[go: up one dir, main page]

JPS62151325A - In-mold molding methof for polypropylene series resin foamed particle - Google Patents

In-mold molding methof for polypropylene series resin foamed particle

Info

Publication number
JPS62151325A
JPS62151325A JP60292207A JP29220785A JPS62151325A JP S62151325 A JPS62151325 A JP S62151325A JP 60292207 A JP60292207 A JP 60292207A JP 29220785 A JP29220785 A JP 29220785A JP S62151325 A JPS62151325 A JP S62151325A
Authority
JP
Japan
Prior art keywords
mold
particles
pressure
foamed
filling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60292207A
Other languages
Japanese (ja)
Other versions
JPH0446217B2 (en
Inventor
Masakazu Arai
荒居 正和
Hirobumi Maruyama
博文 丸山
Masanori Saito
斎藤 正憲
Masanori Tanaka
雅典 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical BASF Co Ltd
Original Assignee
Mitsubishi Chemical BASF Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical BASF Co Ltd filed Critical Mitsubishi Chemical BASF Co Ltd
Priority to JP60292207A priority Critical patent/JPS62151325A/en
Publication of JPS62151325A publication Critical patent/JPS62151325A/en
Publication of JPH0446217B2 publication Critical patent/JPH0446217B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To obtained a foamed molded material having uniform density distribution, by a method wherein the inside of a mold, whose pressure has been made into predetermine pressure by gas pressure, is filled with foamed particles by filling in many steps while the foamed particles are being compressed with pressurized gas whose pressure is higher by a specific value than that of the inside of the mold, the inside of the mold is restored to normal pressure after the filling, the particles are fused through heating with steam and a compression ratio of the particles is controlled to a specific value. CONSTITUTION:Pressurized gas of 1.0-6.0kg/cm<2>G is pressed into a steam chamber 16 of a mold device B. Then foamed particles in a hopper 1 is packed in a mold, which is formed of a recessed mold 11 and protruded mold 12, by a filling gun 15 by filling in many steps by controlling a compression ratio at 40-70% while the foamed particles in the hopper 1 is being compressed by a rotary supply device A through pressurized gas whose pressure is higher by 0.5kg/cm<2> than the foregoing pressure. Molding is completed by heating the inside of the steam chamber 16 by supplying the steam having predetermined temperature after the inner pressure of the mold has been restored to atmospheric pressure.

Description

【発明の詳細な説明】 (、)  発明の目的 本発明はポリプロピレン系樹脂発泡粒子の蓋内成形法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Object of the Invention The present invention relates to a method for molding expanded polypropylene resin particles in a lid.

(産業上の利用分野) 本発明の成形方法は、ポリプロピレン系樹脂発泡粒子よ
り、複雑な形状の発泡成形品であって、かつ均一な密度
分布を有する型物発泡成形品を成形するのに有利に使用
される。
(Industrial Application Field) The molding method of the present invention is more advantageous in molding molded foam molded products with complex shapes and uniform density distribution than polypropylene resin foam particles. used for.

(従来の技術) 従来、気泡構造を有する成形品を製造する方法としては
、発泡剤を含有するスチレン系樹脂を予備発泡させ、得
られた予備発泡体を空気中に暫く放置したのち、減圧下
ないし常圧下で、閉鎖できるが密閉できない型内に連続
的に充填し、加熱発泡させて融着する方法が工業的に広
〈実施されている。
(Prior art) Conventionally, as a method for manufacturing molded products having a cellular structure, a styrene resin containing a blowing agent is pre-foamed, the obtained pre-foamed product is left in the air for a while, and then the product is foamed under reduced pressure. A method of continuously filling a mold that can be closed but cannot be sealed under normal pressure, heating and foaming it, and fusing it is widely practiced industrially.

この方法は、魚箱、緩衝包装材、断熱材等として用いら
れる複雑な形状の成形品が容易に製造できる。
This method can easily produce molded products with complex shapes used as fish boxes, cushioning packaging materials, heat insulating materials, and the like.

しかし、この方法はポリスチレン系樹脂の発泡成形に限
られ、ポリオレフィン系樹脂を用いて同様な方法で複雑
な形状の発泡成形品を得ようとしても不可能である。そ
の理由は、ポリオレフィン系樹脂がポリスチレン系樹脂
と較べて、樹脂内にガス体を発泡能力を有する状態で長
時間保持しておく能力に劣シ、樹脂よりガス体が短時間
内に逃散してしまう、からである。
However, this method is limited to foam molding of polystyrene resin, and it is impossible to obtain a foam molded product with a complicated shape using a similar method using polyolefin resin. The reason for this is that polyolefin resins are inferior to polystyrene resins in their ability to retain gas within the resin for long periods of time in a foaming state, and gases escape within a shorter time than resins. It's because it's put away.

また、ポリオレフィン系樹脂発泡粒子の蓋内成形法とし
て、同樹脂の発泡粒子を圧縮して発泡能力を付与する方
法が知られている。
Furthermore, as a method for molding foamed polyolefin resin particles in a lid, a method is known in which foamed particles of the same resin are compressed to impart foaming ability.

たとえば、米国特許第3504068号明細書には、泡
状オレフィン重合物からなる粒子を100℃以上の加熱
状態で加圧し、粒子を最初の見掛は容積090〜40チ
に圧縮し、その圧縮されたままの状態の粒子を加圧下の
型内に充填し、型の圧力を解放して大気圧に戻して粒子
を膨張させて融着する方法、或いは加熱した泡状オレフ
ィン重合物からなる粒子を型内に充填し、型内圧力を高
めて粒子を圧縮し、次いで型の体積を減じておいてから
型内の圧力を大気圧に開放して粒子を膨張させて融着す
る方法が記載されている。しかし、これらの方法は、発
泡粒子を型外で加熱するために多くの設備と運転経費を
要し、工業的実施をさまたげている。
For example, US Pat. No. 3,504,068 discloses that particles made of a foamy olefin polymer are pressurized in a heated state of 100° C. or higher, and the particles are compressed to an initial apparent volume of 0.9 to 40 cm. There is a method in which particles in their original state are filled into a mold under pressure, and the pressure in the mold is released to return to atmospheric pressure to expand and fuse the particles, or particles made of heated foamy olefin polymer are A method is described in which particles are filled into a mold, the pressure inside the mold is increased to compress the particles, the volume of the mold is reduced, and the pressure inside the mold is then released to atmospheric pressure to expand and fuse the particles. ing. However, these methods require a lot of equipment and operating costs to heat the expanded particles outside the mold, which hinders industrial implementation.

特開昭53−33996号公報には、多泡質の架橋ポリ
オレフィン系樹脂粒子を、耐圧円筒形シリンダー中で加
圧ガスを用いて元の見掛けのかさ容積の80%以下に圧
縮し、その圧縮された粒子を金型に吹込んで充填し、加
熱、成形する方法が記載されている。また、特開昭51
−147567号公報には、エチレン系樹脂発泡粒子を
耐圧ホッノクー内で気体圧力を用いて圧縮し、その圧縮
状態を維持したまま空気輸送して型内に充填し、加熱成
形する方法が記載されている。
JP-A-53-33996 discloses that porous crosslinked polyolefin resin particles are compressed to 80% or less of the original apparent bulk volume using pressurized gas in a pressure-resistant cylindrical cylinder. A method is described in which the particles are blown into a mold, filled, heated, and shaped. Also, JP-A-51
Publication No. 147567 describes a method in which foamed ethylene resin particles are compressed using gas pressure in a pressure-resistant honkoku, and while the compressed state is maintained, they are air-transported, filled into a mold, and then heated and molded. There is.

しかし、これら二つの方法は、型内に充填する粒子の数
倍から数十倍もの容積の粒子を一時に圧縮しておき、型
内を常圧ないし若干の加圧状態に保ちながら、凰と耐圧
容器との圧力差を利用して粒子を型内に充填するため、
複雑な製品形状を有する型への充填が困難である。そし
て、かかる充填が困難な場合に、凸型と凹型とのパーテ
ィング部を離して充填しくクラッキング充填)、充填の
終了後に密着成形することがあるが、このときに得られ
る成形品はパーティング部に相当とする部分の附近の密
度が著しく高くなり、成形品の密度分布が不均一になる
欠点がある。
However, these two methods compress particles several times to several tens of times the volume of the particles to be filled into the mold at once, and keep the inside of the mold at normal pressure or slightly pressurized. Particles are filled into the mold using the pressure difference with the pressure container.
It is difficult to fill molds with complex product shapes. If such filling is difficult, the parting parts of the convex and concave molds may be separated and filled (cracking filling), and after the filling is completed, contact molding may be performed, but the molded product obtained at this time is There is a disadvantage that the density near the portion corresponding to the portion becomes significantly high, and the density distribution of the molded product becomes non-uniform.

さらに、前記の種々の方法において耐圧タンクを用いて
発泡粒子を圧縮する場合に、発泡粒子がポリエチレンの
低倍率発泡体(高密度発泡体)や、ポリプロピレン等の
比較的に硬い(圧縮応力が大きい)発泡体のときは、加
圧ガスで発泡粒子を圧縮した状態で空気輸送して型内に
充填するのに、多大の設備と運転経費を要し、工業的実
施上の不利が著しい。
Furthermore, when compressing the foamed particles using a pressure tank in the various methods described above, the foamed particles may be made of a low-magnification polyethylene foam (high-density foam) or a relatively hard material such as polypropylene (with high compressive stress). ) In the case of foamed particles, a large amount of equipment and operating costs are required to compress the foamed particles with pressurized gas and then fill them into a mold, which is a significant disadvantage in industrial practice.

(発明が解決しようとする問題点) 本発明は、ポリプロピレン系樹脂発泡粒子を用いて型物
成形法により、複雑な形状の製品であっても均一な密度
分布を有する発泡成形体を容易に成形できる方法を提供
しようとするものである。
(Problems to be Solved by the Invention) The present invention uses foamed polypropylene resin particles to easily mold foamed products with a uniform density distribution even for products with complex shapes. This is an attempt to provide a possible method.

(b)  発明の構成 (問題点を解決するための手段) 本発明者等は、前記の問題点を解決するために種々研究
を重ねた結果、ガス圧で所定の圧力に昇圧した型内に、
型内圧力よシも所定値だけ高い加圧ガスを用いて発泡粒
子を圧縮しながら同ガス圧により複数回に分割して逐次
に充填し、その充填終了後に型内を常圧に戻して発泡粒
子を復元させてからスチーム加熱により融着させ、その
際の発泡粒子の圧縮率を特定の値に制御することにより
、その目的を達成することができたものである。
(b) Structure of the Invention (Means for Solving the Problems) The present inventors have conducted various studies to solve the above problems, and as a result, the present inventors have discovered that the present inventors have developed a system in which a mold is heated to a predetermined pressure using gas pressure. ,
The foamed particles are compressed using a pressurized gas that has a predetermined pressure higher than the pressure inside the mold, and is filled in multiple times using the same gas pressure, and after filling is completed, the inside of the mold is returned to normal pressure to form foam. This purpose was achieved by restoring the particles and then fusing them by steam heating, and controlling the compressibility of the expanded particles to a specific value at that time.

すなわち、本発明のポリプロピレン系樹脂発泡粒子の蓋
内成形法は、ポリプロピレン系樹脂発泡粒子を型内に充
填しスチーム加熱により発泡粒子どうしを融着させて型
物発泡体を成形する方法において、加圧ガスで1.0〜
6.0 kg/crlGに昇圧した型内に、前記の発泡
粒子を前記の型内圧力よシ0、5 ky、71以上高い
加圧ガスを用いて圧縮しながら、かつ複数回に分割して
逐次に充填し、その充填中に型内圧力を前記の型内圧力
に保持し続け、次いで充填終了後に型内圧力を大気圧に
戻してから前記の加熱を行なって発泡粒子どうしを融着
させ、その際の発泡粒子の式 〔式中、W、■及びσはそれぞれ下記のものを表わす。
That is, the in-lid molding method for foamed polypropylene resin particles of the present invention is a method in which foamed polypropylene resin particles are filled into a mold and the foamed particles are fused together by steam heating to form a molded foam. 1.0~ with pressure gas
The foamed particles are compressed in a mold pressurized to 6.0 kg/crlG using a pressurized gas that is 0.5 ky higher than the mold pressure, and is divided into multiple batches. Filling is carried out sequentially, and the pressure inside the mold is maintained at the above-mentioned pressure inside the mold during the filling, and then, after the filling is completed, the pressure inside the mold is returned to atmospheric pressure, and then the above-mentioned heating is performed to fuse the expanded particles together. , the formula of the expanded particles at that time [where W, ■ and σ represent the following, respectively.

W・・・成形品の重量(1) ■・・・成形品の容積(l) σ・・・発泡粒子の大気中でのかさ密度CF/l>  
 )で表わされる圧縮率を40〜70%に制御すること
を特徴とする方法である。
W...Weight of the molded product (1) ■...Volume of the molded product (l) σ...Bulk density of expanded particles in the atmosphere CF/l>
) is a method characterized by controlling the compression ratio expressed by 40 to 70%.

本発明の方法において用いられるポリプロピレン系樹脂
発泡粒子としては、たとえばポリプロピレン、エチレン
・プロピレン共重合体、エチレン・プロピレン・ブテン
−1共重合体;これらのポリマーどうしのブレンド物;
これらのポリマーに他のポリマー、たとえばポリイソブ
チレン、エチレン・プロピレンラバー、ポリエチレン、
エチレン・酢酸ビニル共重合体等を50重量%未満の割
合でブレンドしたブレンド物の発泡粒子であって、かさ
密度が10〜905’/l、粒子径が2〜10mのもの
があげられる。発泡粒子は架橋されていても、架橋され
ていなくてもよい。
The expanded polypropylene resin particles used in the method of the present invention include, for example, polypropylene, ethylene/propylene copolymer, ethylene/propylene/butene-1 copolymer; blends of these polymers;
In addition to these polymers, other polymers such as polyisobutylene, ethylene/propylene rubber, polyethylene,
Examples include foamed particles of a blend of ethylene/vinyl acetate copolymer or the like in a proportion of less than 50% by weight, with a bulk density of 10 to 905'/l and a particle diameter of 2 to 10 m. The expanded particles may be crosslinked or non-crosslinked.

かかるポリプロピレン系樹脂発泡粒子を製造する方法と
しては、たとえばポリプロピレン系樹脂を押出機中で発
泡剤と混練して押出し、押出機のノズルを出たのち放圧
して発泡させてから切断して発泡粒子を得る方法、或い
は耐圧容器内においてポリプロピレン系樹脂粒子を水等
の分散媒、発泡剤1分散剤等とともに、樹脂粒子が軟化
する温度前後の温度下で攪拌しながら加熱して、樹脂粒
子に発泡剤を含浸させてから、容器の一端を開放して樹
脂粒子と分散媒とを容器内よシも低圧の雰囲気中に放出
して、樹脂粒子を発泡させる方法等がある。発泡粒子の
形状としては、球形、円筒形等の形状がある。
As a method for manufacturing such expanded polypropylene resin particles, for example, polypropylene resin is kneaded with a foaming agent in an extruder and extruded, and after exiting the nozzle of the extruder, the pressure is released to cause foaming, and then the foamed particles are cut. Alternatively, in a pressure-resistant container, polypropylene resin particles are heated with a dispersion medium such as water, a blowing agent 1 dispersant, etc. at a temperature around the temperature at which the resin particles soften, and the resin particles are foamed. There is a method of foaming the resin particles by impregnating the resin particles with the agent and then opening one end of the container to release the resin particles and dispersion medium into a low-pressure atmosphere inside the container. The shape of the expanded particles includes a spherical shape, a cylindrical shape, and the like.

また、本発明の方法において、型の昇圧、発泡粒子の圧
縮及び充填に用いられる加圧ガスとしては、空気や窒素
ガス等の無機ガスが好ましいが、その他のガス、たとえ
ばプロパン、ブタン、イソブタン、4ンタン等の脂肪族
炭化水素ガス:ジシクロジフロロメタン、ジクロロテト
ラフロロエタン、メチルクロライド等のハロゲン化炭化
水素ガス等も使用することができ、さらに前記の無機ガ
スを主体とし、これに少量の前記の他のガスを混合した
ガスも使用することができる。しかし、一般には圧縮空
気が好適に使用される。
Further, in the method of the present invention, the pressurized gas used for pressurizing the mold and compressing and filling the expanded particles is preferably an inorganic gas such as air or nitrogen gas, but other gases such as propane, butane, isobutane, Aliphatic hydrocarbon gases such as 4-tonthane: halogenated hydrocarbon gases such as dicyclodifluoromethane, dichlorotetrafluoroethane, methyl chloride, etc. can also be used, and furthermore, the above-mentioned inorganic gases are mainly used, and a small amount of Gases mixed with the other gases mentioned above can also be used. However, compressed air is generally preferred.

本発明におけるポリプロピレン系樹脂発泡粒子の加圧ガ
スによる圧縮の程度、すなわち圧縮率は、型の内容積と
型内に充填される発泡粒子の大気中の容積との関係式で
表わすことができる。そして、型の容積は、凸型と凹型
とで形成される空間の容積であり、直接に測定するのが
困難であるが、実質的にこの空間で成形される製品の容
積と同一とみ々しうるかも、発泡粒子の圧縮率(%)は
下記式で求めることができる(式中のW、■及びσは前
記したとおルのものである。)。
The degree of compression of the expanded polypropylene resin particles by the pressurized gas in the present invention, that is, the compression ratio, can be expressed by a relational expression between the internal volume of the mold and the volume of the expanded particles filled in the mold in the atmosphere. The volume of the mold is the volume of the space formed by the convex and concave molds, and although it is difficult to measure directly, it is virtually the same as the volume of the product molded in this space. The compressibility (%) of foamed particles can be determined by the following formula (in the formula, W, ■, and σ are as described above).

W/σ そして、本発明の方法においては、この圧縮率を40〜
70%、好ましくは50〜65%に制御する。同圧縮率
があまり小さすぎると発泡能力の付与が十分でないため
に、発泡粒子の融着した界面に間隙が生じ、外観が悪く
なる。また、同圧縮率があまり高くなりすぎると、過剰
圧縮になり、発泡粒子間へのスチームの流れが悪くなシ
、発泡粒子の融着不良等が発生する。
W/σ And, in the method of the present invention, this compression ratio is 40~
It is controlled to 70%, preferably 50 to 65%. If the compression ratio is too small, foaming ability will not be sufficiently imparted, and gaps will be created at the interface where the foamed particles are fused, resulting in poor appearance. On the other hand, if the compression rate becomes too high, excessive compression will result, resulting in poor steam flow between the foamed particles and poor fusion of the foamed particles.

本発明の方法においては、発泡粒子の充填前及び充填中
の型内圧を、加圧ガスにより加圧して1.0〜6.0 
+g、’cIIcに保つようにする。これは、通常の、
l リプロピレン系樹脂発泡粒子のかさ密度が10〜9
0 f/lであり、かかる発泡粒子の圧縮率を40〜7
0%にするには、この範囲内の加圧が最適であるからで
ある。すなわち、加圧ガス圧が11g/ejG未溝にな
ると40%の圧縮率が得られにくくなるし、61w10
+lGを超えると、圧縮率が70チを超えるおそれがあ
るからである。
In the method of the present invention, the pressure inside the mold is increased to 1.0 to 6.0 with pressurized gas before and during filling of expanded particles.
Try to keep it at +g, 'cIIc. This is the normal
l The bulk density of the foamed polypropylene resin particles is 10 to 9.
0 f/l, and the compressibility of such expanded particles is 40-7
This is because pressurization within this range is optimal for achieving 0%. In other words, if the pressurized gas pressure becomes 11g/ejG, it becomes difficult to obtain a compression ratio of 40%, and 61w10
This is because if it exceeds +lG, the compression ratio may exceed 70 inches.

また、本発明の方法においては、発泡粒子を、前記の型
内圧力よシもo、 s kg/di以上高い加圧ガスを
用いて圧縮しながら、同ガス圧により型内K。
In addition, in the method of the present invention, the foamed particles are compressed using a pressurized gas that is higher than the above-mentioned in-mold pressure by at least 0, s kg/di, and is heated in the mold by the same gas pressure.

しかも発泡粒子を複数回に分割して逐次に充填するよう
にする。型内圧力よシO15に9/cI/を以上高い圧
力のガスを用いて圧縮しながら充填させるのは、発泡粒
子の型内への圧入及び型内での移動を容易ならしめるた
めである。型内圧力よ、j) 0.51w/ad未満の
高い圧力を用いた場合には、発泡粒子の型内への圧入が
充分に行なわれなくなる。また、発泡粒子の充填を複数
回に分割して逐次に行なうのは、複雑な形状の型内の隅
々にまで発泡体粒子を均一に充填させるためである。
Moreover, the foamed particles are divided into a plurality of times and filled sequentially. The purpose of compressing and filling the mold with a gas having a pressure higher than 9/cI/ is to facilitate the press-fitting of the expanded particles into the mold and their movement within the mold. Pressure inside the mold: j) If a high pressure of less than 0.51 w/ad is used, the expanded particles will not be sufficiently pressed into the mold. Furthermore, the reason why the filling of the foamed particles is divided into a plurality of times and carried out sequentially is to uniformly fill every corner of the complex-shaped mold with the foamed particles.

次に、添付図面にもとづき本発明を実施する態様例を説
明する。添付図面は、本発明の実施に使用される装置の
一例を部分縦断正面図で示したものでちシ、Aは発泡粒
子の圧縮及び充填用の回転供給装置であシ、Bは金型装
置である。
Next, examples of embodiments of the present invention will be described based on the accompanying drawings. The accompanying drawings show, in partial longitudinal sectional front view, one example of the apparatus used to carry out the present invention, in which A is a rotary feeder for compressing and filling foamed particles, and B is a molding apparatus. It is.

まず、金型装置Bの凹型(11)若しくは凸型(12)
とフレーム(13)と裏板(14)とによって形成され
る空間、すなわちスチームチャンバー(16)及び(1
6)内に、圧力PRすなわち圧力が1.0〜6.0 k
g/cliGの加圧ガス、たとえば圧縮空気を圧入して
型内を前記の範囲内の所定の圧力に加圧しておく。
First, the concave mold (11) or convex mold (12) of mold device B
The space formed by the frame (13) and the back plate (14), that is, the steam chamber (16) and (1
6) When the pressure PR, that is, the pressure is 1.0 to 6.0 k
g/cliG pressurized gas, such as compressed air, is injected to pressurize the inside of the mold to a predetermined pressure within the above range.

次に、回転供給装置Bは、図示したようにケーシング(
2)とロータ(3)とから主として構成され、ロータ(
3)には複数個のチャンバー(4)が設けられていて、
チャンバー(4)の一端がケーシング(2)に設けられ
た発泡粒子の供給口(5)と一致し先回端位置において
、チャンバー(4)の他端が減圧ラインの吸引口(7)
と一致するから、ホッパー(1)内の発泡粒子がその減
圧力によってチャンバー(4)内に移送され、それを充
満せしめる。発泡粒子で充満されたチャンバー(4)は
、両端ともシールされた状態で回転をして、チャンバー
(4)の一端が発泡粒子排出口(6)と一致するととも
に、同チャンバー(4)の他端が前記の圧力P2よシも
0.5 #/m以上高い圧力P、に加圧された加圧ガス
の吹出口(9)と一致する回転位置に達すれば、チャン
バー(4)内の発泡粒子はその加圧ガス圧P、で圧縮さ
れながら充填ガン(15)により前記の圧力P、に加圧
された凹型(11)と凸型(12)とによって形成され
る金型内に充填せしめられる。そして、回転供給装置B
のロータ(3)には、前記のようなチャンバー(4)が
複数個設けられているから、ホッパー(1)内の発泡粒
子は、前記の操作の繰返しKよって、複数回に分割して
逐次に型内に充填されることになる。
Next, the rotary supply device B operates the casing (
It mainly consists of a rotor (2) and a rotor (3).
3) is provided with a plurality of chambers (4),
One end of the chamber (4) coincides with the foamed particle supply port (5) provided in the casing (2), and the other end of the chamber (4) coincides with the suction port (7) of the vacuum line at the front end position.
, the expanded particles in the hopper (1) are transferred into the chamber (4) by the reduced pressure and fill it. The chamber (4) filled with foamed particles rotates with both ends sealed, so that one end of the chamber (4) coincides with the foamed particle outlet (6), and the other end of the chamber (4) coincides with the foamed particle outlet (6). When the end reaches a rotational position that coincides with the pressurized gas outlet (9) pressurized to a pressure P higher than the pressure P2 by 0.5 #/m or more, foaming in the chamber (4) is completed. The particles are compressed by the pressurized gas pressure P and filled into a mold formed by a concave mold (11) and a convex mold (12) which are pressurized to the pressure P by a filling gun (15). It will be done. And rotation supply device B
Since the rotor (3) is provided with a plurality of chambers (4) as described above, the foamed particles in the hopper (1) are divided into multiple times and sequentially by repeating the above operation K. It will be filled into the mold.

次いで、型内に所定量の発泡粒子が充填されたのち、型
内圧力を一旦大気圧に戻してから、スチームチャンバー
(16)及び(16)内に所定温度のスチームを供給し
て加熱すると、発泡粒子どうしが融着し、本発明の成形
を完了することになる。
Next, after the mold is filled with a predetermined amount of foamed particles, the pressure inside the mold is once returned to atmospheric pressure, and then steam at a predetermined temperature is supplied into the steam chambers (16) and (16) to heat them. The expanded particles are fused together, completing the molding of the present invention.

(実施例等) 以下、実施例及び比較例をあげて本発明をさらに詳述す
る。
(Examples, etc.) Hereinafter, the present invention will be further described in detail with reference to Examples and Comparative Examples.

実施例1 内容積3tの耐圧力50鴨−のオートクレーブに、水1
400部(重量部、以下同様)、エチレン・プロピレン
ランダムコポリマー(三菱油化株式会社商品名三菱ノー
プレンFG3.エチレン含量3重量%)600部、懸濁
剤として第三リン酸カルシウム15部、界面活性剤のド
デシルベンゼンスルホン酸ソーダ0.05部、発泡剤と
してブタン100部を仕込み、430 rpmの攪拌下
で、1時間かけて室温から135℃まで昇温し、同温度
に10分間保持したところ、オートクレーブの内圧が2
5’Q/cdGになった。オートクレーブの底部の吐出
ノズル弁を開き、内容物を大気中に18 Orpmで攪
拌しながら2秒で放出して発泡を行なわせだ。得られた
発泡粒子ばかさ密度が30 Pllであった。
Example 1 In an autoclave with an inner volume of 3 tons and a pressure resistance of 50, 1 liter of water was added.
400 parts (by weight, the same applies hereinafter), 600 parts of ethylene/propylene random copolymer (Mitsubishi Yuka Co., Ltd. trade name: Mitsubishi Noprene FG3. Ethylene content: 3% by weight), 15 parts of tribasic calcium phosphate as a suspending agent, and a surfactant. 0.05 part of sodium dodecylbenzenesulfonate and 100 parts of butane as a blowing agent were charged, and the temperature was raised from room temperature to 135°C over 1 hour while stirring at 430 rpm, and when the same temperature was maintained for 10 minutes, the temperature of the autoclave was increased. Internal pressure is 2
It became 5'Q/cdG. Open the discharge nozzle valve at the bottom of the autoclave and discharge the contents into the atmosphere for 2 seconds while stirring at 18 Orpm to cause foaming. The foamed particles obtained had a bulk density of 30 Pll.

この発泡粒子を用いて型内成形を行なったが、成形機と
してはDAIYA−600LF Cダイ七ン工業社商品
名)を、型としては巾300mmX長さ300關×高さ
12.5 ynxの成形品が得られる内容積1.1tの
型を、発泡粒子の圧縮充填用の回転供給装置として、6
ケのチャンバー(各チャンバーはIL径35、、X長さ
52隨、容積5occである)を有する添付図面に図示
したような装置を、そして充填ガンとして口径30龍の
充填ガンをそれぞれ使用した。
In-mold molding was performed using these foamed particles, using a molding machine of DAIYA-600LF (product name of Daishichi Kogyo Co., Ltd.) and a mold with a width of 300 mm x length of 300 mm x height of 12.5 ynx. A mold with an internal volume of 1.1 t for obtaining a product was used as a rotary supply device for compressing and filling expanded particles.
An apparatus as shown in the accompanying drawings having two chambers (each chamber having an IL diameter of 35 mm, a length of 52 mm, and a volume of 5 occ) was used, and a filling gun of caliber 30 was used as the filling gun.

また、成形方法は、まず金型を閉じ、圧縮空気で型内圧
(P、)を3.5 kg/cdGに昇圧した。次いで、
前記のようにして製造されたかさ密度309−/lの発
泡粒子2.8tを、圧力(Pt)の加圧ガスとして4 
kp/、−a(Gの圧力を有する圧縮空気を用いて、0
.1秒間隔で分割して逐次に充填した。充填中、型内圧
(Pl )が3.5 kg/iGに保持されるように、
圧力調整バルブ(図示していない)を作動させた。
The molding method was as follows: First, the mold was closed, and the internal pressure (P,) of the mold was increased to 3.5 kg/cdG using compressed air. Then,
2.8 tons of expanded particles having a bulk density of 309-/l produced as described above were used as pressurized gas at a pressure (Pt) of 4.
kp/, -a (using compressed air with a pressure of G, 0
.. It was divided into 1-second intervals and filled sequentially. During filling, the mold internal pressure (Pl) was maintained at 3.5 kg/iG.
A pressure regulating valve (not shown) was activated.

充填終了後、充填ガンを閉じ、型内圧(Pl )を大気
圧に戻して発泡粒子を原形に復元させてから、凸型(1
2)側、すなわち移動型側のチャンバー(16)内に3
 ′Kg/iGのスチーム(温度約133℃)を20秒
間導入し、次いで凸型(移動型)側、及び凹型(11)
側、すなわち固定型側のスチームチャンバー(16)及
び(16)に同時に、3ゆ/へGのスチームを20秒間
導入して、発泡粒子どうしを加熱融着させた。
After filling, the filling gun is closed and the mold internal pressure (Pl) is returned to atmospheric pressure to restore the expanded particles to their original shape, and then the convex mold (1
2) side, that is, in the chamber (16) on the movable side.
'Kg/iG steam (temperature approximately 133°C) was introduced for 20 seconds, and then the convex mold (movable mold) side and the concave mold (11)
At the same time, steam of 3 Y/G was introduced into the steam chambers (16) and (16) on the fixed mold side for 20 seconds to heat and fuse the expanded particles together.

型を冷却したのち、取出して乾燥させて得た発泡成形品
は、重さが85y−であシ、その成形時の発泡粒子の圧
縮率は61%であった。そして、得られた発泡成形品は
、発泡粒子が隅々にまで充填されていて、粒子間に間隙
がなく、融着も良好であった。
After the mold was cooled, the mold was taken out and dried, and the resulting foamed molded product had a weight of 85 yen, and the compression ratio of the foamed particles at the time of molding was 61%. The obtained foamed molded product was filled with foamed particles to every corner, had no gaps between the particles, and had good fusion bonding.

比較例1 実施例1で製造したかさ密度309−/lの発泡粒子2
.8tを耐圧ホッパータンク内に投入し、圧縮空気4.
0 kg/+!Gで加圧した。このタンク底部のパルプ
を開き、実施例1で用いたと同一の内圧を3、5 #/
dGに保った金型に連続的に充填した。
Comparative Example 1 Expanded particles 2 having a bulk density of 309-/l produced in Example 1
.. Pour 8 tons of compressed air into the pressure hopper tank and fill it with 4.
0 kg/+! It was pressurized with G. Open the pulp at the bottom of this tank and apply the same internal pressure as used in Example 1 to 3.5 #/
The mold was continuously filled at dG.

その充填後、充填ガンを閉じ、金型の圧力を大気圧に戻
して発泡粒子を元形に復元させてから、実施例1と同様
の方法で加熱融着させて発泡成形品を得た。この場合の
発泡粒子の圧m率は61チであった。
After filling, the filling gun was closed and the pressure in the mold was returned to atmospheric pressure to restore the foamed particles to their original shape, followed by heat fusion in the same manner as in Example 1 to obtain a foamed molded product. The pressure ratio of the foamed particles in this case was 61 inches.

得られた発泡成形品は、隅々仝の発泡粒子の充填が不充
分なだめに粒子間隙が多くて、実用に供しえないもので
あった。
The obtained foamed molded product had many gaps between particles due to insufficient filling of the foamed particles in every corner, and could not be put to practical use.

比較例2 実施例Iにおいて、発泡粒子の圧縮及び充填用の圧縮空
気として、圧力(P、)が3.7 ky/cdG。
Comparative Example 2 In Example I, the pressure (P, ) of compressed air for compressing and filling expanded particles was 3.7 ky/cdG.

又は3.9 kg/cdGの圧縮空気をそれぞれ用い、
そのほかは実施例1と同一条件で成形を行なった。この
場合の発泡粒子の圧縮率はそれぞれ49%、又は55%
であった。
or using compressed air of 3.9 kg/cdG, respectively,
Other than that, molding was carried out under the same conditions as in Example 1. The compression ratio of the expanded particles in this case is 49% or 55%, respectively.
Met.

得られた成形品はいずれも粒子間隙が大きくて商品価値
の劣るものであった。
All of the molded products obtained had large interparticle gaps and were inferior in commercial value.

実施例2 比較例3〜4 実施例1において製造されたかさ密度30 Vtの発泡
粒子を1.71 、2.31又は4.5tそれぞれ使用
し、型内圧がそれぞれ1.8 kg/cdG 、 2.
5 kg/ff1G又は4.0 kg/iGに設定した
金型に、発泡粒子の圧縮及び充填用の加圧ガスとして圧
力(P、)がそれぞれ2.3 kg/iG 、 3.0
 kg/cmG又は4゜7ゆ/mGの圧縮空気を使用し
、そのほかは実施例1の方法に準じて充填し、同様にし
て加熱成形をした。
Example 2 Comparative Examples 3 to 4 1.71, 2.31, or 4.5 t of the foamed particles with a bulk density of 30 Vt manufactured in Example 1 were used, and the mold internal pressures were 1.8 kg/cdG and 2, respectively. ..
The pressure (P,) was set to 5 kg/ff1G or 4.0 kg/iG as a pressurized gas for compressing and filling expanded particles, respectively, at 2.3 kg/iG and 3.0 kg/iG.
Compressed air of kg/cmG or 4°7 Yu/mG was used, and the filling was otherwise carried out in accordance with the method of Example 1, and heat molding was carried out in the same manner.

その結果は第1表に示すとおシであった。The results are shown in Table 1.

第1表 実施例3〜4 実施例1の発泡粒子の製造において、ブタンの仕込量を
変えることによって、がさ密度が151/l、又は60
 f/lの発泡粒子をそれぞれ製造した。
Table 1 Examples 3 to 4 In the production of expanded particles of Example 1, by changing the amount of butane charged, the bulk density was 151/l or 60/l.
Expanded particles of f/l were produced respectively.

得られた各粒子を2.8tずつそれぞれ使用して、かつ
型内圧(Pl )及び充填、圧力(P2 )を第2表に
示すように変更し、そのほかは実施例1の方法に準じて
充填及び成形を行なった。その結果は第2表に示すとお
夛であった。
2.8 tons of each of the obtained particles were used, and the mold internal pressure (Pl) and filling pressure (P2) were changed as shown in Table 2, and the other filling methods were as in Example 1. And molding was performed. The results are shown in Table 2.

第2表 (c)発明の効果 本発明の成形法は下記の優れた効果が得られる。Table 2 (c) Effect of the invention The molding method of the present invention provides the following excellent effects.

(1)発泡粒子を型内で加圧ガスを用いて圧縮しながら
充填するから、従来法におけるような大容量の耐圧ホッ
パータンク等の大規模な工場設備及び敷地等の必要がな
いし、加圧ガス使用量も少ない。
(1) Since the expanded particles are compressed and filled in the mold using pressurized gas, there is no need for large-scale factory equipment and premises such as large-capacity pressure-resistant hopper tanks as in the conventional method, and there is no need for pressurization. Gas usage is also low.

01)発泡粒子を複数回に分割して圧縮しながら逐次に
充填し、かつ発泡粒子の圧縮率を一定の範囲に制御する
から、複雑な形状の成形品であっても、発泡粒子を隅々
ICまで均一に充填することができ、均一な密度分布を
有し、粒子間隙のない優れたポリプロピレン系樹脂発泡
型物成形品が得られる。
01) The foamed particles are divided into multiple parts and sequentially filled while being compressed, and the compression ratio of the foamed particles is controlled within a certain range, so even if the molded product has a complex shape, the foamed particles can be packed in every corner. An excellent polypropylene resin foam molded product can be obtained which can be uniformly filled up to the IC, has a uniform density distribution, and has no particle gaps.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は本発明の実施に使用される装置の一例を部分
縦断面図で示したものであシ、図中の各符号はそれぞれ
下記のものを示す。 A・・・発泡粒子の圧縮及び充填用の回転供給装置、B
・・・金型装置、1・・・発泡粒子用ホッノヤ−12・
・・ケーシング、3・・・ロータ、4・・・チャンバー
、5・・・発泡粒子供給口、6・・・発泡粒子排出口、
7・・・減圧ライン吸引口、8・・・減圧ライン、9・
・・加圧ガス吹出口、10・・・加圧ガスライン、11
・・・凹型、12・・・凸型、13・・・フレーム、1
4・・・裏金、15・・・充填ガン、16・・・スチー
ムチャンバー。
The accompanying drawings are partial longitudinal cross-sectional views of an example of an apparatus used to carry out the present invention, and each reference numeral in the drawings indicates the following. A...Rotary supply device for compressing and filling expanded particles, B
... Mold device, 1... Hoknoya for foamed particles - 12.
... Casing, 3... Rotor, 4... Chamber, 5... Foamed particle supply port, 6... Foamed particle discharge port,
7...Reduction line suction port, 8...Reduction line, 9.
... Pressurized gas outlet, 10... Pressurized gas line, 11
...Concave, 12...Convex, 13...Frame, 1
4...back metal, 15...filling gun, 16...steam chamber.

Claims (1)

【特許請求の範囲】 1)ポリプロピレン系樹脂発泡粒子を型内に充填しスチ
ーム加熱により発泡粒子どうしを融着させて型物発泡体
を成形する方法において、加圧ガスで1.0〜6.0k
g/cm^2に昇圧した型内に、前記の発泡粒子を前記
の型内圧力より0.5kg/cm^2以上高い加圧ガス
を用いて圧縮しながら、かつ複数回に分割して逐次に充
填し、その充填中に型内圧力を前記の型内圧力に保持し
続け、次いで充填終了後に型内圧力を大気圧に戻してか
ら前記の加熱を行なって発泡粒子どうしを融着させ、そ
の際の発泡粒子の式 圧縮率(%)=[(W/σ−V)/(W/σ)]×10
0〔式中、W、V及びσはそれぞれ下記のものを表わす
。 W・・・成形品の重量(g) V・・・成形品の容量(l) σ・・・発泡粒子の大気中でのかさ密度(g/l)〕で
表わされる圧縮率を40〜70%に制御することを特徴
とするポリプロピレン系樹脂発泡粒子の蓋内成形法。
[Scope of Claims] 1) A method for molding a molded foam by filling a mold with polypropylene resin foam particles and fusing the foam particles with each other by steam heating, in which the foamed material is heated to a temperature of 1.0 to 6. 0k
The foamed particles are compressed in a mold pressurized to g/cm^2 using a pressurized gas that is 0.5 kg/cm^2 or more higher than the pressure inside the mold, and are sequentially divided into multiple times. The pressure inside the mold is maintained at the above-mentioned pressure inside the mold during the filling, and then after the filling is completed, the pressure inside the mold is returned to atmospheric pressure, and then the above-mentioned heating is performed to fuse the expanded particles together, Formula compression ratio (%) of foamed particles at that time = [(W/σ-V)/(W/σ)]×10
0 [In the formula, W, V and σ each represent the following. W...Weight of the molded product (g) V...Capacity of the molded product (l) σ...Bulk density of foamed particles in the atmosphere (g/l)] 40 to 70 An in-lid molding method for polypropylene resin foam particles, which is characterized by controlling the polypropylene resin foam particles to %.
JP60292207A 1985-12-26 1985-12-26 In-mold molding methof for polypropylene series resin foamed particle Granted JPS62151325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60292207A JPS62151325A (en) 1985-12-26 1985-12-26 In-mold molding methof for polypropylene series resin foamed particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60292207A JPS62151325A (en) 1985-12-26 1985-12-26 In-mold molding methof for polypropylene series resin foamed particle

Publications (2)

Publication Number Publication Date
JPS62151325A true JPS62151325A (en) 1987-07-06
JPH0446217B2 JPH0446217B2 (en) 1992-07-29

Family

ID=17778909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60292207A Granted JPS62151325A (en) 1985-12-26 1985-12-26 In-mold molding methof for polypropylene series resin foamed particle

Country Status (1)

Country Link
JP (1) JPS62151325A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63183832A (en) * 1986-09-16 1988-07-29 Kanegafuchi Chem Ind Co Ltd Manufacture of polypropylene resin in-mold foam molding
JPH01136726A (en) * 1987-11-25 1989-05-30 Kanegafuchi Chem Ind Co Ltd Expansion molding process of polypropylene resin in mold
WO2023084881A1 (en) 2021-11-11 2023-05-19 株式会社ジェイエスピー Method for manufacturing polypropylene-based resin foamed particle molded article

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2161298B1 (en) 2007-06-22 2012-04-11 Jsp Corporation Polypropylene resin foam particle and molding thereof
JP5107692B2 (en) 2007-12-17 2012-12-26 株式会社ジェイエスピー Polypropylene-based resin foamed particles and molded article of the foamed particles
US20090169895A1 (en) 2007-12-27 2009-07-02 Jsp Corporation Foamed polyolefin resin beads
JP5044589B2 (en) 2009-03-10 2012-10-10 株式会社ジェイエスピー Polyvinylidene fluoride-based resin foamed particles, and polyvinylidene fluoride-based resin foamed particles
CN102884115B (en) 2010-05-18 2015-04-22 株式会社Jsp Expanded particles of polylactic acid-based resin, and moldings of the expanded particles
JP5727210B2 (en) 2010-12-15 2015-06-03 株式会社ジェイエスピー Method for producing polyolefin resin expanded particle molded body, and polyolefin resin expanded resin molded body
JP5419243B2 (en) 2010-12-21 2014-02-19 株式会社ジェイエスピー Polylactic acid-based resin expanded particles and molded body of polylactic acid-based resin expanded particles
CN103827184B (en) 2011-09-28 2016-01-20 株式会社Jsp Based resin expanded beads and moulded work thereof
WO2013058056A1 (en) 2011-10-18 2013-04-25 株式会社ジェイエスピー Method for producing expanded polylactic acid resin particle
JP5927343B2 (en) 2014-01-17 2016-06-01 株式会社ジェイエスピー Propylene-based resin expanded particles and expanded molded articles
JP6611032B2 (en) 2015-07-30 2019-11-27 株式会社ジェイエスピー Polylactic acid-based resin expanded particles and molded body of polylactic acid-based resin expanded particles
JP6378730B2 (en) 2016-10-03 2018-08-22 株式会社ジェイエスピー Foamed particle molding
JP6838940B2 (en) 2016-11-11 2021-03-03 株式会社ジェイエスピー Foam particle molded body and sole member
JP6519813B2 (en) 2016-11-11 2019-05-29 株式会社ジェイエスピー Expanded particles and their compacts
KR102443719B1 (en) 2016-11-14 2022-09-15 가부시키가이샤 제이에스피 Method for manufacturing expanded particle molded article, cushion for soles and expanded particles
JP6371821B2 (en) 2016-11-28 2018-08-08 株式会社ジェイエスピー Thermoplastic polyurethane expanded particles and molded articles of thermoplastic polyurethane expanded particles
JP6397949B2 (en) 2017-03-06 2018-09-26 株式会社ジェイエスピー Foamed particle molding
CN115427487B (en) 2020-02-04 2023-10-20 株式会社Jsp Polypropylene resin foam beads and polypropylene resin foam bead molded article
JP7130080B1 (en) 2021-03-15 2022-09-02 株式会社ジェイエスピー Expanded polyethylene resin particles, method for producing expanded polyethylene resin particles
EP4368663A4 (en) 2021-07-09 2024-11-06 Asahi Kasei Kabushiki Kaisha FOAM BEADS, THEIR PRODUCTION PROCESS AND FORMED BODY
JP2023024310A (en) 2021-08-06 2023-02-16 株式会社ジェイエスピー Polypropylene-based resin foam particle and polypropylene-based resin foam particle molding
JP7227526B1 (en) 2021-10-21 2023-02-22 株式会社ジェイエスピー Expanded polyethylene resin particles and method for producing the same
JP7295450B2 (en) 2021-10-21 2023-06-21 株式会社ジェイエスピー Expanded polyethylene resin particles and method for producing the same
JP7329639B1 (en) 2022-02-07 2023-08-18 株式会社ジェイエスピー Expanded polypropylene resin particles, method for producing expanded polypropylene resin particles, and cushioning material for distribution
CN119053648A (en) 2022-03-30 2024-11-29 株式会社Jsp Expanded beads and molded article of expanded beads
EP4502024A1 (en) 2022-03-30 2025-02-05 JSP Corporation Expanded bead production method, and expanded beads
JP7425137B1 (en) 2022-08-31 2024-01-30 株式会社ジェイエスピー Expanded particles and expanded particle molded bodies

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63183832A (en) * 1986-09-16 1988-07-29 Kanegafuchi Chem Ind Co Ltd Manufacture of polypropylene resin in-mold foam molding
JPH01136726A (en) * 1987-11-25 1989-05-30 Kanegafuchi Chem Ind Co Ltd Expansion molding process of polypropylene resin in mold
WO2023084881A1 (en) 2021-11-11 2023-05-19 株式会社ジェイエスピー Method for manufacturing polypropylene-based resin foamed particle molded article
KR20240101942A (en) 2021-11-11 2024-07-02 가부시키가이샤 제이에스피 Method for manufacturing polypropylene resin foamed particle molded body

Also Published As

Publication number Publication date
JPH0446217B2 (en) 1992-07-29

Similar Documents

Publication Publication Date Title
JPS62151325A (en) In-mold molding methof for polypropylene series resin foamed particle
JPS62151326A (en) In-mold molding method for polypropylene series resin foamed particle
US4818451A (en) Method of preparing a foamed molded article and blow-filling gun apparatus for use therein
EP0095109B1 (en) Process for producing expanded particles of a polyolefin resin
US4272469A (en) Method and apparatus for forming expanded foam articles
EP1654304A2 (en) Process for processing expandable polymer particles and foam article thereof
US4698191A (en) Methods of producing molded products from foamed polypropylene particles
JPS6049039A (en) Manufacture of polyolefin resin expanded beads
JP3858517B2 (en) Polypropylene resin pre-expanded particles, and method for producing the pre-expanded particles and in-mold foam molding
US6607682B1 (en) Pre-expanded polypropylene resin beads and process for producing molded object therefrom by in-mold foaming
JP2886257B2 (en) In-mold molding method of expanded thermoplastic resin particles
JP2637201B2 (en) Processing method for expanded polypropylene resin particles
JPS63178029A (en) Method for in-mold molding of thermoplastic resin foaming particle
JPH0657435B2 (en) In-mold foam molding of polypropylene resin
JPH03152136A (en) Polypropylene resin preliminarily foamed bead and preparation thereof
JPS62198444A (en) Method of in-mold molding thermoplastic resin expandable particle
JPS62212131A (en) In-mold molding of thermoplastic resin expandable particle
JPH0356906B2 (en)
JPH0356905B2 (en)
JPH0757498B2 (en) Molding method of olefin resin foam particles
JPS6287327A (en) Method for manufacturing thermoplastic resin in-mold foam moldings
JPH05179050A (en) Polyolefin-based resin foam particle
JPH02137912A (en) Method of filling thermoplastic resin foamed particle into mold
JPH04135830A (en) Method for manufacturing foam molded product
JPS6218438A (en) Production of pre-expanded thermoplastic resin particle

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees