を活性化
されることを前提とする。A coating method in which all of the solder components are not mixed in the boundary layer can also be used to produce the eutectic solder according to the present invention, but this is because the diffusion of each component is thermally activated by the heat treatment performed after coating. Assuming that.
これは例えば真空蒸着及び電気メツキ被覆の場合原理的
には可能であるが、はとんど実現不能である。Although this is possible in principle in the case of vacuum-deposited and electroplated coatings, for example, it is rarely realizable.
本発明方法は、はんだ材料の第1成分が薄い板であり、
その上に金属成分の一種又は数種の混合物が不発明方法
に相応して施されている共融性ろう材料全製造するのに
特に適している。薄板の厚さ及び施された層を同調させ
ることによって、ろう材料が総体的に、相応する共融混
合物中の個々の金属成分の割合に相当する材料組成?維
持することが達成される。この種のろうシートでろう付
けする場合、共融温度を越えた際に最短時間で共融組成
を有する全ろう材料が融解し、次の冷却に際して共融組
織で結晶する。In the method of the present invention, the first component of the solder material is a thin plate;
It is particularly suitable for producing all eutectic solder materials, on which one or a mixture of several metal components has been applied in accordance with the inventive method. By matching the thickness of the laminates and the applied layers, the material composition of the solder material as a whole corresponds to the proportion of the individual metal components in the corresponding eutectic mixture? Maintaining is achieved. When brazing with solder sheets of this type, the entire solder material with a eutectic composition melts in the shortest possible time when the eutectic temperature is exceeded, and upon subsequent cooling it crystallizes in a eutectic structure.
厚さQ、 ] wまでの市販のろうシートの場合施すべ
き層の厚さは共融混合物の組成に応じて多くの場合10
0μ亀以下である。成分A及びBの厚さが著しく異なる
場合には一般に薄い方の層を被膜として、支持薄板とし
て利用する厚い方の成分上に施す。数100μ島までの
層厚は公知の技術水準に属するPVD法及びCVD法に
よりまたローラープレーディング法により経済旧に施す
ことができる。In the case of commercially available solder sheets with a thickness Q, ] w, the layer thickness to be applied is often 10, depending on the composition of the eutectic mixture.
It is less than 0μ. If the thicknesses of components A and B differ significantly, the thinner layer is generally applied as a coating onto the thicker component, which serves as a supporting lamina. Layer thicknesses of up to a few 100 μm can be applied economically by PVD and CVD methods belonging to the state of the art and by roller plating methods.
本発明によるろう材料を用いて製造したろう結合の品質
は、すでにこれまでに製造された共融組成及び共融組織
のろうを用いて得られる品質と差違がない。The quality of the solder joints produced with the solder material according to the invention does not differ from the quality already obtained with previously produced solders of eutectic composition and structure.
被覆技術の水準に基づいて、被覆材料Bを支持材料Aの
片面、又は両面に施すことが可能である。これにより加
熱時における複合体の形状安定性が高められる。両面被
覆は特にローラーブレーティングで処理技術に応じて簡
単に施すことができる。三成分共融混合物(又は四成分
系等)を製造するため一種以上の層材料で被覆すること
も技術的に可能である。Depending on the level of coating technology, it is possible to apply the coating material B to one or both sides of the support material A. This increases the shape stability of the composite during heating. Depending on the processing technology, double-sided coatings can be applied easily, especially by roller blasting. It is also technically possible to coat with one or more layer materials to produce ternary eutectic mixtures (or quaternary systems, etc.).
帯状体又はワイヤを連続的に被覆する公知の技術水準に
応じて多くの被覆法を適用することができる。例えば幅
1〜2mまでの帯状体は巻戻し法で被覆することができ
る。特定のタイプの被覆装置によって著しく制約される
場合には、一定の限度で本発明によるろう材料を事後的
にろうシートに所窒の厚さに圧延することもできる(は
じめは小さな表面であるが、厚さは次第に大きくなる)
。Depending on the state of the art, many coating methods can be applied for continuously coating strips or wires. For example, strips up to 1 to 2 m wide can be coated by the unwinding method. If there are significant limitations due to the particular type of coating equipment, it is also possible, within certain limits, to subsequently roll the solder material according to the invention into a solder sheet to a desired thickness (initially on a small surface, but , the thickness gradually increases)
.
本方法は複雑な形状のろう付け表面を有する2つの成形
部品を結合する場合に極めて良好に選択される。ろう付
け表面が完全に平面でない場合。This method is an excellent choice for joining two molded parts with complexly shaped brazing surfaces. If the brazing surface is not perfectly flat.
ろうシートをろう付けすべき加工品の一方に均一に施し
、ろう処理を均一な厚さで全ろう付け表面に作ることが
極めて困難なことは周知である。これとは巽なりろう材
料の第1成分からなる成形部品に種々の被覆技術で一種
以上の他の成分?、十分に均一ではあるがすべての場合
にその都度の被覆法に応じて予め規定することのできる
層厚で施し、第1部品を第2成形部品とろう付けシート
にあげられている欠点を回避しながらろう付けすること
ができる。ろう付け過程で1、成形部品と施されたろう
成分との境界1v内に共融融解が生じる。It is well known that it is extremely difficult to uniformly apply a brazing sheet to one side of the workpiece to be brazed and to produce a brazing treatment of uniform thickness over the entire brazing surface. What does this mean?A molded part consisting of a first component of Naruwa material is coated with one or more other components using various coating techniques? , with a sufficiently uniform but predefinable layer thickness in all cases depending on the coating method in each case, to avoid the disadvantages mentioned in the soldering sheet of the first part with the second molded part. It can be brazed at the same time. During the brazing process 1, eutectic melting occurs within the boundary 1v between the molded part and the applied solder component.
その後実際に遅延を生じることなく全ろう付け表面(=
わたって、施されたろう成分の融解が成形部品の材料全
同時に溶解しながら進行する。融液の共融組成は常に維
持される。これにより成形部品の予め算出できる均一な
識少(多くは01顛より小さい範囲)、十分に均一なろ
う厚さの配分及び総括的に成形部品複合体の僅かな許容
誤差が達成される。Then the entire brazed surface (=
Over time, the melting of the applied wax component proceeds while simultaneously melting all the materials of the molded part. The eutectic composition of the melt is always maintained. This achieves a uniform, predetermined distribution of the molded part (often in the range of less than 0.01 mm), a sufficiently uniform distribution of the solder thickness and overall low tolerances of the molded part composite.
最初に記載したように、高融点の加工材、特に遷移金属
からなる成形部品をろう付けにより結合する場合に、特
に高温ろうは近年次第にその重要性全増して来ている。As mentioned at the outset, high-temperature solders in particular have become increasingly important in recent years when joining molded parts made of high-melting point workpieces, especially transition metals, by brazing.
この場合本発明による共融ろう材料の利点は、特に今日
まで使用されて来た単−成分系のろうに比べてその適用
に関して極めて傑出している。本発明方法は特に遷移金
属T1゜Zr、Hf、V、Nb、Ta、Cr、Mo及び
Wを相互に組合せてなるか又は貴金属Age Au、
Ru。In this case, the advantages of the eutectic solder material according to the invention are particularly outstanding with regard to its application compared to the single-component solders that have been used to date. The process according to the invention is particularly applicable to the transition metals T1°Zr, Hf, V, Nb, Ta, Cr, Mo and W in mutual combination or the noble metals Age Au,
Ru.
Rh、 Pd、Os、 Ir、 Pt又は鉄族金属Fe
、Ni及びCoの一種以上と組合せてなる一致溶融性の
2層ろうを製造するのに適している。Rh, Pd, Os, Ir, Pt or iron group metal Fe
, Ni and Co in combination with one or more of Co, Ni and Co.
最後に記載する第1表にはそれぞれの共融組成及び共融
温度を有するこの種のいくつかのろう材料が例示されて
いる。比較のためろうのそれぞれの主成分の融点全も〃
す記する。記載した例では350℃までであるそれぞれ
の温度差からだけでも共融性ろうの処理技術上の利点は
明らか(二読み取ることができる。ろう材料と全く合金
化しないか又は極く僅かに合金化する他の加工材をろう
付けする場合、これらのろうはろう材料並びにろう付け
温度に関して現在入手可能のろう材料よりも著しく拡大
される。Table 1 at the end exemplifies several solder materials of this type with their respective eutectic compositions and eutectic temperatures. For comparison, the melting points of each main component of the wax are also listed.
Write down. The processing technology advantages of eutectic solders are clear even from the respective temperature differences, which in the example described are up to 350°C (2). When brazing other workpieces to be soldered, these solders are significantly expanded in terms of solder material and brazing temperature than currently available solder materials.
高融点の遷移金属からなる共融ろうのうち1組成がZr
0.7 +、 Mo O,29の薄板状ろう材料はモ
リブデン又はモリブデン合金相互からなるか又はグラフ
ァイトとからなる成形部品を結合するのに特に有意義で
ある。One composition of the eutectic solder consisting of high melting point transition metals is Zr.
0.7 +, Mo 2 O,29 laminar solder materials are particularly useful for joining molded parts made of molybdenum or molybdenum alloys with each other or with graphite.
次に本発明方法の実際の実施態様を例に基づき詳述する
。Next, a practical embodiment of the method of the present invention will be explained in detail based on an example.
例1
厚さQ、 ] w、大きさ500X200− のジルコ
ニクム薄板’4PVDイオンブレーティング装置内に、
該薄板が平坦に張られかつ真空室の壁に対して陰極的に
接続されるように取り付ける。真空室内?まず高真空(
pは10 Paより小さい)にし9次にIPaのア
ルゴン圧でジルコニウム薄板に数kVの高電圧を施すこ
とによりグロー放電する。グロー放電中にジルコニウム
薄板からイオン衝撃(汚染除去)により表面の汚れ及び
常に生じ得る酸化物層を除去する。次にグロー放電を継
続しながら冷水式sM4からモリブデンの電子ビーム蒸
着によりジルコニウム薄板上にモリブデン全イオンプレ
ーディングする。モリブデン*mは層l527μ愚にな
る迄行い、これによりジルコニウム/モリブデン復合体
は共融組成の状態に十分接近する。Example 1 A thin zirconium plate with a thickness of Q, ]w and a size of 500 x 200- is placed in a PVD ion blating device.
The thin plate is stretched flat and mounted so as to be cathodically connected to the wall of the vacuum chamber. In a vacuum chamber? First, high vacuum (
p is smaller than 10 Pa), and a high voltage of several kV is applied to the zirconium thin plate under an argon pressure of IPa to generate a glow discharge. During the glow discharge, the zirconium sheet is removed by ion bombardment (decontamination) from surface contamination and any oxide layer that may occur. Next, all molybdenum ions are plated onto the zirconium thin plate by electron beam evaporation of molybdenum from a cold water type sM4 while continuing glow discharge. Molybdenum*m is applied until the layer 1527μ is thick, so that the zirconium/molybdenum composite sufficiently approaches the state of eutectic composition.
こうして装造したシートは被覆径破断することなく、半
径1■で180°曲げることができる。層の付着性は優
れており、曲げに際して亀裂が生じることはない。披榎
の組織は無気孔で微細な竿状である。基材と被覆との間
の遷移域における幅約50nmの合金化遷移はオージェ
電子頴微鏡により確認することができた。The thus-wrapped sheet can be bent 180 degrees at a radius of 1 square inch without breaking the coating diameter. The adhesion of the layers is excellent and no cracks appear on bending. The structure of the larvae is nonporous and minutely rod-shaped. An alloying transition with a width of about 50 nm in the transition zone between the substrate and the coating could be confirmed by Auger electron microscopy.
モリブデンからなる成形部品をグラファイトからなる成
形部品と、またグラファイト?グラファイトとろう付け
するためにこのろうシートを使用した。モリブデン/ジ
ルコニウム合金の共融温度は文献によれば1510°〜
1520℃である。 このろう付け実験ではろう材料は
高い加熱速度(1分間につき約50℃)で1530℃の
温度になった。Molded parts made of molybdenum and molded parts made of graphite, and graphite again? This wax sheet was used to braze with graphite. According to literature, the eutectic temperature of molybdenum/zirconium alloy is 1510°~
The temperature is 1520°C. In this brazing experiment, the braze material was brought to a temperature of 1530°C at a high heating rate (approximately 50°C per minute).
ろう付け温度に達した際加熱を停止し、急速に冷却させ
るために真空室全ヘリウムで満たした。共融温度を上鍔
る温度でのこのろう材料の総滞留時間はこの処置により
1分以内であった。When the brazing temperature was reached, heating was stopped and the vacuum chamber was completely filled with helium for rapid cooling. The total residence time of this brazing material at temperatures above the eutectic temperature was less than 1 minute with this procedure.
ろう付けした後層を冶金学的に検査した際、このシート
は完全に融解し、ろうは微結晶状の共融組織で凝固して
いることが確認された。ろう付けずべき部品の表面の湿
気並びに張り応力、せん断応力及び曲げ応力(−関する
ろう結合の達せられた機械的安定性も、純粋な金属ろう
を使用した場合に得られた値を越えていた。Metallurgical examination of the brazed layer revealed that the sheet was completely melted and the solder solidified in a microcrystalline eutectic structure. The achieved mechanical stability of the solder joint with respect to moisture and tensile, shear and bending stresses (-) on the surface of the parts to be brazed also exceeded the values obtained when using pure metal solders. .
例 2
薄壁のモリブデン管をロジウム(層厚25μm)でイオ
ンプレーr−(ンダにより予定のろう付け領域の範囲で
被覆した。管を穿孔内にろう付けする際、ろうは遅延す
ることな(1940℃で融解し。Example 2 A thin-walled molybdenum tube was coated with rhodium (layer thickness 25 μm) in the area of the intended brazing area using an ion sprayer. When brazing the tube into the borehole, the solder was coated with rhodium (layer thickness 25 μm). Melt at 1940°C.
その際共融融液を調整するため管壁は一様にかつ十分に
合金化する。同じロジウム線での通常のろう付け処理の
場合に生じるようなモリブデン管の壁面における局部的
に強い攻撃作用は完全に回避することができた。In order to form a eutectic melt, the tube wall is uniformly and thoroughly alloyed. Locally strong aggressive effects on the wall of the molybdenum tube, which occur in conventional brazing processes with the same rhodium wire, could be completely avoided.
例 3
共融性のモリブデン/ニッケルろうを、全体的に化学量
論的割合にッケル15μ島、モリブデン100μ鶏、ニ
ッケル15μa)Dニッケル/モリブデン/ニッケルの
対称的薄板パックなローラーブレーティング処理するこ
とにより製造した。この薄板パックを(密閉した状態で
約1000℃の温度で加熱圧延した。その際加圧拡散に
よりニッケル薄板とモリブデンとの間に優れた結合が得
られまた同時に共融融解に必要な濃度勾配が構成された
。こうして得られた層厚的0.1鰭のろう付けシー1.
モリブデンからなる成形部品]350℃のろう付け温度
でろう付けるのに使用した。この場合にも融解過程は実
際に遅延せずまたすべての個所で同時に約1320℃で
生じた。Example 3 Roller-blating a eutectic molybdenum/nickel solder into a symmetrical sheet pack of nickel/molybdenum/nickel in overall stoichiometric proportions: nickel 15μ, molybdenum 100μ, nickel 15μ Manufactured by. This sheet pack was heated and rolled at a temperature of approximately 1000°C in a sealed state.Diffusion under pressure produced an excellent bond between the nickel sheet and molybdenum, and at the same time created the concentration gradient necessary for eutectic melting. The thus obtained 0.1 fin brazing seam 1.
Molded parts made of molybdenum] It was used for brazing at a brazing temperature of 350°C. In this case too, the melting process was virtually undelayed and occurred simultaneously at all locations at approximately 1320°C.
以下軍日 で゛・ 1 。Military day below De゛・ 1 .
第1表
脆い金属間相な有する共融性
高温ろう
成分 共融温度(’C) 主成分の融解温度
(−C,)Zr−Mo” ]520
1850血−Mo 1320
1450斂−Tt +408
]]875Zr−Re 159
3 1850ニーRu 16
] 0 + 875Zr−W
+795 1850且
九−Mo 194o +9
66Ru−Mo 1945
2500Zr−(W/Mo1 1520〜+795
1850≠ ろうの主成分に下線を引いた。Table 1: Eutectic high-temperature brazing components in brittle intermetallic phases Eutectic temperature ('C) Melting temperature of main component (-C,)Zr-Mo'' ]520
1850 Blood-Mo 1320
1450 Tt +408
]]875Zr-Re 159
3 1850 knee Ru 16
] 0 + 875Zr-W
+795 1850 and 9-Mo 194o +9
66Ru-Mo 1945
2500Zr-(W/Mo1 1520~+795
1850≠ The main components of wax are underlined.
Claims (1)
種の他の成分で、ろう材料がろう付け過程で特に脆性の
金属間相成分と共融組成の均一相に移行するように被覆
することにより、多成分系の一致溶融性ろう材料を製造
する方法において、成形部品を被覆装置に装入し、第1
処理工程でその都度の被覆処理に特有の公知の手段によ
り、表面に付着している可能性のある酸化膜及び/又は
汚れを除去し、第2処理工程で成形部品を一種又は数種
の他の成分で被覆し、最後の処理工程で被覆された成形
部品の境界域で全成分を共融温度より低い温度で機械的
に及び/又は拡散により混合して、境界域内の混合物を
共融組成又はほぼ共融組成に維持し、これにより全ろう
材料を共融温度のすぐ上方の温度で遅れることなく融解
させることを特徴とする多成分系の一致溶融性ろう材料
の製造方法。 2)被覆をイオンプレーティング法により行い、また各
成分をイオン衝撃によつて境界域内で混合することを特
徴とする特許請求の範囲第1項記載のろう材料の製造方
法。 3)被覆を高性能スパッタ装置により供給源と被覆すべ
き本体との間で異なる電位において行うことを特徴とす
る特許請求の範囲第1項記載のろう材料の製造方法。 4)被覆を化学的蒸着法(CVD法)により、表面範囲
内に相互拡散領域を形成しながら行うことを特徴とする
特許請求の範囲1項記 載のろう材料の製造方法。 5)2個の相互に結合さるべき成形部品、特に複雑な形
状のろう付け表面を有する成形部品の一方が、ろう材料
の第1成分に相当する材料からなり、この第1成分を一
種又は数種の他の成分で被覆することを特徴とする特許
請求の範囲第1項ないし第4項のいずれか1項に記載の
ろう材料の製造方法。 6)ろう材料の成分として遷移金属Ti、Zr、Hf、
V、Nb、Ta、Cr、Mo及びWを相互に使用するか
又はこれら金属の一種又は数種を、貴金属Ag、Au、
Ru、Rh、Pd、Os、Ir及び/又はpt及び/又
は鉄族金属Fe、Ni及びCoの一種又は数種と一緒に
使用することを特徴とする特許請求の範囲第1項ないし
第5項のいずれか1項に記載のろう材料の製造方法。 7)ろう材料の第1成分がジルコニウムからなり、第2
成分がモリブデンからなり、双方の成分が重量比におい
て71/29であることを特徴とする特許請求の範囲第
1項ないし第5項のいずれか1項に記載のろう材料の製
造方法。 8)ろう材料の第1成分が薄い自立性及び延伸性のシー
トであり、またろう材料内のすべての成分の量が共融組
成の総量に相当することを特徴とする特許請求の範囲第
1項ないし第4項又は第6項、第7項のいずれか1項に
記載のろう材料の製造方法。[Scope of Claims] 1) A molded part consisting of a first component of a brazing material with one or several other components, such that the brazing material is formed into a particularly brittle intermetallic phase component and a homogeneous phase of eutectic composition during the brazing process. In a method for producing a multi-component conformally meltable solder material by coating such that a first
In the treatment step, any oxidized film and/or dirt that may have adhered to the surface is removed by known means specific to the respective coating treatment, and in a second treatment step the molded part is coated with one or more other coatings. and in the boundary zone of the coated molded part in the last processing step, all the components are mixed mechanically and/or by diffusion at a temperature below the eutectic temperature, so that the mixture in the boundary zone has a eutectic composition. or a method for producing a multicomponent concordantly melting solder material, characterized in that it maintains an approximately eutectic composition, thereby causing the entire solder material to melt without delay at a temperature just above the eutectic temperature. 2) A method for producing a brazing material according to claim 1, characterized in that the coating is carried out by an ion plating method, and each component is mixed within a boundary region by ion bombardment. 3) A method for producing a solder material according to claim 1, characterized in that the coating is carried out using a high-performance sputtering device at different potentials between the supply source and the body to be coated. 4) A method for producing a brazing material according to claim 1, characterized in that the coating is carried out by chemical vapor deposition (CVD) while forming interdiffusion regions within the surface area. 5) One of the two molded parts to be joined to each other, in particular a molded part with a complexly shaped brazing surface, is made of a material corresponding to the first component of the brazing material, and one or more of the first components are 5. A method for producing a brazing material according to claim 1, characterized in that the brazing material is coated with other components of the seed. 6) Transition metals Ti, Zr, Hf,
V, Nb, Ta, Cr, Mo and W may be mutually used, or one or more of these metals may be substituted with the noble metals Ag, Au,
Claims 1 to 5 characterized in that they are used together with one or more of Ru, Rh, Pd, Os, Ir and/or pt and/or iron group metals Fe, Ni and Co. A method for producing a brazing material according to any one of the above. 7) The first component of the brazing material is zirconium, and the second component is zirconium.
6. The method for producing a brazing material according to claim 1, wherein the component is molybdenum, and the weight ratio of both components is 71/29. 8) Claim 1, characterized in that the first component of the braze material is a thin free-standing, extensible sheet, and the amount of all components within the braze material corresponds to the total amount of the eutectic composition. The method for producing a brazing material according to any one of Items 4 to 4, 6, and 7.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT3722/85 | 1985-12-23 | ||
AT0372285A AT383762B (en) | 1985-12-23 | 1985-12-23 | METHOD FOR PRODUCING MULTI-COMPONENT, CONGRUENTLY MELTING SOLDER MATERIALS |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62158597A true JPS62158597A (en) | 1987-07-14 |
Family
ID=3554494
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61305149A Pending JPS62158597A (en) | 1985-12-23 | 1986-12-19 | Manufacture of multicomponent system congruent melting solder material |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0230082B1 (en) |
JP (1) | JPS62158597A (en) |
AT (1) | AT383762B (en) |
DE (1) | DE3672991D1 (en) |
ES (1) | ES2016929B3 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1340588C (en) * | 1988-06-13 | 1999-06-08 | Balraj Krishan Handa | Amino acid derivatives |
GB8927913D0 (en) * | 1989-12-11 | 1990-02-14 | Hoffmann La Roche | Amino acid derivatives |
DE19941815A1 (en) * | 1999-09-02 | 2001-03-08 | Abb Patent Gmbh | Solder for joining two components in a vacuum comprises a foil coated with a reactive component |
EP1321214A1 (en) * | 2001-12-21 | 2003-06-25 | Siemens Aktiengesellschaft | Workpiece comprising a cavity covered by a soldering foil and method for covering a cavity using a soldering foil |
DE102006057963A1 (en) * | 2006-12-08 | 2008-06-12 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Production of soldering alloys or -prealloys comprises adding one or more alloying elements to base material which are in form of ions, atoms or atom clusters and added in amounts allowing alloys with different properties to be produced |
EP2255913A1 (en) * | 2009-05-19 | 2010-12-01 | Siemens Aktiengesellschaft | Components with a layer made of low melting point component with internally soldered components and soldering method |
CN119282489A (en) * | 2024-12-12 | 2025-01-10 | 赤峰邦耀智造科技有限公司 | A brazing material, preparation method and application thereof, and brazing method |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL98038C (en) * | 1957-03-07 | 1900-01-01 | ||
US3312539A (en) * | 1964-09-11 | 1967-04-04 | James C Marshall | Brazing alloys for tungsten and molybdenum |
US3310440A (en) * | 1964-10-21 | 1967-03-21 | United Aircraft Corp | Heat treatment of nickel base alloys |
DE2342774C2 (en) * | 1973-08-24 | 1984-10-18 | Rohr Industries, Inc., Chula Vista, Calif. | Sheet metal structure made of titanium or a titanium alloy and method for making the same |
CA998808A (en) * | 1974-09-13 | 1976-10-26 | Anthony K.C. Ip | Method and apparatus for joining appendages to a zirconium alloy member |
SE7601058L (en) * | 1975-02-13 | 1976-08-14 | United Technologies Corp | HIGH TEMPERATURE FORUM FOR HARD SOLDERING AND USING THE SAME IN A DIFFUSION HARD SOLDERING PROCEDURE |
DE2813166C3 (en) * | 1978-03-25 | 1981-04-09 | Messerschmitt-Bölkow-Blohm GmbH, 8000 München | Process for brazing a rapidly oxidizing metal with another metal |
-
1985
- 1985-12-23 AT AT0372285A patent/AT383762B/en not_active IP Right Cessation
-
1986
- 1986-12-19 JP JP61305149A patent/JPS62158597A/en active Pending
- 1986-12-22 ES ES86202361T patent/ES2016929B3/en not_active Expired - Lifetime
- 1986-12-22 DE DE8686202361T patent/DE3672991D1/en not_active Expired - Fee Related
- 1986-12-22 EP EP86202361A patent/EP0230082B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
ES2016929B3 (en) | 1990-12-16 |
DE3672991D1 (en) | 1990-08-30 |
EP0230082A1 (en) | 1987-07-29 |
ATA372285A (en) | 1987-01-15 |
AT383762B (en) | 1987-08-25 |
EP0230082B1 (en) | 1990-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5268937B2 (en) | Method for joining tantalum coated steel structures | |
US4988035A (en) | Method of liquid phase diffusion bonding of metal bodies | |
JPS59230741A (en) | shape memory composite material | |
JP2006069885A (en) | Reactive multilayer foil | |
JPS61501691A (en) | Liquid phase bonded amorphous material and its preparation method | |
TW201020332A (en) | Sputter target assembly having a low-temperature high-strength bond | |
US6376091B1 (en) | Article including a composite of unstabilized zirconium oxide particles in a metallic matrix, and its preparation | |
JPS62158597A (en) | Manufacture of multicomponent system congruent melting solder material | |
JP4427831B2 (en) | Sputtering target and manufacturing method thereof | |
JPS5942070B2 (en) | What is the best way to do this? | |
JPH0613743B2 (en) | Solid-state joining method for nickel-base superalloys | |
JP2003112269A (en) | Method for manufacturing bonded body of beryllium and copper or copper alloy and bonded body | |
EP0587307A1 (en) | Aluminium alloys | |
JPH02263504A (en) | Method for molding metal and lamination metal assembly | |
US6720086B1 (en) | Liquid interface diffusion bonding of nickel-based superalloys | |
JPS62124083A (en) | Diffusion bonding method | |
JPH06158296A (en) | Diffusion-bonded sputtering target assembly and its production | |
JPH07278804A (en) | Pure ti target for formation of sputtering thin film | |
JP3629578B2 (en) | Ti-based material and Cu-based bonding method | |
JPS5994569A (en) | Diffusion joining method | |
JP4519981B2 (en) | Solid phase diffusion bonding sputtering target assembly and manufacturing method thereof | |
JP2003508628A (en) | Manufacturing method of bulk amorphous layer on bulk metal compact | |
JPS61115667A (en) | Method of joining target for sputtering to cooling plate | |
RU2214896C1 (en) | Diffusion welding method | |
JP2854619B2 (en) | Joining method |