JPS62150711A - Vapor phase growth method - Google Patents
Vapor phase growth methodInfo
- Publication number
- JPS62150711A JPS62150711A JP29121685A JP29121685A JPS62150711A JP S62150711 A JPS62150711 A JP S62150711A JP 29121685 A JP29121685 A JP 29121685A JP 29121685 A JP29121685 A JP 29121685A JP S62150711 A JPS62150711 A JP S62150711A
- Authority
- JP
- Japan
- Prior art keywords
- wafer
- vapor phase
- phase growth
- growth method
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001947 vapour-phase growth Methods 0.000 title claims description 20
- 238000000034 method Methods 0.000 title claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 8
- 239000012495 reaction gas Substances 0.000 claims description 8
- 239000012159 carrier gas Substances 0.000 claims description 7
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 235000012431 wafers Nutrition 0.000 description 23
- 239000007789 gas Substances 0.000 description 8
- 239000002245 particle Substances 0.000 description 5
- 238000011109 contamination Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000002184 metal Substances 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 101150064138 MAP1 gene Proteins 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 235000021419 vinegar Nutrition 0.000 description 1
- 239000000052 vinegar Substances 0.000 description 1
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はウェハーへの気相成長法に関し、特に気相成長
装置の改良に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a vapor phase growth method for wafers, and particularly relates to an improvement of a vapor phase growth apparatus.
本発明は、ウェハー表面を下に向けてガスによりて浮上
させ、かつ、ガスの導入口の形状によりウェハーの回転
を行い、成長時に於ける汚染を無くシ、成長膜質の向上
及び均一化を図ったものである。The present invention aims to eliminate contamination during growth and improve and uniformize the quality of the grown film by floating the wafer with a gas with the surface facing downward and rotating the wafer depending on the shape of the gas inlet. It is something that
従来の気相成長方法としては、今回ことで、説明するま
でもなく、常圧、あるVhは減圧下に於いて、加熱方法
等も、抵抗加熱、誘導加熱、赤外ランプによるもの等、
踵々のものがあり、また、プラズマや光を用いるものも
、多数考案、実用比されている。しかし、パーティクル
の付着等の開−があり、ウェハ表面を下に向ける気相成
長装置の試みとして、:1.D、Parsons 12
th工nternationalSymposium
on GaAa and Re1atttd Corn
pounds、1985v−4があった。As for the conventional vapor phase growth method, it is needless to explain this time, but heating methods include resistance heating, induction heating, infrared lamp, etc. under normal pressure and reduced pressure for a certain Vh.
There are many methods that use plasma or light, and many others have been devised and put into practical use. However, there were problems such as the adhesion of particles, and as a result, attempts were made to use a vapor phase growth apparatus with the wafer surface facing downward:1. D.Parsons 12
th engineeringinternationalSymposium
on GaAa and Re1atttd Corn
Pounds, 1985v-4 was there.
〔発明が解決しようとする間租点及び目的〕しかし、前
述の従来技術、特にウェハ表面を上方に向けて、気相成
長する方法では、パーティクルの付着が大きな問題であ
り、これは、基板を傾けて、サセプタに取付けることや
、成長を減圧にして行うなどにより、改善されてはいる
が、今でも大きな問題として残っていZ・、さらに、膜
厚、膜質の均−註など、従来からの要求に加えて、ウェ
ハの大口径化への対応が大きな命題として課されてきて
いる土、気相成長の適用範囲も従来の多結晶や単結晶シ
リコン、’ ! ’! a ””L8”4から。[Considerations and objects to be solved by the invention] However, in the prior art described above, especially in the method of vapor phase growth with the wafer surface facing upward, particle adhesion is a major problem, which causes the substrate to Although improvements have been made by installing the susceptor at an angle and by growing under reduced pressure, problems still remain as major problems. In addition to these demands, the application of vapor phase growth has also expanded to include conventional polycrystalline and single crystal silicon, and the need for larger diameter wafers. '! From a ””L8”4.
金属、シリサイド膜、あるいは、GcLAJ、GαA7
A8.さらには、多元の液晶へと広がりつつある。Metal, silicide film, or GcLAJ, GαA7
A8. Furthermore, it is expanding to multi-dimensional liquid crystals.
侍に化合″吻半導体の気相成長に関しては、要求される
品質がきびしく、気相成長S装置の保守も含めて、サセ
プタや反応管からの汚染、ウェハの搬送や、膜厚O均一
化を図るため設けられるウェハの回転機構によるパーテ
ィクルの発生%成長中のガスの流れの不均一性の問題が
あり、加熱方法や成長室壁面への反応生成物の付着等に
も大きな問題があった。When it comes to vapor phase growth of semiconductors, the quality required is very strict, including maintenance of the vapor phase growth equipment, preventing contamination from susceptors and reaction tubes, wafer transportation, and uniform film thickness. There is a problem of non-uniformity of gas flow during growth due to the wafer rotation mechanism provided to achieve particle generation, and there are also major problems with the heating method and the adhesion of reaction products to the walls of the growth chamber.
そこで本発明はこのような間頃点を解決するもので、そ
の目的とするところは、気相成長中のパーティクルの発
生、付着を押さえ、汚染や熱ストレスに起因する膜質の
低下を無くシ、かつ膜厚の均一性を図ることにある。Therefore, the present invention is intended to solve this problem, and its purpose is to suppress the generation and adhesion of particles during vapor phase growth, eliminate deterioration in film quality due to contamination and thermal stress, and The aim is also to achieve uniformity in film thickness.
本発明の気相成長法は、ウエノ・−表面を下向きにし、
キャリアガス及び反応ガスをウェハー表面に角度をつけ
て噴出させることにより、ウエノ\−のみ乞サセプタか
ら浮上させ、かつ回転させながら、成幌を行うことを特
徴とする。In the vapor phase growth method of the present invention, the Ueno surface is directed downward;
The wafer is characterized by ejecting carrier gas and reaction gas at an angle to the surface of the wafer, thereby floating the wafer from the wafer susceptor and performing the formation process while rotating the wafer.
ウェハー表面を下向きにし、非接触状態でウェハーのみ
を加熱かつ回転させることにより、膜質、嗅厚均−性が
優れた成長膜を優ることができる。By heating and rotating only the wafer in a non-contact state with the wafer surface facing downward, a grown film with excellent film quality and uniformity in olfactory thickness can be obtained.
以下、本発明について、実施列に基づき、詳細に説明す
る。Hereinafter, the present invention will be described in detail based on the implementation series.
第1図は本発明の気相成長方法による気相成長装置断面
の模式図である。11のウエノ・−をキャリアガスと反
応ガスによって、サセプタから浮遊させ、成長を行う、
実施例では、成長室15とサセプタ、及びガスのノズル
12が一体化されているが。FIG. 1 is a schematic cross-sectional view of a vapor phase growth apparatus according to the vapor phase growth method of the present invention. 11 Ueno-- is suspended from a susceptor using a carrier gas and a reaction gas, and growth is performed.
In the embodiment, the growth chamber 15, the susceptor, and the gas nozzle 12 are integrated.
撞々の変形が考えられるのは当然である。ガスのノズル
は、ウェハーに対し、一定の角度が設けられており、ウ
エノ・−の回転を行う、ノズルの数、口径、角度あるい
は、成長圧力によって、基板の回転数を変えることがで
きる。13uキヤリアガスと反応ガスの導入口、 14
は排気口である。!l!施劉では、ガスの導入口が1個
であるが、キャリアガスと反応ガスを別々′に、さらに
は複数撞の反応ガスのノズルを分割して設けたり、ウェ
ハーの回転数やサセプタからの距離を制御するためのノ
ズル金独立して設けることができることは、当然である
。′侍に%OMVPE等では、反応ガス、キャリアガス
の空間的な組成分布、流速等が問題となるが、上記講説
では、成長圧力等の制御を加え、広節囲な調節が0]′
能である。特にウェハーを高速に回転することが可能で
ある利点は、膜厚の均一性のみならず、高品位な膜質を
得ることが可能である。 16は生長室のキャップで1
7は赤外線加熱ランプである。ウェハーのみを浮とさせ
て直接加熱するこにより、サセプタとの熱伝導等による
歪は全く発生しない。Naturally, various variations are possible. The gas nozzles are set at a fixed angle with respect to the wafer, and the rotation speed of the substrate can be changed by changing the number, diameter, angle, or growth pressure of the nozzles that rotate the wafer. 13u carrier gas and reaction gas inlet, 14
is an exhaust port. ! l! In Shiryu, there is only one gas inlet, but carrier gas and reaction gas are separated, and multiple reaction gas nozzles are provided separately, and the number of rotations of the wafer and the distance from the susceptor are It is natural that the nozzle metal for controlling can be provided independently. ``In % OMVPE, etc., problems include the spatial composition distribution and flow rate of the reactant gas and carrier gas, but in the above lecture, we add control of the growth pressure, etc., and make wide-ranging adjustments.''
It is Noh. In particular, the advantage of being able to rotate the wafer at high speed is that it is possible to obtain not only uniform film thickness but also high quality film quality. 16 is the growth chamber cap 1
7 is an infrared heating lamp. By floating only the wafer and heating it directly, no distortion occurs due to heat conduction with the susceptor.
第2図はノズル部分の上図からの模式図であり、21は
排気口で天め列では、円形のものを8個付けているが、
数、形状tf[長条性、反応ガスによりテモ種々考えら
れる。22ハキヤリアガス及び反応ガスの導入口でウェ
ハーを浮上、回転させるために角度が設けられている。Figure 2 is a schematic view of the nozzle part taken from the above figure, and 21 is the exhaust port, and eight circular ones are attached in the top row.
Various shapes can be considered depending on the number, shape, and length of the strip, and the reaction gas. An angle is provided in order to levitate and rotate the wafer at the inlet of the carrier gas and reaction gas.
上述の如く本発明の気相生長方法によれば、ウェハー表
面へのパーティクルの付着の大幅な低減と、非常に均一
な@厚分布を容易に得ることが可能である。さらに、混
晶化合物半4本等、反応ガスの均−性等が大きな問題と
なる気相成長に於いても、ウェハーの高速回転が可能な
点で、成長1−の組成の制御、不純物混入の低減等、大
きな効果がある。As described above, according to the vapor phase growth method of the present invention, it is possible to greatly reduce the adhesion of particles to the wafer surface and easily obtain a very uniform @thickness distribution. Furthermore, even in vapor phase growth where the homogeneity of the reactant gas is a major problem, such as mixed crystal compounds, the ability to rotate the wafer at high speed allows for control of the composition of growth 1-, It has great effects, such as reducing
第1図(Q)は本発明の気相成長方法による気相生長装
置の千面模式図。
第1図(b)は本発明の気相生長装置による気相生長装
置の断面模式図、第2図はノズル部分の上面模式図。
以 上
出願人 セイコーエプソン昧式会社
第1図(α)N″
劫B戒五刻ト酢飾度史図
第1@Cb)FIG. 1 (Q) is a schematic diagram of a vapor phase growth apparatus using the vapor phase growth method of the present invention. FIG. 1(b) is a schematic cross-sectional view of a vapor phase growth device according to the present invention, and FIG. 2 is a schematic top view of the nozzle portion. Applicant: Seiko Epson Company Figure 1 (α)N'' 劫B precept five carved to vinegar decoration history map 1 @Cb)
Claims (2)
応ガスをウェハー表面に角度を付けて噴出させることに
よりウェハーをサセプタから浮上、回転させながら、成
膜を行うことを特徴とする気相成長方法。(1) A vapor phase growth method characterized in that film formation is performed while the wafer is floated and rotated from a susceptor by jetting carrier gas and reaction gas at an angle to the wafer surface with the wafer surface facing downward.
けをウェハー裏面から行うことを特徴とする特許請求の
範囲第1項記載の気相成長方法。(2) The vapor phase growth method according to claim 1, characterized in that the wafer is heated by infrared heating, and only the wafer is heated from the back side of the wafer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29121685A JPS62150711A (en) | 1985-12-24 | 1985-12-24 | Vapor phase growth method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29121685A JPS62150711A (en) | 1985-12-24 | 1985-12-24 | Vapor phase growth method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62150711A true JPS62150711A (en) | 1987-07-04 |
Family
ID=17765968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29121685A Pending JPS62150711A (en) | 1985-12-24 | 1985-12-24 | Vapor phase growth method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62150711A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03270126A (en) * | 1990-03-20 | 1991-12-02 | Toshiba Corp | Method of semiconductor vapor phase growth and device therefor |
JP2010515821A (en) * | 2007-01-08 | 2010-05-13 | イーストマン コダック カンパニー | Deposition system and method |
JP2012517701A (en) * | 2009-02-11 | 2012-08-02 | アプライド マテリアルズ インコーポレイテッド | Non-contact substrate processing |
-
1985
- 1985-12-24 JP JP29121685A patent/JPS62150711A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03270126A (en) * | 1990-03-20 | 1991-12-02 | Toshiba Corp | Method of semiconductor vapor phase growth and device therefor |
JP2010515821A (en) * | 2007-01-08 | 2010-05-13 | イーストマン コダック カンパニー | Deposition system and method |
JP2015078442A (en) * | 2007-01-08 | 2015-04-23 | イーストマン コダック カンパニー | Deposition system and method |
US10351954B2 (en) | 2007-01-08 | 2019-07-16 | Eastman Kodak Company | Deposition system and method using a delivery head separated from a substrate by gas pressure |
US11136667B2 (en) | 2007-01-08 | 2021-10-05 | Eastman Kodak Company | Deposition system and method using a delivery head separated from a substrate by gas pressure |
JP2012517701A (en) * | 2009-02-11 | 2012-08-02 | アプライド マテリアルズ インコーポレイテッド | Non-contact substrate processing |
US10074555B2 (en) | 2009-02-11 | 2018-09-11 | Applied Materials, Inc. | Non-contact substrate processing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0502209B1 (en) | Method and apparatus for growing compound semiconductor crystals | |
US9890473B2 (en) | Batch epitaxy processing system having gas deflectors | |
EP0164928A2 (en) | Vertical hot wall CVD reactor | |
JPH04210476A (en) | Formation of silicon carbide film | |
JPS62263629A (en) | Vapor phase growth equipment | |
JPH04233723A (en) | Variable distribution gas flow reaction chamber | |
WO2013125209A1 (en) | Polycrystalline silicon and device for producing polycrystalline silicon | |
JPS62150711A (en) | Vapor phase growth method | |
JP3198956B2 (en) | GaN thin film vapor deposition method and thin film vapor deposition apparatus | |
JPH0773099B2 (en) | Semiconductor vapor deposition equipment | |
JPS6122621A (en) | Vapor phase growth method | |
JP7234829B2 (en) | Film forming apparatus and film forming method | |
JP7245417B2 (en) | Film forming apparatus and film forming method | |
JP2003100642A (en) | Vapor phase thin film growth apparatus and vapor phase thin film growth method | |
JPS6240720A (en) | Vapor phase epitaxial growing device | |
JPH04337627A (en) | Vapor phase growth equipment | |
JPH0354193A (en) | Organic metal gaseous phase growth device | |
JPH0235814Y2 (en) | ||
JP3613099B2 (en) | Vapor growth equipment | |
JPH01123413A (en) | Vapor phase growth equipment | |
KR20220163922A (en) | Heating element of epitaxial growth device | |
JPH10256166A (en) | Device and method for vapor growth | |
JPH04149097A (en) | Barrel type vapor growth device | |
JP2639547B2 (en) | Wafer heating method and apparatus in vapor phase epitaxy apparatus | |
JP3010739B2 (en) | Method and apparatus for growing compound semiconductor crystal |