JPS6215450A - Detecting device for air/fuel ratio - Google Patents
Detecting device for air/fuel ratioInfo
- Publication number
- JPS6215450A JPS6215450A JP15494985A JP15494985A JPS6215450A JP S6215450 A JPS6215450 A JP S6215450A JP 15494985 A JP15494985 A JP 15494985A JP 15494985 A JP15494985 A JP 15494985A JP S6215450 A JPS6215450 A JP S6215450A
- Authority
- JP
- Japan
- Prior art keywords
- air
- fuel ratio
- voltage
- gas sensitive
- resistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 79
- 239000007789 gas Substances 0.000 claims abstract description 48
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000001301 oxygen Substances 0.000 claims abstract description 12
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 12
- 238000001514 detection method Methods 0.000 claims description 22
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 36
- 238000002485 combustion reaction Methods 0.000 description 6
- 239000012535 impurity Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 2
- 235000017491 Bambusa tulda Nutrition 0.000 description 2
- 241001330002 Bambuseae Species 0.000 description 2
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 239000011425 bamboo Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野1
本発明は内燃機関等各種燃焼機器の空燃比を、排気中の
酸素分圧に応じて抵抗値の変化するガス感応体素子を用
いて検出する空燃比検出装置に関し、特にそのガス感応
体素子の一時的な特↑1劣化を防止するよう構成された
空燃比検出装置に関覆るものである。Detailed Description of the Invention [Industrial Application Field 1] The present invention detects the air-fuel ratio of various combustion equipment such as internal combustion engines using a gas sensitive element whose resistance value changes depending on the partial pressure of oxygen in the exhaust gas. The present invention relates to an air-fuel ratio detecting device, and particularly to an air-fuel ratio detecting device configured to prevent temporary characteristic ↑1 deterioration of the gas sensitive element.
[従来の技術]
従来より、例えば、内燃機関等の各種燃焼機器において
、燃費ヤニミッションの改善を図るために、排気中の酸
素分圧に基づき燃焼容器中で燃焼される混合気を理論空
燃比近傍に制御するといった、いわゆる空燃比のフィー
ドバック制御を実行するものがある。そして、この種の
制御装置に用いられ、排気中の酸素分圧から混合気の空
燃比を検出する空燃比検出装置の1つとして、例えば、
T ! 02.5n02等の酸化物半導体からなるガス
感応体素子を用いたものがある。[Prior Art] Conventionally, for example, in various combustion equipment such as internal combustion engines, in order to improve fuel consumption and transmission, the air-fuel mixture to be combusted in a combustion vessel has been adjusted to a stoichiometric air-fuel ratio based on the oxygen partial pressure in the exhaust gas. There are devices that perform so-called feedback control of the air-fuel ratio. For example, as one of the air-fuel ratio detection devices used in this type of control device and which detects the air-fuel ratio of the air-fuel mixture from the oxygen partial pressure in the exhaust gas,
T! There is one using a gas sensitive element made of an oxide semiconductor such as 02.5n02.
これは、ガス感応体素子の、周辺ガスの酸素分圧に応じ
て抵抗値が変化する性質を利用して、排気中の酸素分圧
がら空燃比を検出するものであるが、この種の検出装置
では、ガス感応体素子の抵抗値の変化を電圧信号として
出力するため、第5図に示す如く、ガス感応体素子31
と直列に所定抵抗値の抵抗体32を設け、この抵抗体3
2とガス感応体索子31との直列回路に直流電圧Vを印
加し、抵抗体32の両端に生ずる電圧VOを空燃比信号
として検出するよう構成されている。即ち、空燃比がリ
ッチ域で排気中の酸素分圧が小さく、ガス感応体素子3
1の抵抗値が小さい時には、抵抗体32の両端に生ずる
電圧VOが大きくなり、逆に空燃比がリーン域で排気中
の酸素分圧が大きく、ガス感応体素子31の抵抗値が大
きい時には、抵抗体32の両端に生ずる電圧■0が小さ
くなることから、この電圧VOを空燃比信号として検出
ずれば、空燃比がリーン域にあるのか、リッチ域にある
のか検知することができるのである。This detects the air-fuel ratio based on the oxygen partial pressure in the exhaust gas by utilizing the property of the gas sensitive element that its resistance value changes depending on the oxygen partial pressure of the surrounding gas. In the apparatus, in order to output the change in the resistance value of the gas sensitive element as a voltage signal, as shown in FIG.
A resistor 32 having a predetermined resistance value is provided in series with the resistor 3.
A direct current voltage V is applied to a series circuit between the resistor 2 and the gas sensing element 31, and the voltage VO generated across the resistor 32 is detected as an air-fuel ratio signal. That is, when the air-fuel ratio is in a rich range and the oxygen partial pressure in the exhaust gas is small, the gas sensing element 3
When the resistance value of 1 is small, the voltage VO generated across the resistor 32 becomes large; conversely, when the air-fuel ratio is in a lean range, the partial pressure of oxygen in the exhaust gas is large, and the resistance value of the gas sensing element 31 is large, Since the voltage VO generated across the resistor 32 becomes smaller, by detecting this voltage VO as an air-fuel ratio signal, it is possible to detect whether the air-fuel ratio is in a lean region or a rich region.
[発明が解決しようとする問題点1
ところが、この種の空燃比検出装置においては、空燃比
制御によって空燃比を理論空燃比近傍に制御し、空燃比
がリッチ域とリーン域との間をくり返し反転している場
合には、空燃比に対応した良好な空燃比信号を検出する
ことかできるのであるが、例えば、内燃機関低負荷運転
の燃料カッh fi’制御等1こより、空燃社か継続し
てリーン域にされるような場合には、その後、通常の空
燃比制御IJ移行した時、一時的に空燃比に対応1)な
い空燃比信号を検出してしまうことがわかった。[Problem to be Solved by the Invention 1] However, in this type of air-fuel ratio detection device, the air-fuel ratio is controlled to be near the stoichiometric air-fuel ratio by air-fuel ratio control, and the air-fuel ratio repeatedly changes between the rich range and the lean range. If it is reversed, it is possible to detect a good air-fuel ratio signal corresponding to the air-fuel ratio. It has been found that if the lean range is continued, an air-fuel ratio signal that does not correspond to the air-fuel ratio will be temporarily detected when the air-fuel ratio control IJ is shifted to normal air-fuel ratio control.
そこで、本発明は、空燃比を理論空燃比近傍に制御する
通常の空燃If: it、I+御が実行さ−れず、空燃
比のリーン状態が頻繁に続いた場合にで−し、常に空燃
比に対応した正常な空燃比信号を検出1ノ冑る空燃比検
出装置を提供覆ることによって、也好イ【空燃比制御が
実行できるようにすることを[1的としてなされたもの
であって、Jx下の如き構成をとった。Therefore, the present invention aims to solve the problem when the normal air-fuel If: it, I+ control that controls the air-fuel ratio to near the stoichiometric air-fuel ratio is not executed and the air-fuel ratio is in a lean state frequently. By providing an air-fuel ratio detection device that detects a normal air-fuel ratio signal corresponding to the fuel ratio, it is possible to perform air-fuel ratio control. , Jx was configured as shown below.
[問題点を解決するための手段]
即ち、上記問題を解決するための手段としての、本発明
の構成は、第1図に示す如く、
排気中の酸素分圧に応じて抵抗値の変化するカス感応体
素子M1と、
該ガス感応体索子M1に直列に接続される抵抗体M2と
、
該抵抗体M2と上記ガス感応体素子M1とで形成される
直列回路に、所定の直流電圧を印加する定電圧印加手段
M3と、
上記ガス感応体索子M1両端に電位差が生じないよう、
上記抵抗体M2電端の電圧を上記定電圧印加手段M3の
印加電圧に制御でる電圧制御手段M4と、
該電圧制御手段M4より上記抵抗体M2に流れる電流の
変化を空燃比信号として検出する空燃比信号検出手段M
5と、
を備えたことを特徴とする空燃比制御装置を要旨として
いる。[Means for Solving the Problems] That is, the configuration of the present invention as a means for solving the above problems is as shown in FIG. 1, in which the resistance value changes depending on the oxygen partial pressure in the exhaust gas. A predetermined DC voltage is applied to the gas sensitive element M1, a resistor M2 connected in series to the gas sensitive element M1, and a series circuit formed by the resistor M2 and the gas sensitive element M1. In order to prevent a potential difference from occurring between the constant voltage applying means M3 and the gas sensitive body cord M1,
voltage control means M4 for controlling the voltage at the terminal of the resistor M2 to the voltage applied by the constant voltage applying means M3; Fuel ratio signal detection means M
The gist of the present invention is an air-fuel ratio control device characterized by comprising the following.
ここで、本発明を上記の如く構成したのは、前述の問題
がガス感応体素子M1両端に電位差が生じた場合、素子
内部の不純物(例えば素子内のアルカリ成分等)が高電
位の電極側より低電位の電極側に移動して蓄積すること
に起因することがわかったからである。つまり、空燃比
がリーン域にある時、ガス感応体素子M1の抵抗値は第
2図に示す如く大きくなってカス感応体素子M1の両端
に大きな電位差が牛し、素子の低電位の電極側に不純物
が蓄積し、通常の空燃比制御に移行しても不純物の蓄積
による素子の一時的イz劣化によって正常な空燃比信号
が得られなくなることがわかったことから、ガス感応体
索子M1の両端に電位差が生じないよう、上記の如き構
成をとったのである。Here, the reason why the present invention is configured as described above is that when a potential difference occurs between both ends of the gas sensitive element M1, impurities inside the element (for example, alkaline components within the element) are transferred to the high potential electrode side. This is because it has been found that this is caused by migration and accumulation toward the lower potential electrode side. In other words, when the air-fuel ratio is in the lean range, the resistance value of the gas sensitive element M1 becomes large as shown in Figure 2, and a large potential difference occurs between both ends of the gas sensitive element M1, causing a low potential electrode side of the element. It was found that impurities accumulate in the air-fuel ratio control, and even if normal air-fuel ratio control is started, a normal air-fuel ratio signal cannot be obtained due to temporary deterioration of the element due to the accumulation of impurities. The above configuration was adopted so that no potential difference would occur between both ends of the circuit.
尚、従来空燃比がリーン域とリッヂ域との間をくり返し
反転する通常の空燃比制御を実行している時に、正常な
空燃比信号が検出できたのは、第2図に示す如く、空燃
比のリッチ域で、ガス感応体素子の抵抗値が小さくなっ
て、素子両端に大ぎな電位差が生ずることなく、素子内
の不純物が熱拡散によって素子内に均等に分散されてい
たからである。In addition, as shown in Figure 2, the reason why a normal air-fuel ratio signal could be detected during normal air-fuel ratio control in which the air-fuel ratio was repeatedly reversed between the lean range and the ridge range was because the air-fuel ratio was This is because in the rich range of the fuel ratio, the resistance value of the gas sensitive element becomes small, and impurities within the element are evenly dispersed within the element by thermal diffusion without creating a large potential difference between both ends of the element.
ここで、まず上記ガス感応体素子M1としてtJ、、周
辺ガスの酸素分圧によって第2図に示すように抵抗値の
変化する酸化物半導体、例えばTt02゜5nOz等を
用いることができ、抵抗体M2は通常電気回路に用いら
れる抵抗器を用いれは゛よい。Here, first, as the gas sensitive element M1, an oxide semiconductor whose resistance value changes as shown in FIG. A resistor commonly used in electric circuits may be used as M2.
また、電圧制御手段M/′Iは、抵抗体M2の両端に牛
する電圧が定電圧印加手段M3によって印加される所定
の電圧とイ【るよう、即ち、ガス感応体素子M1両端に
電位差か牛じて素子が劣化づることのないよう制御する
ものであって、オペアンプ等を用いlこ電気回路によっ
て筒中に構成することができる。In addition, the voltage control means M/'I is arranged so that the voltage applied across the resistor M2 is equal to the predetermined voltage applied by the constant voltage application means M3, that is, the voltage control means M/'I is configured to maintain a potential difference between the ends of the gas sensitive element M1. This is to control the elements to prevent them from deteriorating, and can be constructed in a cylinder using an electrical circuit using an operational amplifier or the like.
更に、空燃比信号検出手段M5は電圧制御手段M4より
抵抗体M2に流れる電流の変化を空燃比信号として検出
するものであるか、これは、空燃比がリッチでガス感応
体索子M1の抵抗値が小さいと、定電圧印加手段M3か
らの印加電圧か殆1vどぞのまま抵抗体M2に印加され
るので、電流制御手段M4から抵抗体M2に流れる電流
が小さく、逆に空燃比かリーンでガス感応体素子M1の
抵抗値が大きいと、定電圧印加手段M3の印h1電圧が
ガス感応体素子M1で消費され、電流制御手段M4から
抵抗体M2に流れる電流が大きくなることから、その電
流を検出Jることによって空燃比に対応して変化するガ
ス感応体素子M1の抵抗値、即ち空燃比を検出するので
ある。Furthermore, the air-fuel ratio signal detection means M5 detects changes in the current flowing through the resistor M2 from the voltage control means M4 as an air-fuel ratio signal. If the value is small, the voltage applied from the constant voltage applying means M3 is applied to the resistor M2 as almost 1V, so the current flowing from the current control means M4 to the resistor M2 is small, and conversely, the air-fuel ratio is lean. When the resistance value of the gas sensitive element M1 is large, the voltage h1 applied by the constant voltage applying means M3 is consumed by the gas sensitive element M1, and the current flowing from the current controlling means M4 to the resistor M2 becomes large. By detecting the current, the resistance value of the gas sensitive element M1, which changes in accordance with the air-fuel ratio, is detected, that is, the air-fuel ratio.
[作用]
このように構成された本発明の空燃比検出装置Nにおい
ては、ガス感応体索子M1の両端が常に同電位に制御さ
れることとなる。従って、空燃比がリーンとなった場合
にでも、ガス感応体索子M1の両端には電位差か生ずる
ことはなく、索子が劣化覆るといったこともない。[Operation] In the air-fuel ratio detecting device N of the present invention configured as described above, both ends of the gas sensing body cord M1 are always controlled to have the same potential. Therefore, even when the air-fuel ratio becomes lean, no potential difference is generated between the ends of the gas sensing member cable M1, and the cable does not deteriorate.
[実施例1 以下に本発明の実施例を図面と共に説明する。[Example 1 Embodiments of the present invention will be described below with reference to the drawings.
第3図は内燃機関のjJl気系に設(プられ、餠気中の
酸素分圧に応じて抵抗値の変化する(前記ガス感応体素
子M1に相当する)チタニア素子1を備えた検出素子部
2の構成を表わJ−分解斜視図である。FIG. 3 shows a detection element equipped with a titania element 1 (corresponding to the gas sensitive element M1) installed in the gas system of an internal combustion engine and whose resistance value changes depending on the partial pressure of oxygen in the air. FIG. 2 is an exploded perspective view showing the configuration of part 2;
図に示す如く、検出素子部21よ、アルミナ等からなる
厚さ0.7mm1Jj!度の平板状の電気絶縁111部
vI3の一側面に厚膜技術を用いて、じ−タとなる発熱
抵抗体パターン4を形成すると共に、チタニア素子の電
極となる電極パターン5a及び5[)を形成し、これら
パターン面上に、電極5a、5bを露出ざゼるよう設C
ノられた開口部6aを有する厚さ0.1mm程度の電気
絶縁竹部伺6を接合し、更に開口部6aに電極パターン
5a及び5 F)に接合されるヂタニアを主成分とする
厚さ約150μ程度のチタニア素子1を設けることによ
って作成される。また、図に示すA、B、Cは夫々当該
検出素子部2に電圧を印加したり検出信号を抽出したり
するために用いられる嫡子であって、端子A及びCは発
熱抵抗体パターン40両端番こ設けられ、端子Bはチタ
ニア素子1の9旧jられる電極パターン5bの一端に設
(プられている。チタニア素子1の設けられるもう一方
の電極パターン58は、発熱抵抗体パターン4の途中に
接続されており、発熱抵抗体パターン4に印加するヒー
タ電圧を分圧してチタニア素子1に所定の電圧を印加す
るよう構成されている。尚、発熱抵抗体パターン4はチ
タニア素子1を加熱して活性化さ■、空燃比検出が良好
に実行できるようにするためのものである。As shown in the figure, the detection element part 21 is made of alumina or the like and has a thickness of 0.7 mm! Using thick film technology, a heat generating resistor pattern 4 which will serve as a jetter is formed on one side of the flat plate-shaped electrical insulating part vI3, and electrode patterns 5a and 5[) which will serve as electrodes of the titania element are formed. The electrodes 5a and 5b are formed on these pattern surfaces so as to be exposed.
An electrically insulating bamboo part 6 having a thickness of about 0.1 mm and having a cut-out opening 6a is bonded, and an approximately 0.1 mm thick electrically insulating bamboo part 6 having a ditania as a main component and being bonded to the electrode patterns 5a and 5F) is further bonded to the opening 6a. It is made by providing a titania element 1 of about 150μ. Further, A, B, and C shown in the figure are legitimate children used for applying voltage to the detection element section 2 and extracting a detection signal, respectively, and terminals A and C are terminals at both ends of the heating resistor pattern 40. The terminal B is provided at one end of the electrode pattern 5b of the titania element 1. The other electrode pattern 58, on which the titania element 1 is provided, The heater voltage applied to the heating resistor pattern 4 is divided to apply a predetermined voltage to the titania element 1.The heating resistor pattern 4 heats the titania element 1. This is to enable the air-fuel ratio detection to be performed satisfactorily.
次に第4図は上記検出素子部2を含む空燃比検出装置全
体を表わjN気回路図である。Next, FIG. 4 is a circuit diagram showing the entire air-fuel ratio detection device including the detection element section 2. As shown in FIG.
図において、抵抗R1及びR2は上記検出素子部2の発
熱抵抗体パターン5を表わし、この両端の端子A−C間
にヒータ電圧V1が印加されるJ:うバッテリB1が接
続されている。また、この抵抗R1及びR2の中点に接
続されたポリコームVR1は、排気中の酸素分圧に応じ
て抵抗値の変化する上記チタニア素子1を表わしており
、このチタニア素子1の電極パターン5a側には抵抗R
1及びR2、即ら発熱抵抗体パターン5により分圧され
た電圧V2が印加される。一方、チタニア素子1の電極
パターン5b端部に形成された端子Bには所定抵抗値の
(前記抵抗体3に相当する)抵抗R3が接続され、接地
されている。In the figure, resistors R1 and R2 represent the heating resistor pattern 5 of the detection element section 2, and a battery B1 is connected between terminals A and C at both ends of which a heater voltage V1 is applied. Further, the polycomb VR1 connected to the midpoint of the resistors R1 and R2 represents the titania element 1 whose resistance value changes depending on the oxygen partial pressure in the exhaust gas, and the electrode pattern 5a side of the titania element 1 has a resistance R
1 and R2, that is, a voltage V2 divided by the heating resistor pattern 5 is applied. On the other hand, a resistor R3 (corresponding to the resistor 3) having a predetermined resistance value is connected to a terminal B formed at the end of the electrode pattern 5b of the titania element 1, and is grounded.
次に端子Bには抵抗R3の他に、この端子Bの電圧をV
2に保ち、チタニア素子10両端に電位差が生じないよ
うに1−るための電圧制御回路1゜が接続されている。Next, in addition to the resistor R3, the voltage of this terminal B is connected to terminal B.
A voltage control circuit 1° is connected to the titania element 10 to maintain the voltage at 1-2 and prevent a potential difference from occurring between both ends of the titania element 10.
図に示ず如く、この電圧制御回路10はオペアンプOP
1を中心に構成されており、オペアンプ0P10反転入
力端子(−〉には抵抗R3を介して接地された端子Bが
接続され、また抵抗R3と同じ抵抗値の抵抗R/Iを介
して出力端子が接続5されている。一方、オペアンプO
P1の非反転入力端子(十)には、その電圧がチタニア
素子1の電極パターン5a側に印加された電圧V2どな
るよう、バッテリB1からの電圧v1を分圧する、前記
抵抗R1及び抵抗R2の抵抗値の比率に対応した抵抗R
5及びR6が接続されている。そして、抵抗R4の両端
には、この電圧制御回路から抵抗R3に供給される電流
の大きさ、空燃比信号vOとして出力するため、出力端
子DFが接続されている。尚、上記各抵抗は、本実施例
ではR1=10Ω、R2−1Ω、R3=R4−50にΩ
、R5=10にΩ、R6=1にΩ、の抵抗値とされてい
る。As shown in the figure, this voltage control circuit 10 is connected to an operational amplifier OP.
1, the inverting input terminal (-) of the operational amplifier 0P10 is connected to the grounded terminal B via the resistor R3, and the output terminal is connected via the resistor R/I with the same resistance value as the resistor R3. is connected 5. On the other hand, the operational amplifier O
The non-inverting input terminal (10) of P1 is connected to the resistors R1 and R2, which divide the voltage v1 from the battery B1 so that the voltage becomes the voltage V2 applied to the electrode pattern 5a side of the titania element 1. Resistance R corresponding to the ratio of values
5 and R6 are connected. An output terminal DF is connected to both ends of the resistor R4 in order to output the magnitude of the current supplied from the voltage control circuit to the resistor R3 as an air-fuel ratio signal vO. In addition, each of the above-mentioned resistances is R1=10Ω, R2-1Ω, R3=R4-50Ω in this example.
, R5=10 has a resistance value of Ω, and R6=1 has a resistance value of Ω.
以上の如く構成された本実施例の空燃比検出装置におい
ては、まず、空燃比がリーン域からリッチ域に変化した
場合、チタニア素子1の抵抗値が第2図に示したように
1[kΩ]から1[M(〕」へと大きく増加し、端子B
の電圧が減少リ−る。この時、電圧制御回路10ではぞ
の電圧を一定(V2)に制御するため、抵抗R/1を介
して抵抗R3に流れる電流を供給する。従って、抵抗[
く4両端の電圧VOが大きくなって空燃比のリーン域を
検知することができるようになる。一方、空燃比がリー
ン域からリッヂ域に変化するとチタニア素子1の抵抗値
が第2図に示したにうに1 [Mo2から1[kΩ]へ
と減少し、発熱抵抗体パターン5゜即ち抵抗R1及びR
2で分圧された電圧V2が殆んどそのまま端子[3に印
加されることとイ【る。(1rつで、電圧制御回路10
から電流が供給されることはなく、抵抗1で4両端の電
圧は小さくなり、空燃比のリッチ域を検知することかで
きるように<=16゜
従って、上記のような電圧11制御回路10の動作によ
って、端子Bの電圧は常にV2に制御され、空燃比がリ
ーン域にあってもリッヂ域にあっても、チタニア素子1
両端に電位差が生ずることはない。In the air-fuel ratio detection device of this embodiment configured as described above, first, when the air-fuel ratio changes from a lean region to a rich region, the resistance value of the titania element 1 is 1 [kΩ] as shown in FIG. ] to 1[M(]'', terminal B
The voltage decreases. At this time, in order to control the voltage to be constant (V2) in the voltage control circuit 10, a current is supplied to the resistor R3 via the resistor R/1. Therefore, the resistance [
The voltage VO at both ends becomes large, making it possible to detect the lean range of the air-fuel ratio. On the other hand, when the air-fuel ratio changes from the lean region to the ridge region, the resistance value of the titania element 1 decreases from 1 [Mo2 to 1 [kΩ] as shown in FIG. and R
The voltage V2 divided by 2 is applied almost unchanged to the terminal 3. (In 1r, voltage control circuit 10
Since no current is supplied from the resistor 1, the voltage across the resistor 1 becomes small, and the rich range of the air-fuel ratio can be detected. Due to the operation, the voltage at terminal B is always controlled to V2, and whether the air-fuel ratio is in the lean region or the ridge region, the titania element 1
No potential difference occurs between both ends.
よって、チタニア素子1内部の不純物がどちらかの電極
側に片寄り、素子が劣化するといったことはなく、空燃
比を正確に検出することができるようになる。Therefore, the impurities inside the titania element 1 will not be biased toward either electrode and the element will not deteriorate, and the air-fuel ratio can be detected accurately.
[発明の効果]
以上詳述した如く、本発明の空燃比検出装置においては
、電圧制御手段M4と空燃比信号検出手段M5とにより
、ガス感応体素子M1両端に電位差を生ずることなく、
空燃比信号を検出することができる。従って、素子内の
不純物がいずれかの電極側に片寄り、ガス感応体素子M
2の特性が劣化するといったことはなく、空燃比制御を
常時良好に実行することができるようになる。[Effects of the Invention] As described in detail above, in the air-fuel ratio detection device of the present invention, the voltage control means M4 and the air-fuel ratio signal detection means M5 can operate without creating a potential difference across the gas sensitive element M1.
Air-fuel ratio signals can be detected. Therefore, impurities within the element are biased towards one of the electrodes, causing the gas sensitive element M
The characteristics of No. 2 do not deteriorate, and air-fuel ratio control can always be performed satisfactorily.
第1図は本発明を表わす構成図、第2図はガス感応体素
子の棲出特性を表わす線図、第3図及び第4図は本発明
の実施例を示し、第3図は検出素子部を表わす分解斜視
図、第4図は本実施例の空燃比検出装置全体を表わす電
気回路図、第5図は従来の空燃比検出装置を表わす電気
回路図である。
Ml・・・ガス感応体素子
M2・・・抵抗体
M3・・・定電圧印加手段
M4・・・電圧制御手段
M5・・・空燃比信号検出手段
1・・・チタニア素子
2・・・検出素子部
10・・・電圧制御回路FIG. 1 is a block diagram showing the present invention, FIG. 2 is a diagram showing the inhabitation characteristics of the gas sensitive element, FIGS. 3 and 4 show examples of the present invention, and FIG. 3 is a detection element. FIG. 4 is an electric circuit diagram showing the entire air-fuel ratio detection device of this embodiment, and FIG. 5 is an electric circuit diagram showing a conventional air-fuel ratio detection device. Ml... Gas sensitive element M2... Resistor M3... Constant voltage application means M4... Voltage control means M5... Air-fuel ratio signal detection means 1... Titania element 2... Detection element Part 10... Voltage control circuit
Claims (1)
素子と、 該ガス感応体素子に直列に接続される抵抗体と、該抵抗
体と上記ガス感応体素子とで形成される直列回路に、所
定の直流電圧を印加する定電圧印加手段と、 上記ガス感応体素子両端に電位差が生じないよう、上記
抵抗体電端の電圧を上記定電圧印加手段の印加電圧に制
御する電圧制御手段と、 該電圧制御手段より上記抵抗体に流れる電流の変化を空
燃比信号として検出する空燃比信号検出手段と、 を備えたことを特徴とする空燃比制御装置。[Scope of Claims] A gas sensitive element whose resistance value changes depending on the partial pressure of oxygen in exhaust gas, a resistor connected in series to the gas sensitive element, and the resistor and the gas sensitive element. and a constant voltage applying means for applying a predetermined DC voltage to a series circuit formed by the above-mentioned gas sensitive element; An air-fuel ratio control device comprising: voltage control means for controlling the voltage; and air-fuel ratio signal detection means for detecting a change in the current flowing through the resistor from the voltage control means as an air-fuel ratio signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15494985A JPS6215450A (en) | 1985-07-12 | 1985-07-12 | Detecting device for air/fuel ratio |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15494985A JPS6215450A (en) | 1985-07-12 | 1985-07-12 | Detecting device for air/fuel ratio |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6215450A true JPS6215450A (en) | 1987-01-23 |
Family
ID=15595437
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15494985A Pending JPS6215450A (en) | 1985-07-12 | 1985-07-12 | Detecting device for air/fuel ratio |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6215450A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03182435A (en) * | 1989-11-21 | 1991-08-08 | Heidelberger Druckmas Ag | Adsorbing device for sheet feeding device of sheet rotary printer |
JP2003065991A (en) * | 2001-08-24 | 2003-03-05 | New Cosmos Electric Corp | Gas detection circuit |
-
1985
- 1985-07-12 JP JP15494985A patent/JPS6215450A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03182435A (en) * | 1989-11-21 | 1991-08-08 | Heidelberger Druckmas Ag | Adsorbing device for sheet feeding device of sheet rotary printer |
JP2003065991A (en) * | 2001-08-24 | 2003-03-05 | New Cosmos Electric Corp | Gas detection circuit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4109615A (en) | Apparatus for controlling the ratio of air to fuel of air-fuel mixture of internal combustion engine | |
US6336354B1 (en) | Gas concentration measuring apparatus compensating for error component of output signal | |
JP2669699B2 (en) | Air-fuel ratio sensor | |
US9518954B2 (en) | Gas sensor control device | |
JPS60218057A (en) | Resistive oxygen sensor | |
JPS62276453A (en) | air fuel ratio sensor | |
JPH0548420B2 (en) | ||
KR910008589B1 (en) | Air - fuel ratio dectecting device | |
EP0136144B1 (en) | Engine air/fuel ratio sensing device | |
JPH07306098A (en) | Temperature measuring instrument by oxygen probe | |
US20030079521A1 (en) | Method and device for operating a linear lambda probe | |
JPS6215450A (en) | Detecting device for air/fuel ratio | |
US6289719B1 (en) | Method for operating a gas sensor | |
US6767449B2 (en) | Method for operating a sensor for determining the concentration of oxidizing gases in gas mixtures | |
GB2030711A (en) | Sensing circuit including supply voltage compensation | |
JPS6215451A (en) | Detecting device for air/fuel ratio | |
JP2624704B2 (en) | Control method and control circuit for controlled object having high-order delay | |
KR20030014708A (en) | Device for operating a linear lambda probe | |
JPH01155262A (en) | Temperature control device for oxygen concentration sensor | |
JP3267326B2 (en) | Sensor adjustment device | |
JPS622146A (en) | Air/fuel detector | |
JP2008304272A (en) | Gas concentration detector | |
JP2000329739A (en) | Air/fuel ratio-detecting device | |
JPS62123350A (en) | Air fuel ratio detection device | |
JPH022915A (en) | Air/fuel ratio detecting apparatus |